Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Mini-Review Article

Chiral Catalysts Utilized in the Nucleophilic Addition of Dialkyl-zinc Reagents to Carbonyl Compounds

Author(s): Adnan Cetin*

Volume 17, Issue 8, 2020

Page: [571 - 585] Pages: 15

DOI: 10.2174/1570178617666191220145038

Price: $65

Abstract

The aim of this review is an overview of diverse dialkyl zinc pro-chiral aldehydes addition reactions. One way of conducting asymmetric reactions is through the use of chiral catalyst. Therefore, new chiral ligands have attracted considerable attention in organic chemistry. Carbon-carbon bond formation reactions are an active research topic. The addition of dialkyl zinc to pro-chiral aldehydes is one of these popular reactions. Also, the chiral amino alcohols are important substrates for drug synthesis. These chiral ligands can be prepared by a simple synthetic way from easily accessible starting materials. This article reviews current catalyst reactions with the addition of dialkyl zinc to carbonyl compounds.

Keywords: Asymmetric synthesis, amino alcohol, binols, chirality, chiral recognition, Ee.

Next »
Graphical Abstract
[1]
Ma, W.; Xu, L.; Wang, L.; Xu, C.; Kuang, H. Adv. Funct. Mater., 2019, 29, 1-17.
[2]
Pu, F.; Ren, J.; Qu, X. Chem. Soc. Rev., 2018, 47, 1285-1306.
[http://dx.doi.org/10.1039/C7CS00673J]
[3]
Nguyen, L.A.; He, H.; Pham-Huy, C. Int. J. Biomed. Sci., 2006, 2, 85-100.
[4]
Gal, J. Chirality, 2011, 23, 1-16.
[http://dx.doi.org/10.1002/chir.20866]
[5]
Sheldon, R.A. Chirotechnology: industrial synthesis of optically active compounds; CRC press, 1993, p. 34.
[6]
Turner, N.J. Curr. Opin. Biotechnol., 2003, 14, 401-406.
[http://dx.doi.org/10.1016/S0958-1669(03)00093-4]
[7]
Rivieccio, E.; Tartaglione, L.; Esposito, V.; Dell’Aversano, C.; Koneru, P.C.; Scuotto, M.; Varra, M. Subjects., 2019, 1863, 351-361.
[http://dx.doi.org/10.1016/j.bbagen.2018.11.001]
[8]
Zawirska-Wojtasiak, R. Acta Sci. Pol. Technol. Aliment., 2006, 5, 21-36.
[9]
Morlighem, J.É.R.; Radis-Baptista, G. Curr. Protein Pept. Sci., 2019, 20, 334-355.
[http://dx.doi.org/10.2174/1389203719666180926121722]
[10]
Helman, D.S. Acta Astronaut., 2018, 151, 595-602.
[http://dx.doi.org/10.1016/j.actaastro.2018.07.008]
[11]
Seo, H.Y.; Shim, S.L.; Ryu, K.Y.; Jung, M.S.; Hwang, I.M.; Shin, D.B.; Kim, K.S. Food Sci. Biotechnol., 2009, 18, 18-24.
[12]
Wibe, A.; Borg-Karlson, A.K.; Persson, M.; Norin, T.; Mustaparta, H. J. Chem. Ecol., 1998, 24, 273-287.
[http://dx.doi.org/10.1023/A:1022580308414]
[13]
Finefield, J.M. Angew. Chem. Int. Ed., 2012, 51, 4802-4836.
[http://dx.doi.org/10.1002/anie.201107204]
[14]
Sekhon, B.S. J. Pest Sci., 2009, 34, 1-12.
[http://dx.doi.org/10.1584/jpestics.R08-03]
[15]
Liu, W.; Gan, J.; Schlenk, D.; Jury, W.A. Proc. Natl. Acad. Sci. USA, 2005, 102, 701-706.
[http://dx.doi.org/10.1073/pnas.0408847102]
[16]
Konwick, B.J.; Garrison, A.W.; Avants, J.K.; Fisk, A.T. Aquat. Toxicol., 2006, 80, 372-381.
[http://dx.doi.org/10.1016/j.aquatox.2006.10.003]
[17]
Ali, I.; Aboul-Enein, H.Y. John Wiley Sons; , 2005, p. p. 153..
[18]
Bewick, D.W.U.S. 1986. Patent No. 4,565,782
[19]
Krief, A.; Dumont, W.; Pasau, P.; Lecomte, P. Tetrahedron, 1989, 45, 3039-3052.
[http://dx.doi.org/10.1016/S0040-4020(01)80130-7]
[20]
Maguire, R.J. Water Sci. Technol., 1992, 25, 99-102.
[http://dx.doi.org/10.2166/wst.1992.0279]
[21]
Barchanska, H.; Danek, M.; Sajdak, M.; Turek, M. Crit. Rev. Anal. Chem., 2018, 48, 467-491.
[http://dx.doi.org/10.1080/10408347.2018.1451297]
[22]
Bradberry, S.M.; Vale, J.A. 2017, 1789-1796.
[23]
Gajendiran, A. Abraham. J. Front. Biol., 2018, 13, 1-12.
[http://dx.doi.org/10.1007/s11515-018-1489-z]
[24]
Gu, X.; Wang, P.; Liu, D.; Lv, C.; Lu, Y.; Zhou, Z. Chirality, 2008, 20, 125-129.
[http://dx.doi.org/10.1002/chir.20504]
[25]
Maia, A.S.; Ribeiro, A.R.; Castro, P.M.; Tiritan, M.E. Symmetry (Basel), 2017, 9, 1-29.
[http://dx.doi.org/10.3390/sym9090196]
[26]
Li, S.; Li, D.; Xiao, T.; Zhang, S.; Song, Z.; Ma, H. J. Agric. Food Chem., 2016, 64, 8927-8934.
[http://dx.doi.org/10.1021/acs.jafc.6b03464]
[27]
Keerthi, K.K.; Ujwaldev, S.M.; Saranya, S.; Anilkumar, G.; Beller, M. Adv. Synth. Catal., 2019, 361, 382-404.
[http://dx.doi.org/10.1002/adsc.201800868]
[28]
Ohkuma, T.; Hashiguchi, S.; Noyori, R. J. Org. Chem., 1994, 59, 217-221.
[http://dx.doi.org/10.1021/jo00080a035]
[29]
Mimoun, H. J. Org. Chem., 1999, 64, 2582-2589.
[http://dx.doi.org/10.1021/jo982314z]
[30]
Seyferth, D. Organometallics, 2001, 20, 2940-2955.
[http://dx.doi.org/10.1021/om010439f]
[31]
Pu, L.; Yu, H.B. Chem. Rev., 2001, 101, 757-824.
[http://dx.doi.org/10.1021/cr000411y]
[32]
Soai, K.; Niwa, S. Chem. Rev., 1992, 92, 833-856.
[http://dx.doi.org/10.1021/cr00013a004]
[33]
Pu, L. Acc. Chem. Res., 2014, 47, 1523-1535.
[http://dx.doi.org/10.1021/ar500020k]
[34]
Zhang, Y.; Gao, H.; Joo, Y.H.; Shreeve, J.N.M. Angew. Chem. Int. Ed., 2011, 50, 9554-9562.
[http://dx.doi.org/10.1002/anie.201101954]
[35]
Zhan, G.; Du, W.; Chen, Y.C. Chem. Soc. Rev., 2017, 1675-1692.
[http://dx.doi.org/10.1039/C6CS00247A]
[36]
Bhadra, S.; Yamamoto, H. Chem. Rev., 2018, 118, 3391-3446.
[http://dx.doi.org/10.1021/acs.chemrev.7b00514]
[37]
Navarro, R.; Monterde, C.; Iglesias, M.; Sánchez, F. ACS Omega, 2018, 3, 1197-1200.
[http://dx.doi.org/10.1021/acsomega.7b02013]
[38]
Wang, D.; Bruneau-Voisine, A.; Sortais, J.B. Catal. Commun., 2018, 105, 31-36.
[http://dx.doi.org/10.1016/j.catcom.2017.10.028]
[39]
Cruz, H.; Servín, F.A.; Madrigal, D.; Chávez, D.; Perez-Sicairos, S.; Aguirre, G.; Somanathan, R. Chirality, 2018, 30, 1036-1044.
[http://dx.doi.org/10.1002/chir.22984]
[40]
Itoh, K.; Sibi, M.P. Org. Biomol. Chem., 2018, 16, 5551-5565.
[http://dx.doi.org/10.1039/C8OB01010B]
[41]
Burguete, M.I.; Luis, S.V.; Altava, B. Chem. Soc. Rev., 2018, 47, 2722-3005.
[http://dx.doi.org/10.1039/C7CS00734E]
[42]
Oguni, N.; Omi, T. Tetrahedron Lett., 1984, 25, 2823-2824.
[http://dx.doi.org/10.1016/S0040-4039(01)81300-9]
[43]
Ramón, D.J.; Yu, M. Chem. Rev., 2006, 106, 2126-2208.
[http://dx.doi.org/10.1021/cr040698p]
[44]
Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc., 1986, 108, 6071-6072.
[http://dx.doi.org/10.1021/ja00279a083]
[45]
Liu, X. Chin. J. Chem., 2018, 36, 791-797.
[http://dx.doi.org/10.1002/cjoc.201800155]
[46]
Christian, A.H.; Niemeyer, Z.L.; Sigman, M.S.; Toste, F.D. ACS Catal., 2017, 7, 3973-3978.
[http://dx.doi.org/10.1021/acscatal.7b00757]
[47]
Gopalaiah, K. Chem. Rev., 2013, 113, 3248-3296.
[http://dx.doi.org/10.1021/cr300236r]
[48]
Yoon, T.P. Acc. Chem. Res., 2016, 49, 2307-2315.
[http://dx.doi.org/10.1021/acs.accounts.6b00280]
[49]
Brimioulle, R.; Lenhart, D.; Maturi, M.M.; Bach, T. Angew. Chem. Int. Ed., 2015, 54, 3872-3890.
[http://dx.doi.org/10.1002/anie.201411409]
[50]
Yamada, K.I.; Tomioka, K. Chem. Rev., 2008, 108, 2874-2886.
[http://dx.doi.org/10.1021/cr078370u]
[51]
Jeon, S.J.; Li, H.; García, C.; LaRochelle, L.K.; Walsh, P.J. J. Org. Chem., 2005, 70, 448-455.
[http://dx.doi.org/10.1021/jo048683e]
[52]
Neves-Garcia, T.; Vélez, A.; Martínez-Ilarduya, J.M.; Espinet, P. Chem. Commun. (Camb.), 2018, 54, 11809-11812.
[http://dx.doi.org/10.1039/C8CC06358C]
[53]
Noyori, R.; Hashiguchi, S. Acc. Chem. Res., 1997, 30, 97-102.
[http://dx.doi.org/10.1021/ar9502341]
[54]
Buhse, T. Noble-Terán, M.E.; Cruz, J.M.; Micheau, J.C; Coudret. In Advances in Asymmetric Autocatalysis and Related Topics, 2017, pp. 71-110.
[55]
Zhu, H.J.; Jiang, J.X.; Saebo, S.; Pittman, C.U. J. Org. Chem., 2005, 70, 261-267.
[http://dx.doi.org/10.1021/jo049754c]
[56]
Gomez-Bengoa, E.; Linden, A.; López, R.; Múgica-Mendiola, I.; Oiarbide, M.; Palomo, C. J. Am. Chem. Soc., 2008, 130, 7955-7966.
[http://dx.doi.org/10.1021/ja800253z]
[57]
Sappino, C.; Mari, A.; Mantineo, A.; Moliterno, M.; Palagri, M.; Tatangelo, C.; Righi, G. Org. Biomol. Chem., 2018, 16, 1860-1870.
[http://dx.doi.org/10.1039/C8OB00165K]
[58]
Li, W. Zhang. J. Chem. Soc. Rev., 2016, 45, 1657-1677.
[http://dx.doi.org/10.1039/C5CS00469A]
[59]
Krautwald, S.; Carreira, E.M. J. Am. Chem. Soc., 2017, 139, 5627-5639.
[http://dx.doi.org/10.1021/jacs.6b13340]
[60]
Zhang, A.L.; Yang, L.W.; Yang, N.F.; Liu, Y.L. Tetrahedron Asymmetry, 2014, 25, 289-297.
[http://dx.doi.org/10.1016/j.tetasy.2013.11.007]
[61]
Eidamshaus, C.; Reissig, H.U. Eur. J. Org. Chem., 2011, 2011, 6056-6069.
[http://dx.doi.org/10.1002/ejoc.201100681]
[62]
Eidamshaus, C.; Reissig, H.U. Tetrahedron Asymmetry, 2011, 22, 1644-1652.
[http://dx.doi.org/10.1016/j.tetasy.2011.08.017]
[63]
Faigl, F.; Deák, S.Z.; Erdélyi, Z.S.; Holczbauer, T.; Czugler, M.; Nyerges, M.; Mátravölgyi, B. Chirality, 2015, 27, 216-222.
[http://dx.doi.org/10.1002/chir.22415]
[64]
Prause, F.; Wagner, S.; Breuning, M. Tetrahedron, 2019, 75, 94-101.
[http://dx.doi.org/10.1016/j.tet.2018.11.030]
[65]
Asami, M.; Hasome, A.; Yachi, N.; Hosoda, N.; Yamaguchi, Y.; Ito, S. Tetrahedron Asymmetry, 2016, 27, 322-329.
[http://dx.doi.org/10.1016/j.tetasy.2016.03.007]
[66]
Asami, M.; Miyairi, N.; Sasahara, Y.; Ichikawa, K.I.; Hosoda, N. Tetrahedron, 2015, 71, 6796-6802.
[http://dx.doi.org/10.1016/j.tet.2015.07.031]
[67]
Gök, Y.; Kiliçarslan, S.; Gök, H.Z. Chirality, 2016, 28, 593-598.
[68]
Gök, Y.; Gök, H.Z.; Karayiğit, İ.Ü. J. Organomet. Chem., 2018, 873, 43-49.
[http://dx.doi.org/10.1016/j.jorganchem.2018.07.033]
[69]
Wang, X.; Zhao, W.; Li, G.; Liu, G.; Wang, J.; Wang, M.; Liu, L. Tetrahedron Asymmetry, 2015, 26, 815-820.
[http://dx.doi.org/10.1016/j.tetasy.2015.06.007]
[70]
Frensch, G.; Labes, R.; Wosch, C.L.; dos Santos Munaretto, L.; Salome, K.S.; Guerrero, P.G.; Marques, F.A. Tetrahedron Lett., 2016, 57, 420-422.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.042]
[71]
Jarzyński, S.; Leśniak, S.; Pieczonka, A.M.; Rachwalski, M. Tetrahedron Asymmetry, 2015, 26, 35-40.
[http://dx.doi.org/10.1016/j.tetasy.2014.11.016]
[72]
Xu, Q.; Wu, X.; Pan, X.; Chan, A.S.; Yang, T.K. Chirality, 2002, 14, 28-31.
[http://dx.doi.org/10.1002/chir.10027]
[73]
Bolm, C.; Ewald, M.; Felder, M.; Schlingloff, G. Chem. Ber., 1992, 125, 1169-1190.
[http://dx.doi.org/10.1002/cber.19921250528]
[74]
Williams, D.R.; Fromhold, M.G. Synlett, 1997, 1997, 523-524.
[http://dx.doi.org/10.1055/s-1997-6125]
[75]
Bulut, A.; Aslan, A.; Izgü, E.Ç.; Dogan, Ö. Tetrahedron Asymmetry, 2007, 18, 1013-1016.
[http://dx.doi.org/10.1016/j.tetasy.2007.04.013]
[76]
Pu, L.; Yu, H.B. Chem. Rev., 2001, 101, 757-824.
[http://dx.doi.org/10.1021/cr000411y]
[77]
Nicolosi, G.; Patti, A.; Morrone, R.; Piattelli, M. Tetrahedron Asymmetry, 1994, 5, 1639-1642.
[http://dx.doi.org/10.1016/0957-4166(94)80069-3]
[78]
Howell, J.A.; Humphries, K.; McArdle, P.; Cunningham, D.; Nicolosi, G.; Patti, A.; Walsh, M.A. Tetrahedron Asymmetry, 1997, 8, 1027-1030.
[http://dx.doi.org/10.1016/S0957-4166(97)00092-X]
[79]
Patti, A.; Nicolosi, G. Tetrahedron Asymmetry, 2000, 11, 3687-3692.
[http://dx.doi.org/10.1016/S0957-4166(00)00299-8]
[80]
Nottingham, C.; Benson, R.; Müller-Bunz, H.; Guiry, P.J. J. Org. Chem., 2015, 80, 10163-10176.
[http://dx.doi.org/10.1021/acs.joc.5b01766]
[81]
Marques, F.A.; Wosch, C.L.; Frensch, G.; Labes, R.; Maia, B.H.; Salomé, K.S.; Guerrero, P.G., Jr J. Braz. Chem. Soc., 2015, 26, 165-170.
[82]
Braga, A.L.; Rubim, R.M.; Schrekker, H.S.; Wessjohann, L.A.; De Bolster, M.W.; Zeni, G.; Sehnem, J.A. Tetrahedron Asymmetry, 2003, 14, 3291-3295.
[http://dx.doi.org/10.1016/j.tetasy.2003.08.029]
[83]
Fu, B.; Du, D.M.; Wang, J. Tetrahedron Asymmetry, 2004, 15, 119-126.
[http://dx.doi.org/10.1016/j.tetasy.2003.11.006]
[84]
Yan, G.; Wu, Y.; Lin, W.; Zhang, X. Tetrahedron Asymmetry, 2007, 18, 2643-2648.
[http://dx.doi.org/10.1016/j.tetasy.2007.10.035]
[85]
Pastor, I.M.; Adolfsson, H. Tetrahedron Lett., 2002, 43, 1743-1746.
[http://dx.doi.org/10.1016/S0040-4039(02)00087-4]
[86]
Braga, A.L.; Galetto, F.Z.; Rodrigues, O.E.; Silveira, C.C.; Paixao, M.W. Chirality, 2008, 20, 839-845.
[http://dx.doi.org/10.1002/chir.20554]
[87]
Braga, A.L.; Paixao, M.W.; Lüdtke, D.S.; Silveira, C.C.; Rodrigues, O.E. Org. Lett., 2003, 5, 2635-2638.
[http://dx.doi.org/10.1021/ol034773e]
[88]
Kang, J.; Kim, J.W.; Lee, J.W.; Kim, D.S.; Kim, J.I. Bull. Korean Chem. Soc., 1996, 17, 1135-1142.
[89]
Wirth, T. Tetrahedron Lett., 1995, 36, 7849-7852.
[http://dx.doi.org/10.1016/0040-4039(95)01668-8]
[90]
Wirth, T.; Kulicke, K.J.; Fragale, G. Helv. Chim. Acta, 1996, 79, 1957-1966.
[http://dx.doi.org/10.1002/hlca.19960790718]
[91]
Tseng, S.L.; Yang, T.K. Tetrahedron Asymmetry, 2004, 15, 3375-3380.
[http://dx.doi.org/10.1016/j.tetasy.2004.08.009]
[92]
Leśniak, S.; Rachwalski, M.; Sznajder, E.; Kiełbasiński, P. Tetrahedron Asymmetry, 2009, 20, 2311-2314.
[http://dx.doi.org/10.1016/j.tetasy.2009.09.012]
[93]
Schmidt, B.; Seebach, D. Angew. Chem. Int. Ed. Engl., 1991, 30, 1321-1323.
[http://dx.doi.org/10.1002/anie.199113211]
[94]
Weber, B.; Seebach, D. Tetrahedron, 1994, 50, 6117-6128.
[http://dx.doi.org/10.1016/S0040-4020(01)90463-6]
[95]
Qian, C.T.; Gao, F.F.; Sun, J. Tetrahedron Asymmetry, 2000, 11, 1733-1740.
[http://dx.doi.org/10.1016/S0957-4166(00)00090-2]
[96]
Wang, X.; Zhang, J.; Liu, Y.; Cui, Y. Bull. Chem. Soc. Jpn., 2014, 87, 435-440.
[http://dx.doi.org/10.1246/bcsj.20130317]
[97]
Brunel, J.M. Chem. Rev., 2005, 105, 857-898.
[http://dx.doi.org/10.1021/cr040079g]
[98]
Guo, Q.S.; Liu, B.; Lu, Y.N.; Jiang, F.Y.; Song, H.B.; Li, J.S. Tetrahedron Asymmetry, 2005, 16, 3667-3671.
[http://dx.doi.org/10.1016/j.tetasy.2005.09.018]
[99]
Kuwabara, K.; Maekawa, Y.; Minoura, M.; Murai, T. Org. Lett., 2018, 20, 1375-1379.
[http://dx.doi.org/10.1021/acs.orglett.8b00147]
[100]
Liang, D.C.; Luo, R.S.; Yin, L.H.; Chan, A.S.; Lu, G. Org. Biomol. Chem., 2012, 10, 3071-3079.
[http://dx.doi.org/10.1039/c2ob07110j]
[101]
Liu, B.; Dong, Z.B.; Fang, C.; Song, H.B.; Li, J.S. Chirality, 2008, 20, 828-832.
[http://dx.doi.org/10.1002/chir.20559]
[102]
Milburn, R.R.; Hussain, S.S.; Prien, O.; Ahmed, Z.; Snieckus, V. Org. Lett., 2003, 9, 4403-4406.
[http://dx.doi.org/10.1021/ol071276f]
[103]
Al Majid, A.M.; Islam, M.S.; Al-Othman, Z.A.; Al-Salhoob, A.F. Arab. J. Chem., 2017, 10, S964-S970.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.036]
[104]
Cetin, A. Asian J. Chem., 2010, 22, 5086-5092.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy