Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Letter Article

Synthesis of Heterocyclic Triterpene Derivatives with Biological Activities via Click Reaction

Author(s): Thuc Dinh Ngoc*, Wim Dehaen, Luc Van Meervelt and Jan Balzarini

Volume 23, Issue 26, 2019

Page: [2969 - 2974] Pages: 6

DOI: 10.2174/1385272823666191212110411

Price: $65

Abstract

Grignard reactions were applied to synthesize 2-ethynyl-2-hydroxylallobetulin 5 from 2-oxoallobetulin 4. The compound plays an important role as starting material to synthesize heterocyclic triterpenes using the click reaction. A series of new 1,2,3-triazole derivatives derived from 2-oxoallobetulin were successfully obtained. Under similar reaction conditions, only one compound 6 kept the hydroxyl functional group, while in the other compounds 7, 8 and 9, water was eliminated. The structures of obtained compounds were confirmed by 2D-NMR spectroscopy. The X-ray analysis of 5 indicated that only one isomer was obtained and in this compound, the hydroxyl group is situated on the same side as the ether group, the ethynyl group being situated at the opposite side. All products were also evaluated for their cytostatic activity in cell culture including L1210, CEM and Hela. Several compounds showed measurable cytostatic activity in the micromolar range.

Keywords: Grignard reactions, click reaction, 2-oxoallobetulin, 1, 2, 3-triazole, lymphoblast CEM tumor cells, cervix carcinoma HeLa, murine leukemia.

« Previous
Graphical Abstract
[1]
Liu, H.; Lei, X.L.; Li, N.; Zong, M.H. Highly regioselective synthesis of betulone from betulin by growing cultures of marine fungus Dothideomycete sp. HQ 316564. J. Mol. Catal., B Enzym., 2013, 88, 32-35.
[http://dx.doi.org/10.1016/j.molcatb.2012.08.011]
[2]
Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep., 2006, 23(3), 394-411.
[http://dx.doi.org/10.1039/b515312n] [PMID: 16741586]
[3]
Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci., 2006, 29(1), 1-13.
[http://dx.doi.org/10.1016/j.ejps.2006.04.006] [PMID: 16716572]
[4]
Urban, M.; Sarek, J.; Kvasnica, M.; Tislerova, I.; Hajduch, M. Triterpenoid pyrazines and benzopyrazines with cytotoxic activity. J. Nat. Prod., 2007, 70(4), 526-532.
[http://dx.doi.org/10.1021/np060436d] [PMID: 17371067]
[5]
Salin, O.; Alakurtti, S.; Pohjala, L.; Siiskonen, A.; Maass, V.; Maass, M.; Yli-Kauhaluoma, J.; Vuorela, P. Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium Chlamydia pneumoniae. Biochem. Pharmacol., 2010, 80(8), 1141-1151.
[http://dx.doi.org/10.1016/j.bcp.2010.06.051] [PMID: 20615390]
[6]
Platanov, V.G.; Zorina, A.D.; Gordon, M.A.; Chizhov, N.P.; Balykina, L.V.; Mikhailov, Y.D.; Ivanen, D.R.; Kvi, T.K.; Shavva, A.G. Triterpenoid antiviral activity against influenza A and B viruses. Pharm. Chem. J., 1995, 29, 42-46.
[http://dx.doi.org/10.1007/BF02219462]
[7]
Mäki-Arvela, P.; Barsukova, M.; Winberg, I.; Smeds, A.; Hemming, J.; Eränen, K.; Torozova, A.; Aho, A.; Volcho, K.; Murzin, D.Y. Unprecedented selective heterogeneously catalysed “green” oxidation of betulin to biologically active compounds using synthetic air and supported Ru catalysts. ChemistrySelect, 2016, 1, 3866-3869.
[http://dx.doi.org/10.1002/slct.201600731]
[8]
Mukherjee, R.; Kumar, V.; Srivastava, S.K.; Agarwal, S.K.; Burman, A.C. Betulinic acid derivatives as anticancer agents: structure activity relationship. Anticancer. Agents Med. Chem., 2006, 6(3), 271-279.
[http://dx.doi.org/10.2174/187152006776930846] [PMID: 16712455]
[9]
Haque, S.; Nawrot, D.A.; Alakurtti, S.; Ghemtio, L.; Yli-Kauhaluoma, J.; Tammela, P. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PLoS One, 2014, 9(7)e102696
[http://dx.doi.org/10.1371/journal.pone.0102696] [PMID: 25032708]
[10]
Chung, P.Y.; Chung, L.Y.; Navaratnam, P. Identification, by gene expression profiling analysis, of novel gene targets in Staphylococcus aureus treated with betulinaldehyde. Res. Microbiol., 2013, 164(4), 319-326.
[http://dx.doi.org/10.1016/j.resmic.2013.01.005] [PMID: 23385141]
[11]
Green, B.; Bentley, M.D.; Chung, B.Y.; Lynch, N.G.; Jensen, B.L. Isolation of betulin and rearrangement to allobetulin. a biomimetic natural product synthesis. J. Chem. Educ., 2007, 84, 1985-1987.
[http://dx.doi.org/10.1021/ed084p1985]
[12]
Li, T.S.; Wang, J.X.; Zheng, X.J. Simple synthesis of allobetulin, 28- oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids. J. Chem. Soc. Perkin Trans, 1998, 3957-3966.
[13]
Flekhter, O.B.; Ashavina, O.Y.; Smirnova, I.E.; Baltina, L.A.; Galin, F.Z.; Kabal’nova, N.N.; Tolstikov, G.A. Selective oxidation of triterpene alcohols by sodium hypochlorite. Chem. Nat. Compd., 2004, 40, 141-143.
[http://dx.doi.org/10.1023/B:CONC.0000033930.76751.b7]
[14]
Kim, D.S.H.L.; Chem, Z.; Nguyen Van, T.; Pezzuto, J.M.; Quit, S.; Lu, Z.Z. A Concise Semi-synthetic approach to betulinic acid from betulin. Synth. Commun., 1997, 27, 1607-1612.
[http://dx.doi.org/10.1080/00397919708006099]
[15]
Sejbal, J.; Klinot, J.; Protiva, J.; Vystrčil, A. Reactions of triterpenoid ketones with sulfur and morpholine under the conditions of Willgerodt-Kindler reaction. Collect. Czech. Chem. Commun., 1986, 51, 118-127.
[http://dx.doi.org/10.1135/cccc19860118]
[16]
Dinh Ngoc, T.; Dehaen, W. Selective functionalization of 2-oxoallobetulin derivatives. Tetrahedron, 2014, 70, 1836-1840.
[http://dx.doi.org/10.1016/j.tet.2013.12.075]
[17]
Huisgen, R.; Szeimies, G.; Moebius, L. 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der additionen organischer azide an CC-mehrfachbindungen. Chem. Ber., 1967, 100, 2494-2507.
[http://dx.doi.org/10.1002/cber.19671000806]
[18]
Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry. Wiley; Padwa, A., Ed.; New York, 1984.
[19]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[20]
Löber, S.; Rodriguez-Loaiza, P.; Gmeiner, P. Click linker: efficient and high-yielding synthesis of a new family of SPOS resins by 1,3-dipolar cycloaddition. Org. Lett., 2003, 5(10), 1753-1755.
[http://dx.doi.org/10.1021/ol034520l] [PMID: 12735769]
[21]
Punna, S.; Kaltgrad, E.; Finn, M.G. “Clickable” agarose for affinity chromatography. Bioconjug. Chem., 2005, 16(6), 1536-1541.
[http://dx.doi.org/10.1021/bc0501496] [PMID: 16287252]
[22]
Oh, K.; Guan, Z. A convergent synthesis of new β-turn mimics by click chemistry. Chem. Commun. (Camb.), 2006, (29), 3069-3071.
[http://dx.doi.org/10.1039/B606185K] [PMID: 16855688]
[23]
Hein, J.E.; Tripp, J.C.; Krasnova, L.B.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. Angew. Chem. Int. Ed. Engl., 2009, 48(43), 8018-8021.
[http://dx.doi.org/10.1002/anie.200903558] [PMID: 19774581]
[24]
Rodionov, V.O.; Presolski, S.I.; Díaz, D.D.; Fokin, V.V.; Finn, M.G. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J. Am. Chem. Soc., 2007, 129(42), 12705-12712.
[http://dx.doi.org/10.1021/ja072679d] [PMID: 17914817]
[25]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[26]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[27]
Fournier, D.; Hoogenboom, R.; Schubert, U.S. Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem. Soc. Rev., 2007, 36(8), 1369-1380.
[http://dx.doi.org/10.1039/b700809k] [PMID: 17619693]
[28]
Golas, P.L.; Matyjaszewski, K. Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem. Soc. Rev., 2010, 39(4), 1338-1354.
[http://dx.doi.org/10.1039/B901978M] [PMID: 20309490]
[29]
Sumerlin, B.S.; Vogt, A.P. Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules, 2010, 44, 1-13.
[http://dx.doi.org/10.1021/ma901447e]
[30]
Ladomenou, K.; Nikolaou, V.; Charalambidis, G.; Coutsolelos, A.G. “Click”-reaction: an alternative tool for new architectures of porphyrin based derivatives. Coord. Chem. Rev., 2016, 306, 1-42.
[http://dx.doi.org/10.1016/j.ccr.2015.06.002]
[31]
Yan, S.J.; Liu, Y.J.; Chen, Y.L.; Liu, L.; Lin, J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorg. Med. Chem. Lett., 2010, 20(17), 5225-5228.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.141] [PMID: 20655212]
[32]
Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev., 2011, 255, 2933-2945.
[http://dx.doi.org/10.1016/j.ccr.2011.06.028]
[33]
Poonthiyil, V.; Lindhorst, T.K.; Golovko, V.B.; Fairbanks, A.J. Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles. Beilstein J. Org. Chem., 2018, 14, 11-24.
[http://dx.doi.org/10.3762/bjoc.14.2] [PMID: 29379576]
[34]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis and anticancer activity evaluation of new 1,2,3-triazole-4-carboxamide derivatives. Med. Chem. Res., 2014, 23, 2426-2438.
[http://dx.doi.org/10.1007/s00044-013-0841-8]
[35]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[36]
Ma, N.; Wang, Y.; Zhao, B.X.; Ye, W.C.; Jiang, S. The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des. Devel. Ther., 2015, 9(9), 1585-1599.
[PMID: 25792812]
[37]
Dehaen, W.; Mashentseva, A.A.; Seitembetov, T.S. Allobetulin and its derivatives: synthesis and biological activity. Molecules, 2011, 16(3), 2443-2466.
[http://dx.doi.org/10.3390/molecules16032443] [PMID: 21403601]
[38]
Chan, T.R.; Hilgraf, R.; Sharpless, K.B.; Fokin, V.V. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett., 2004, 6(17), 2853-2855.
[http://dx.doi.org/10.1021/ol0493094] [PMID: 15330631]
[39]
CrysAlis PRO. Agilent Technologies UK Ltd; Yarnton: Oxfordshire, England, 2012.
[40]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42, 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[41]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(Pt 1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
[42]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy