Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Identification of In Vivo Metabolites of a Potential Anti-tumor Drug Candidate AMAC, in Rat Plasma, Urine and Feces Samples Using UHPLC/QTOF /MS/MS

Author(s): Caixia Dou, Minghai Tang, Yuanyuan Xia, Linyu Yang, Xiang Qiu, Yong Li, Haoyu Ye* and Li Wan*

Volume 17, Issue 4, 2021

Published on: 30 December, 2019

Page: [484 - 494] Pages: 11

DOI: 10.2174/1573412916666191230124527

Price: $65

Abstract

Background: Drugs based on natural products targeting the microtubule system remain an important component in cancer therapy. Compound 10, 4-((3-amino-4-methoxyphenyl) amino)-2Hcoumarin, derived from coumarin, showed excellent anti-proliferative activity through directly binding to the colchicine-binding site in β-tubulin, suggesting that it could be a perfect drug candidate for antitumor drug research and development. Identification and structural characterization of metabolites is a critical step of both drug discovery and development research.

Objective: Compound 10, 4-((3-amino-4-methoxyphenyl) amino)-2H-coumarin, derived from coumarin.

Method: In this study, an efficient and sensitive method using Ultra High-Performance Liquid Chromatography couple with Quadrupole Time of Flight tandem Mass Spectrometry (UHPLC/QTOF/ MS/MS) was successfully established and applied to identify the in vivo metabolites in plasma, urine and feces samples of rats after intravenous administration of Compound 10 with a single dose of 10 mg/kg.

Result: A total of eight metabolites (including two phase I and six phase II metabolites) had been detected or tentatively identified in plasma, urine and feces, indicating the prominent metabolic pathways were glucuronidation, demethylation and hydroxylation. In addition, in order to understand the structure of metabolites more accurately, synthesis strategy was used to confirm the metabolite M3.

Conclusion: The present study provides important information on the metabolism of Compound 10 in vivo for the first time, which would be helpful for understanding the potential metabolic processes of Compound 10 and paving the way for pharmacology and toxicology research.

Keywords: AMAC, UHPLC/Q-TOF-MS/MS, in vivo metabolites, metabolic pathways, structural confirmation, cytoskeletal.

Graphical Abstract
[1]
Cearns, M.D.; Escuin, S.; Alexandre, P.; Greene, N.D.; Copp, A.J. Microtubules, polarity and vertebrate neural tube morphogenesis. J. Anat., 2016, 229(1), 63-74.
[http://dx.doi.org/10.1111/joa.12468] [PMID: 27025884]
[2]
Thompson, B.J.; Giancotti, F.G. Editorial overview: Cell signalling: Signal transduction to the nucleus, cytoskeleton, and organelles. Curr. Opin. Cell Biol., 2018, 51, iv-vii.
[http://dx.doi.org/10.1016/j.ceb.2018.04.005] [PMID: 29753428]
[3]
Xie, S.; Zhou, J. Harnessing plant biodiversity for the discovery of novel anticancer drugs targeting microtubules. front. plant Sci., 2017, 8, 720..
[http://dx.doi.org/10.3389/fpls.2017.00720] [PMID: 28523014]
[4]
Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J., 2016, 283(1), 102-111.
[http://dx.doi.org/10.1111/febs.13555] [PMID: 26462166]
[5]
Marangon, J.; Christodoulou, M.S.; Casagrande, F.V.; Tiana, G.; Dalla Via, L.; Aliverti, A.; Passarella, D.; Cappelletti, G.; Ricagno, S. Tools for the rational design of bivalent microtubule-targeting drugs. Biochem. Biophys. Res. Commun., 2016, 479(1), 48-53.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.022] [PMID: 27613098]
[6]
Pasquier, E.; André, N.; Braguer, D. Targeting microtubules to inhibit angiogenesis and disrupt tumour vasculature: implications for cancer treatment. Curr. Cancer Drug Targets, 2007, 7(6), 566-581.
[http://dx.doi.org/10.2174/156800907781662266] [PMID: 17896922]
[7]
Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol., 2011, 7(2), 263-283.
[http://dx.doi.org/10.2217/fon.11.2] [PMID: 21345145]
[8]
Gupta, N.; Hatoum, H.; Dy, G.K. First line treatment of advanced non-small-cell lung cancer - specific focus on albumin bound paclitaxel. Int. J. Nanomedicine, 2014, 9, 209-221.
[PMID: 24399877]
[9]
Kundranda, M.N.; Niu, J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des. Devel. Ther., 2015, 9, 3767-3777.
[http://dx.doi.org/10.2147/DDDT.S88023] [PMID: 26244011]
[10]
Socinski, M.A.; Bondarenko, I.; Karaseva, N.A.; Makhson, A.M.; Vynnychenko, I.; Okamoto, I.; Hon, J.K.; Hirsh, V.; Bhar, P.; Zhang, H.; Iglesias, J.L.; Renschler, M.F. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J. Clin. Oncol., 2012, 30(17), 2055-2062.
[http://dx.doi.org/10.1200/JCO.2011.39.5848] [PMID: 22547591]
[11]
Stiefel, C.; Schubert, T.; Morlock, G.E. Bioprofiling of cosmetics with focus on streamlined coumarin analysis. ACS Omega, 2017, 2(8), 5242-5250.
[http://dx.doi.org/10.1021/acsomega.7b00562] [PMID: 30023744]
[12]
Liu, M.M.; Chen, X.Y.; Huang, Y.Q.; Feng, P.; Guo, Y.L.; Yang, G.; Chen, Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem., 2014, 57(22), 9343-9356.
[http://dx.doi.org/10.1021/jm500613m] [PMID: 25350923]
[13]
Lad, H.B.; Giri, R.R.; Brahmbhatt, D.I. An efficient synthesis of some new 3-bipyridinyl substituted coumarins as potent antimicrobial agents. Chin. Chem. Lett., 2013, 24(3), 227-229.
[http://dx.doi.org/10.1016/j.cclet.2013.01.041]
[14]
Yule, I.A.; Czaplewski, L.G.; Pommier, S.; Davies, D.T.; Narramore, S.K.; Fishwick, C.W. Pyridine-3-carboxamide-6-yl-ureas as novel inhibitors of bacterial DNA gyrase: structure based design, synthesis, SAR and antimicrobial activity. Eur. J. Med. Chem., 2014, 86, 31-38.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.025] [PMID: 25137573]
[15]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85(15), 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[16]
Klenkar, J.; Molnar, M. Natural and synthetic coumarins as potential anticancer agents. J. Chem. Pharm. Res., 2015.
[17]
Zwergel, C.; Czepukojc, B.; Evain-Bana, E.; Xu, Z.; Stazi, G.; Mori, M.; Patsilinakos, A.; Mai, A.; Botta, B.; Ragno, R.; Bagrel, D.; Kirsch, G.; Meiser, P.; Jacob, C.; Montenarh, M.; Valente, S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur. J. Med. Chem., 2017, 134, 316-333.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.012] [PMID: 28431339]
[18]
Lariche, N.; Lahouel, M.; Benguedouar, L.; Zellagui, A. Ferulenol, a sesquiterpene coumarin, induce apoptosis via mitochondrial dysregulation in lung cancer induced by benzo[a]pyrene: involvement of BCL2 protein. Anticancer. Agents Med. Chem., 2017, 17(10), 1357-1362.
[http://dx.doi.org/10.2174/1871520617666170213143444] [PMID: 28270083]
[19]
Cao, D.; Liu, Y.; Yan, W.; Wang, C.; Bai, P.; Wang, T.; Tang, M.; Wang, X.; Yang, Z.; Ma, B.; Ma, L.; Lei, L.; Wang, F.; Xu, B.; Zhou, Y.; Yang, T.; Chen, L. Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: A novel class of potent tubulin polymerization inhibitors. J. Med. Chem., 2016, 59(12), 5721-5739.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00158] [PMID: 27213819]
[20]
Wishart, D.S. Applications of metabolomics in drug discovery and development. Drugs R D., 2008, 9(5), 307-322.
[http://dx.doi.org/10.2165/00126839-200809050-00002] [PMID: 18721000]
[21]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015(6)837042
[PMID: 26221416]
[22]
Xie, W.; Jin, Y.; Hou, L.; Ma, Y.; Xu, H.; Zhang, K.; Zhang, L.; Du, Y. A practical strategy for the characterization of ponicidin metabolites in vivo and in vitro by UHPLC-Q-TOF-MS based on nontargeted SWATH data acquisition. J. Pharm. Biomed. Anal., 2017, 145, 865-878.
[http://dx.doi.org/10.1016/j.jpba.2017.08.003] [PMID: 28830062]
[23]
Wang, X. Serum Pharmacochemistry of Traditional Chinese Medicine., 2017.
[http://dx.doi.org/10.1016/B978-0-12-811147-5.00002-9]
[24]
Wang, J.; Qi, P.; Hou, J.; Shen, Y.; Yang, M.; Bi, Q.; Deng, Y.; Shi, X.; Feng, R.; Feng, Z.; Wu, W.; Guo, D. The profiling of the metabolites of hirsutine in rat by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry: An improved strategy for the systematic screening and identification of metabolites in multi-samples in vivo. J. Pharm. Biomed. Anal., 2017, 134, 149-157.
[http://dx.doi.org/10.1016/j.jpba.2016.11.034] [PMID: 27915192]
[25]
Thummar, M.; Patel, P.N.; Petkar, A.L.; Swain, D.; Srinivas, R.; Samanthula, G. Identification of degradation products of saquinavir mesylate by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry and its application to quality control. Rapid Commun. Mass Spectrom., 2017, 31(9), 771-781.
[http://dx.doi.org/10.1002/rcm.7842] [PMID: 28233930]
[26]
Zhou, J.; Yi, H.; Zhao, Z.X.; Shang, X.Y.; Zhu, M.J.; Kuang, G.J.; Zhu, C.C.; Zhang, L. Simultaneous qualitative and quantitative evaluation of Ilex kudingcha C. J. tseng by using UPLC and UHPLC-qTOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 155, 15-26.
[http://dx.doi.org/10.1016/j.jpba.2018.02.037] [PMID: 29605682]
[27]
Zhang, X.; Yin, J.; Liang, C.; Sun, Y.; Zhang, L. UHPLC-Q-TOF-MS/MS method based on four-step strategy for metabolism study of fisetin in vitro and in vivo. J. Agric. Food Chem., 2017, 65(50), 10959-10972.
[http://dx.doi.org/10.1021/acs.jafc.7b04265] [PMID: 29171267]
[28]
Zhang, W.; Jiang, H.; Jin, M.; Wang, Q.; Sun, Q.; Du, Y.; Cao, L.; Xu, H. UHPLC-Q-TOF-MS/MS based screening and identification of the metabolites in vivo after oral administration of betulin. Fitoterapia, 2018, 127, 29-41.
[http://dx.doi.org/10.1016/j.fitote.2018.04.010] [PMID: 29665421]
[29]
Liao, B.S.; Liu, S.T. Diamination of phenylene dihalides catalyzed by a dicopper complex. J. Org. Chem., 2012, 77(15), 6653-6656.
[http://dx.doi.org/10.1021/jo301244p] [PMID: 22808946]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy