Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Analysis of Differentially Expressed Proteins in Mycobacterium Tuberculosis-Infected Macrophages

Author(s): Shuang Tian, Dongjun Yang, Qian Long and Min Ling*

Volume 18, Issue 1, 2021

Published on: 17 December, 2019

Page: [12 - 17] Pages: 6

DOI: 10.2174/1570164617666191218112128

Price: $65

Abstract

Background: Mycobacterium tuberculosis (MTB) and Mycobacterium avium (MA) are intracellular parasitic bacteria. The biological characteristics of MA and MTB are very similar and need to be identified.

Objective: The study aims to better understand how MTB survives in macrophages and the different pathogenic mechanisms of MTB and MA.

Methods: The Tandem Mass Tag (TMT) and liquid chromatography-tandem mass spectrometry (LCMS/ MS) were used for analysis of the differentially expressed proteins in MTB-infected macrophages and MA-infected macrophages.

Results: A total of 682 proteins were found to be differentially expressed in MTB-infected cells in comparison with MA-infected cells. Among these, 10 proteins (O60812, P06576, O43660-2, E9PL10, O00442, M0R050, Q9H8H0, Q9BSJ8, P41240 and Q8TD57-3) were down-regulated in MTB-infected cells, and M0R050, O00442, Q9H8H0, O60812 and O43660 are interactive proteins which participate in a multitude of cellular RNA processing.

Conclusion: The five down-regulated proteins (M0R050, O00442, Q9H8H0, O60812 and O43660) might repress the synthesis of some resistant proteins in MTB-infected cells to promote MTB survival in macrophages.

Keywords: Mycobacterium tuberculosis, Mycobacterium avium, TMT technology, survival, macrophage, proteomic.

Graphical Abstract
[1]
World Health Organization (2016) . Tuberculosis. Fact sheet. Available online at: http://www. who. int/mediacentre/factsheets/fs104/en/
[2]
Salgame, P. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr. Opin. Immunol., 2005, 17(4), 374-380.
[http://dx.doi.org/10.1016/j.coi.2005.06.006]
[3]
Cohen, D.B.; Phiri, M.; Banda, H.; Squire, S.B.; Namakhoma, I.; Desmond, N. A qualitative evaluation of hospital versus community-based management of patients on injectable treatments for tuberculosis. BMC Public Health, 2018, 18(1), 1127.
[http://dx.doi.org/10.1186/s12889-018-6015-3] [PMID: 30223808]
[4]
Song, Y.H.; Ma, L.P. Advances in molecular biological diagnosis technology of non-tuberculosis infection. J. Clin. Lung., 2014, 19(3), 501-504.
[5]
Ma, Y. On the diagnosis and treatment of non-tuberculosis pulmonary disease. Chin. J. Tubercul. Respirat., 2011, 34(8), 566-568.
[6]
Neyrolles, O.; Wolschendorf, F.; Mitra, A.; Niederweis, M. Mycobacteria, metals, and the macrophage. Immunol. Rev., 2015, 264(1), 249-263.
[http://dx.doi.org/10.1111/imr.12265]
[7]
Bai, X.; Kinney, W.H.; Su, W.L.; Bai, A.; Ovrutsky, A.R.; Honda, J.R.; Netea, M.G.; Henao-Tamayo, M.; Ordway, D.J.; Dinarello, C.A.; Chan, E.D. Caspase-3-independent apoptotic pathways contribute to interleukin-32γ-mediated control of Mycobacterium tuberculosis infection in THP-1 cells. BMC Microbiol., 2015, 15.
[http://dx.doi.org/10.1186/s12866-015-0366-z]
[8]
Ang, K.C.; Ibrahim, P.; Gam, L.H. Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis. Biotechnol. Appl. Biochem., 2014, 61(2), 153-164.
[9]
Mehan, M.R.; Ostroff, R.; Wilcox, S.K.; Steele, F.; Schneider, D.; Jarvis, T.C.; Baird, G.S.; Gold, L.; Janjic, N. Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. Adv. Exp. Med. Biol., 2013, 735, 283-300.
[http://dx.doi.org/10.1007/978-1-4614-4118-2_20PMID: 23402035]
[10]
Li, P.; Wang, R.; Dong, W.; Hu, L.; Zong, B.; Zhang, Y.; Wang, X.; Guo, A.; Zhang, A.; Xiang, Y.; Chen, H.; Tan, C. Comparative proteomics analysis of human macrophages infected with virulent Mycobacterium bovis. Front. Cell. Infect. Microbiol., 2017, 7, 65.
[http://dx.doi.org/10.3389/fcimb.2017.00065] [PMID: 28337427]
[11]
Li, H.; Wei, S.; Fang, Y.; Li, M.; Li, X.; Li, Z.; Zhang, J.; Zhu, G.; Li, C.; Bi, L.; Zhang, G.; Wang, D.; Zhang, X.E. Quantitative proteomic analysis of host responses triggered by Mycobacterium tuberculosis infection in human macrophage cells. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(9), 835-844.
[http://dx.doi.org/10.1093/abbs/gmx080] [PMID: 28910983]
[12]
Yang, D.; Fu, X.; He, S.; Ning, X.; Ling, M. Analysis of differentially expressed proteins in Mycobacterium avium-infected macrophages comparing with Mycobacterium tuberculosis-infected macrophages. BioMed Res. Int., 2017, 20175103803
[http://dx.doi.org/10.1155/2017/5103803] [PMID: 28573139]
[13]
Davis, A.; Meintjes, G.; Wilkinson, R.J. Treatment of tuberculous meningitis and its complications in adults. Curr. Treat. Options Neurol., 2018, 20(3), 5.
[http://dx.doi.org/10.1007/s11940-018-0490-9] [PMID: 29492737]
[14]
Govendir, M.; Hansen, T.; Kimble, B.; Norris, J.M.; Baral, R.M.; Wigney, D.I. Susceptibility of rapidly growing mycobacteria isolated from cats and dogs, to ciprofloxacin, enrofloxacin and moxifloxacin. Veter Microbiol, 2011, 147(1-2), 101:113-8.
[http://dx.doi.org/10.1016/j.vetmic.2010.06.011]
[15]
Jagielski, T.; Minias, A.; van Ingen, J.; Rastogi, N.; Brzostek, A.; Żaczek, A. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria Clin. Microbiol. Rev., 2016, 29(2), 97:239-90.
[http://dx.doi.org/10.1128/CMR.00055-15]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy