Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Antidiabetic Activity of Dihydropyrimidine Scaffolds and Structural Insight by Single Crystal X-ray Studies

Author(s): Keshab M. Bairagi, Nancy S. Younis, Promise M. Emeka, Ekta Sangtani, Rajesh G. Gonnade, Katharigatta N. Venugopala*, Osama I. Alwassil, Hany E. Khalil and Susanta K. Nayak*

Volume 16, Issue 7, 2020

Page: [996 - 1003] Pages: 8

DOI: 10.2174/1573406416666191227123048

Price: $65

Abstract

Background: This research project is designed to identify the anti-diabetic effects of the newly synthesized compounds to conclude the perspective of consuming one or more of these new synthetic compounds for diabetes management.

Introduction: A series of dihydropyrimidine (DHPM) derivative bearing electron releasing and electron-withdrawing substituent’s on phenyl ring (a-j) were synthesized and screened for antihyperglycemic( anti-diabetic) activity on streptozotocin (STZ) induced diabetic rat model. The newly synthesized compounds were characterized by using FT-IR, melting point, 1H and 13C NMR analysis. The crystal structure and supramolecular features were analyzed through single-crystal X-ray study. Anti-diabetic activity testing of newly prepared DHPM scaffolds was mainly based on their relative substituent on the phenyl ring along with urea and thiourea. Among the synthesized DHPM scaffold, the test compound c having chlorine group on phenyl ring at the ortho position to the hydropyrimidine ring with urea and methyl acetoacetate derivative shows moderate lowering of glucose level. However, the title compounds methyl 4-(4-hydroxy-3-methoxyphenyl)- 6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(g) and ethyl 4-(3-ethoxy-4- hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(h) having methoxy and ethoxy substituents on phenyl ring show significant hypoglycemic activity compared to the remaining compounds from the Scheme 1.

Methods: The experimental rat models for the study were divided into 13 groups (n = 10); group 1 animals were treated with 0.5% CMC (0.5mL) (vehicle); group 2 were considered the streptozotocin (STZ)/nicotinamide diabetic control group (DC) and untreated, group 3 diabetic animals were administered with gliclazide 50 mg/kg and act as a reference drug group. The remaining groups of the diabetic animals were administered with the newly synthesized dihydropyrimidine compounds in a single dose of 50 mg/kg orally using the oral gavage, daily for 7 days continuously. The blood glucose level was measured before and 72 hrs after nicotinamide-STZ injection, for confirmation of hyperglycemia and type 2 diabetes development.

Results: Blood glucose levels were significantly (p<0.05) reduced after treatment with these derivatives. The mean percentage reduction for gliclazide was 50%, while that of synthesized compounds were approximately 36%.

Conclusion: Our result suggests that the synthesized new DHPM derivative containing alkoxy group on the phenyl ring shows a significant lowering of glucose level compared to other derivatives.

Keywords: Anti-diabetic, type 2 diabetes mellitus, streptozotocin, dihydropyrimidine, hypoglycemic activity, blood glucose levels.

Graphical Abstract
[2]
Briede, J.; Stivrina, M.; Vigante, B.; Stoldere, D.; Duburs, G. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart. Cell Biochem. Funct., 2008, 26(2), 238-245.
[http://dx.doi.org/10.1002/cbf.1442 ] [PMID: 17990288]
[3]
Taheri Rouhi, S.Z.; Sarker, M.M.R.; Rahmat, A.; Alkahtani, S.A.; Othman, F. The effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague-Dawley rats. BMC Complement. Altern. Med., 2017, 17(1), 156-168.
[http://dx.doi.org/10.1186/s12906-017-1667-6 ] [PMID: 28288617]
[4]
Gumuslu, E.; Cine, N.; Ertan, M.; Mutlu, O.; Komsuoglu Celikyurt, I.; Ulak, G. Exenatide upregulates gene expression of glucagon-like peptide-1 receptor and nerve growth factor in streptozotocin/nicotinamide-induced diabetic mice. Fundam. Clin. Pharmacol., 2018, 32(2), 174-180.
[http://dx.doi.org/10.1111/fcp.12329 ] [PMID: 29091313]
[5]
Bellamy, L.; Casas, J-P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet, 2009, 373(9677), 1773-1779.
[http://dx.doi.org/10.1016/S0140-6736(09)60731-5 ] [PMID: 19465232]
[6]
Hsieh, C-T.; Hsieh, T-J.; El-Shazly, M.; Chuang, D-W.; Tsai, Y-H.; Yen, C-T.; Wu, S-F.; Wu, Y-C.; Chang, F-R. Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg. Med. Chem. Lett., 2012, 22(12), 3912-3915.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.108 ] [PMID: 22608392]
[7]
Lokwani, D.K.; Mokale, S.N.; Shinde, D.B. 3D QSAR studies based in silico screening of 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine analogs for anti-inflammatory activity. Eur. J. Med. Chem., 2014, 73, 233-242.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.083 ] [PMID: 24412499]
[8]
Hitchings, G.H.; Russell, P.B.; Whittaker, N. 212. Some 2: 6-diamino-and 2-amino-6-hydroxy-derivatives of 5-aryl-4: 5-dihydropyrimidines. A new synthesis of 4-alkyl-5-arylpyrimidines. J. Chem. Soc., 1956, 1019-1028.
[http://dx.doi.org/10.1039/jr9560001019]
[9]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M. Synthesis of 2,4,6-trisubstituted pyrimidines as antimalarial agents. Bioorg. Med. Chem., 2005, 13(15), 4645-4650.
[http://dx.doi.org/10.1016/j.bmc.2005.04.061 ] [PMID: 15896965]
[10]
October, N.; Watermeyer, N.D.; Yardley, V.; Egan, T.J.; Ncokazi, K.; Chibale, K. Reversed chloroquines based on the 3,4-dihydropyrimidin-2(1H)-one scaffold: synthesis and evaluation for antimalarial, β-haematin inhibition, and cytotoxic activity. ChemMedChem, 2008, 3(11), 1649-1653.
[http://dx.doi.org/10.1002/cmdc.200800172 ] [PMID: 18846586]
[11]
Narayanaswamy, V.K.; Gleiser, R.M.; Chalannavar, R.K.; Odhav, B. Antimosquito properties of 2-substituted phenyl/benzylamino-6-(4-chlorophenyl)-5-methoxycarbonyl-4-methyl-3, 6-dihydro-pyrimidin-1-ium chlorides against anopheles arabiensis. Med. Chem., 2014, 10(2), 211-219.
[http://dx.doi.org/10.2174/157340641002140131164945 ] [PMID: 24506684]
[12]
Venugopala, K.N.; Nayak, S.K.; Gleiser, R.M.; Sanchez-Borzone, M.E.; Garcia, D.A.; Odhav, B. Synthesis, polymorphism, and insecticidal activity of methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H-pyrimido[2,1-b]quinazoline-3-carboxylate against anopheles arabiensis mosquito. Chem. Biol. Drug Des., 2016, 88(1), 88-96.
[http://dx.doi.org/10.1111/cbdd.12736 ] [PMID: 26841246]
[13]
Rana, K.; Arora, A.; Bansal, S.; Chawla, R. Synthesis, in vitro anticancer and antimicrobial evaluation of novel substituted dihydropyrimidines. Indian J. Pharm. Sci., 2014, 76(4), 339-347.
[PMID: 25284932]
[14]
Venugopala, K.N.; Govender, R.; Khedr, M.A.; Venugopala, R.; Aldhubiab, B.E.; Harsha, S.; Odhav, B. Design, synthesis, and computational studies on dihydropyrimidine scaffolds as potential lipoxygenase inhibitors and cancer chemopreventive agents. Drug Des. Devel. Ther., 2015, 9, 911-921.
[http://dx.doi.org/10.2147/DDDT.S73890 ] [PMID: 25733811]
[15]
Narayanaswamy, V.K.; Nayak, S.K.; Pillay, M.; Prasanna, R.; Coovadia, Y.M.; Odhav, B. Synthesis and antitubercular activity of 2-(substituted phenyl/benzyl-amino)-6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-3,6-dihydropyrimidin-1-ium chlorides. Chem. Biol. Drug Des., 2013, 81(2), 219-227.
[http://dx.doi.org/10.1111/cbdd.12065 ] [PMID: 23150983]
[16]
Venugopala, K.N.; Dharma Rao, G.B.; Bhandary, S.; Pillay, M.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2681-2690.
[http://dx.doi.org/10.2147/DDDT.S109760 ] [PMID: 27601885]
[17]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017 ] [PMID: 7837222]
[18]
Atwal, K.S.; Rovnyak, G.C.; Kimball, S.D.; Floyd, D.M.; Moreland, S.; Swanson, B.N.; Gougoutas, J.Z.; Schwartz, J.; Smillie, K.M.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 2. 3-substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxy-lic acid esters as potent mimics of dihydropyridines. J. Med. Chem., 1990, 33(9), 2629-2635.
[http://dx.doi.org/10.1021/jm00171a044 ] [PMID: 2391701]
[19]
Krug, S.; Boch, M.; Nimphius, W.; Gress, T.M.; Michl, P.; Rinke, A. Relevance of dihydropyrimidine-dehydrogenase and thymidylate-synthase in patients with pancreatic neuroendocrine neoplasms treated with 5-FU-based chemotherapy. Pancreatology, 2017, 17(1), 139-145.
[http://dx.doi.org/10.1016/j.pan.2016.12.006 ] [PMID: 28027897]
[20]
Zhu, L.; Cheng, P.; Lei, N.; Yao, J.; Sheng, C.; Zhuang, C.; Guo, W.; Liu, W.; Zhang, Y.; Dong, G.; Wang, S.; Miao, Z.; Zhang, W. Synthesis and biological evaluation of novel homocamptothecins conjugating with dihydropyrimidine derivatives as potent topoisomerase I inhibitors. Arch. Pharm. (Weinheim), 2011, 344(11), 726-734.
[http://dx.doi.org/10.1002/ardp.201000402 ] [PMID: 21956522]
[21]
Bairagi, K.M.; Venugopala, K.N.; Mondal, P.K.; Gleiser, R.M.; Chopra, D.; García, D.; Odhav, B.; Nayak, S.K. Larvicidal study of tetrahydropyrimidine scaffolds against Anopheles arabiensis and structural insight by single crystal X-ray studies. Chem. Biol. Drug Des., 2018, 92(6), 1924-1932.
[http://dx.doi.org/10.1111/cbdd.13351 ] [PMID: 29923688]
[22]
Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nayak, S.K.; Chandrashekharappa, S.; Aldhubiab, B.E.; Harsha, S.; Attimard, M.; Odhav, B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(7), 1830-1842.
[http://dx.doi.org/10.1080/07391102.2018.1470035 ] [PMID: 29697293]
[23]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.019 ] [PMID: 15908051]
[24]
Furman, B.L. Streptozotocin-induced diabetic models in mice and rats., Curr. Protocols Pharmacol., 2015, 70, 1-20, 20..
[http://dx.doi.org/10.1002/0471141755.ph0547s70] [PMID: 26331889]
[25]
Kaur, N.; Kishore, L.; Singh, R. Dillenia indica L. attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in STZ-nicotinamide induced diabetic rats. J. Tradit. Complement. Med., 2017, 8(1), 226-238.
[http://dx.doi.org/10.1016/j.jtcme.2017.06.004 ] [PMID: 29322013]
[26]
Ueno, H.; Shimizu, R.; Okuno, T.; Ogino, H.; Arakawa, T.; Sakazaki, F.; Nakamuro, K. Effects of administering sodium selenite, methylseleninic acid, and seleno-L-methionine on glucose tolerance in a streptozotocin/nicotinamide-induced diabetic mouse model. Biol. Pharm. Bull., 2014, 37(9), 1569-1574.
[http://dx.doi.org/10.1248/bpb.b14-00373 ] [PMID: 25177039]
[27]
DOC-M86-EXX229.APEX3 Crystallography Software Suit; Bruker Analytical X-Ray Systems: Madison, WI, 2016.
[28]
Anal. Chem., 1989, 61(11), 693A-693A.
[http://dx.doi.org/10.1021/ac00186a711]
[29]
Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cascarano, G.L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement viaSIR2014. J. Appl. Cryst., 2015, 48(1), 306-309.
[http://dx.doi.org/10.1107/S1600576715001132]
[30]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218 ] [PMID: 25567568]
[31]
Farrugia, L.J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst., 2012, 45(4), 849-854.
[http://dx.doi.org/10.1107/S0021889812029111]
[32]
Farrugia, L.J. 1997.
[33]
Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.d.; Wood, P.A. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Cryst., 2008, 41(2), 466-470.
[http://dx.doi.org/10.1107/S0021889807067908]
[34]
Nardelli, M. PARST95–an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. J. Appl. Cryst., 1995, 28(5), 659-659.
[http://dx.doi.org/10.1107/S0021889895007138]
[35]
Spek, A.L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 1), 9-18.
[http://dx.doi.org/10.1107/S2053229614024929 ] [PMID: 25567569]
[36]
Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2016, 72(Pt 2), 171-179.
[http://dx.doi.org/10.1107/S2052520616003954 ] [PMID: 27048719]
[37]
Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. B, 1990, 46(Pt 2), 256-262.
[http://dx.doi.org/10.1107/S0108768189012929 ] [PMID: 2344397]
[38]
Tu, S.; Fang, F.; Miao, C.; Jiang, H.; Feng, Y.; Shi, D.; Wang, X. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones using boric acid as catalyst. Tetrahedron Lett., 2003, 44(32), 6153-6155.
[http://dx.doi.org/10.1016/S0040-4039(03)01466-7]
[39]
Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32.
[http://dx.doi.org/10.1039/B818330A]
[40]
Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy