Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Halogen Bond-assisted Organic Synthesis

Author(s): Shigeyuki Yamada* and Tsutomu Konno*

Volume 24, Issue 18, 2020

Page: [2118 - 2152] Pages: 35

DOI: 10.2174/1385272823666191209112543

Price: $65

Abstract

Halogen bond interactions, which take place between an electrophilic halogen and the electron-pair of a Lewis base and exhibit high directionality (approximately 180°), are non-covalent bond interactions similar to the hydrogen bond interaction. Many reports on halogen bond interactions have been published thus far, but many of them discuss halogen bond in the context of crystal engineering of supramolecular architecture. Since a seminal report by Bolm in 2008, halogen bond-assisted or -promoted organic synthesis has received significant attention. This review aims to introduce the molecular design of suitable halogen bond donors and organic transformations involving halogen bond interactions to afford a variety of organic compounds.

Keywords: Halogen bonding, non-covalent bond, fluorine, organic synthesis, bond activation, perfluoroalkyl radical, perfluoroalkylation.

Graphical Abstract
[1]
Kollman, P.A.; Allen, L.C. Theory oft he hydrogen bond. Chem. Rev., 1972, 72, 283-303.
[http://dx.doi.org/10.1021/cr60277a004]
[2]
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. Engl., 2002, 41(1), 49-76.
[http://dx.doi.org/10.1002/1521-3773(20020104)41:1<48:AID-ANIE48>3.0.CO;2-U] [PMID: 12491444]
[3]
Takahashi, O.; Kohno, Y.; Nishio, M. Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem. Rev., 2010, 110(10), 6049-6076.
[http://dx.doi.org/10.1021/cr100072x] [PMID: 20550180]
[4]
Hemp, S.T.; Long, T.E. DNA-inspired hierarchical polymer design: electrostatics and hydrogen bonding in concert. Macromol. Biosci., 2012, 12(1), 29-39.
[http://dx.doi.org/10.1002/mabi.201100355] [PMID: 22173995]
[5]
Coulocheri, S.A.; Pigis, D.G.; Papavassiliou, K.A.; Papavassiliou, A.G. Hydrogen bonds in protein-DNA complexes: where geometry meets plasticity. Biochimie, 2007, 89(11), 1291-1303.
[http://dx.doi.org/10.1016/j.biochi.2007.07.020] [PMID: 17825469]
[6]
Archer, E.A.; Sochia, A.E.; Krische, M.J. The covalent casting of one-dimensional hydrogen bonding motifs: toward oligomers and polymers of predefined topography. Chemistry, 2001, 7(10), 2059-2065.
[http://dx.doi.org/10.1002/1521-3765(20010518)7:10<2059:AID-CHEM2059>3.0.CO;2-I] [PMID: 11411978]
[7]
Kato, T.; Mizoshita, N.; Kanie, K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol. Rapid Commun, 2001, 22, 797-814.
[http://dx.doi.org/10.1002/1521-3927(20010701)22:11<797::AIDMARC797> 3.0.CO;2-T]
[8]
Pihko, P.M. Hydrogen Bonding in Organic Synthesis; Viley-VCH Verlag GmbH&Co.: Weinheim, 2009.
[9]
Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl. Chem., 2013, 85, 1711-1713.
[http://dx.doi.org/10.1351/PAC-REC-12-05-10]
[10]
Colin, M.M.; Gaultier de Claubury, M. Sur l’iode. Ann. Chim., 1814, 91, 252-272.
[11]
Guthrie, F. XXVIII- On the iodide of iodammonium. J. Chem. Soc., 1863, 16, 239-244.
[http://dx.doi.org/10.1039/JS8631600239]
[12]
Hassel, O. Structural aspects of interatomic charge-transfer bonding. Science, 1970, 170(3957), 497-502.
[http://dx.doi.org/10.1126/science.170.3957.497] [PMID: 17799698]
[13]
Mulliken, R.S. Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents. J. Am. Chem. Soc., 1950, 72, 600-608.
[http://dx.doi.org/10.1021/ja01157a151]
[14]
Amico, V.; Meille, S.V.; Corradi, E.; Mesina, M.T.; Resnati, G. Perfluorocarbon-hydrocarbon self-assembling. 1D infinite chain formation driven by nitrogen...iodine interactions. J. Am. Chem. Soc., 1998, 120, 8261-8262.
[http://dx.doi.org/10.1021/ja9810686]
[15]
Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev., 2016, 116(4), 2478-2601.
[http://dx.doi.org/10.1021/acs.chemrev.5b00484] [PMID: 26812185]
[16]
Huber, S.M.; Scanlon, J.D.; Jimenez-Izal, E.; Ugalde, J.M.; Infante, I. On the directionality of halogen bonding. Phys. Chem. Chem. Phys., 2013, 15(25), 10350-10357.
[http://dx.doi.org/10.1039/c3cp50892g] [PMID: 23677285]
[17]
Tsuzuki, S.; Uchimaru, T.; Wakisaka, A.; Ono, T. Magnitude and directionality of halogen bond of benzene with C6F5X, C6H5X, and CF3X (X = I, Br, Cl, and F). J. Phys. Chem. A, 2016, 120(35), 7020-7029.
[http://dx.doi.org/10.1021/acs.jpca.6b06295] [PMID: 27525985]
[18]
Tsuzuki, S.; Wakisaka, A.; Ono, T.; Sonoda, T. Magnitude and origin of the attraction and directionality of the halogen bonds of the complexes of C6F5X and C6H5X (X = I, Br, Cl and F) with pyridine. Chemistry, 2012, 18(3), 951-960.
[http://dx.doi.org/10.1002/chem.201102562] [PMID: 22189874]
[19]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V. Gaussian 16; Science and Education Publishing, 2016.
[20]
Head-Gordon, M.; Pople, J.A.; Rrisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett., 1988, 153, 503-506.
[http://dx.doi.org/10.1016/0009-2614(88)85250-3]
[21]
Frisch, M.J.; Head-Gordon, M.; Pople, J.A. A direct MP2 gradient method. Chem. Phys. Lett., 1990, 166, 275-280.
[22]
Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. Engl., 2008, 47(33), 6114-6127.
[http://dx.doi.org/10.1002/anie.200800128] [PMID: 18651626]
[23]
Legon, A.C. The halogen bond: an interim perspective. Phys. Chem. Chem. Phys., 2010, 12(28), 7736-7747.
[http://dx.doi.org/10.1039/c002129f] [PMID: 20495729]
[24]
Erdélyi, M. Halogen bonding in solution. Chem. Soc. Rev., 2012, 41(9), 3547-3557.
[http://dx.doi.org/10.1039/c2cs15292d] [PMID: 22334193]
[25]
Jentzsch, A.V. Applications of halogen bonding in solution. Pure Appl. Chem., 2015, 87, 15-41.
[http://dx.doi.org/10.1515/pac-2014-0807]
[26]
Bulfield, D.; Huber, S.M. Halogen bonding in organic synthesis and organocatalysis. Chemistry, 2016, 22(41), 14434-14450.
[http://dx.doi.org/10.1002/chem.201601844] [PMID: 27465662]
[27]
Christopherson, J-C.; Topic, F.; Barrett, C.J.; Friščić, T. Halogen-bonded cocrystals as optical materials: next-generation control over light-matter interactions. Cryst. Growth Des., 2018, 18, 1245-1259.
[http://dx.doi.org/10.1021/acs.cgd.7b01445]
[28]
Wang, H.; Bisoyi, H.K.; Urbas, A.M.; Bunning, T.J.; Li, Q. The halogen bond: an emerging supramolecular tool in the design of functional mesomorphic materials. Chemistry, 2019, 25(6), 1369-1378.
[http://dx.doi.org/10.1002/chem.201802927] [PMID: 30076632]
[29]
Bruckmann, A.; Pena, M.A.; Bolm, C. Organocatalysis through halogen-bond activation. Synlett, 2008, 2008(6), 900-902.
[http://dx.doi.org/10.1055/s-2008-1042935]
[30]
Brown, A.R.; Kuo, W-H.; Jacobsen, E.N. Enantioselective catalytic α-alkylation of aldehydes via an SN1 pathway. J. Am. Chem. Soc., 2010, 132(27), 9286-9288.
[http://dx.doi.org/10.1021/ja103618r] [PMID: 20568761]
[31]
Reisman, S.E.; Doyle, A.G.; Jacobsen, E.N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc., 2008, 130(23), 7198-7199.
[http://dx.doi.org/10.1021/ja801514m] [PMID: 18479086]
[32]
Walter, S.M.; Kniep, F.; Herdtweck, E.; Huber, S.M. Halogen-bond-induced activation of a carbon-heteroatom bond. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7187-7191.
[http://dx.doi.org/10.1002/anie.201101672] [PMID: 21717536]
[33]
Kniep, F.; Walter, S.M.; Herdtweck, E.; Huber, S.M. 4,4′-Azobis(halopyridinium) derivatives: strong multidentate halogen-bond donors with a redox-active core. Chemistry, 2012, 18(5), 1306-1310.
[http://dx.doi.org/10.1002/chem.201103071] [PMID: 22238245]
[34]
Kniep, F.; Rout, L.; Walter, S.M.; Bensch, H.K.V.; Jungbauer, S.H.; Herdtweck, E.; Huber, S.M. 5-Iodo-1,2,3-triazolium-based multidentate halogen-bond donors as activating reagents. Chem. Commun. (Camb.), 2012, 48(74), 9299-9301.
[http://dx.doi.org/10.1039/c2cc34392d] [PMID: 22875079]
[35]
Catalano, L.; Pérez-Estrada, S.; Terraneo, G.; Pilati, T.; Resnati, G.; Metrangolo, P.; Garcia-Garibay, M.A. Dynamic characterization of crystalline supramolecular rotors assembled through halogen bonding. J. Am. Chem. Soc., 2015, 137(49), 15386-15389.
[http://dx.doi.org/10.1021/jacs.5b10776] [PMID: 26583701]
[36]
Bondi, A. van der Waals volumes and radii. J. Phys. Chem., 1964, 68, 441-451.
[http://dx.doi.org/10.1021/j100785a001]
[37]
Kobayashi, M. The reduction of the azo linkage with hydrogen bromide. J. Chem. Soc. Jpn., 1953, 74, 968-970.
[38]
Jungbauer, S.H.; Huber, S.M. Cationic multidentate halogen-bond donors in halide abstraction organocatalysis: catalyst optimization by preorganization. J. Am. Chem. Soc., 2015, 137(37), 12110-12120.
[http://dx.doi.org/10.1021/jacs.5b07863] [PMID: 26329271]
[39]
Kniep, F.; Jungbauer, S.H.; Zhang, Q.; Walter, S.M.; Schindler, S.; Schnapperelle, I.; Herdtweck, E.; Huber, S.M. Organocatalysis by neutral multidentate halogen-bond donors. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 7028-7032.
[http://dx.doi.org/10.1002/anie.201301351] [PMID: 23649719]
[40]
Castelli, R.; Schindler, S.; Walter, S.M.; Kniep, F.; Overkleeft, H.S.; Van der Marel, G.A.; Huber, S.M.; Codée, J.D.C. Activation of glycosyl halides by halogen bonding. Chem. Asian J., 2014, 9(8), 2095-2098.
[http://dx.doi.org/10.1002/asia.201402259] [PMID: 24962953]
[41]
Koenigs, W.; Knorr, E. Ueber einige derivate des traubenzuckers und der galactose. Eur. J. Inorg. Chem., 1901, 34, 957-981.
[42]
Kinnaert, C.; Daugaard, M.; Nami, F.; Clausen, M.H. Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chem. Rev., 2017, 117(17), 11337-11405.
[http://dx.doi.org/10.1021/acs.chemrev.7b00162] [PMID: 28792736]
[43]
von der Heiden, D.; Bozkus, S.; Klussmann, M.; Breugst, M. Reaction mechanism of iodine-catalyzed Michael additions. J. Org. Chem., 2017, 82(8), 4037-4043.
[http://dx.doi.org/10.1021/acs.joc.7b00445] [PMID: 28349682]
[44]
Gliese, J-P.; Jungbauer, S.H.; Huber, S.M. A halogen-bonding-catalyzed Michael addition reaction. Chem. Commun. (Camb.), 2017, 53(88), 12052-12055.
[http://dx.doi.org/10.1039/C7CC07175B] [PMID: 29064505]
[45]
Jungbauer, S.H.; Walter, S.M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S.M. Activation of a carbonyl compound by halogen bonding. Chem. Commun. (Camb.), 2014, 50(47), 6281-6284.
[http://dx.doi.org/10.1039/c4cc03124e] [PMID: 24796408]
[46]
Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Electrophilic iodine(I) compounds induced semipinacol rearrangement via C-X bond cleavage. Chem. Commun. (Camb.), 2014, 50(89), 13691-13694.
[http://dx.doi.org/10.1039/C4CC06014H] [PMID: 25247612]
[47]
Raatikainen, K.; Rissanen, K. Interaction between amines and Nhaloimidees: a new motif for unprecedentedly short Br···N and I···N halogen bonds. CrystEngComm, 2011, 13, 6972-6977.
[http://dx.doi.org/10.1039/c1ce05447c]
[48]
Dolenc, D.; Modec, B. .EDA Complexes of N-halosaccharins with N- and Odonor ligands. New J. Chem., 2009, 33, 2344-2349.
[http://dx.doi.org/10.1039/b9nj00263d]
[49]
Saito, M.; Kobayashi, Y.; Tsuzuki, S.; Takemoto, Y. Electrophilic activation of iodonium ylides by halogen-bond-donor catalysis for cross-enolate coupling. Angew. Chem. Int. Ed. Engl., 2017, 56(26), 7653-7657.
[http://dx.doi.org/10.1002/anie.201703641] [PMID: 28500729]
[50]
Goudreau, S.R.; Marcoux, D.; Charette, A.B. General method for the synthesis of phenyliodonium ylides from malonate esters: easy access to 1,1-cyclopropane diesters. J. Org. Chem., 2009, 74(1), 470-473.
[http://dx.doi.org/10.1021/jo802208q] [PMID: 19032040]
[51]
Schreiner, P.R.; Wittkopp, A. H-bonding additives act like Lewis acid catalysts. Org. Lett., 2002, 4(2), 217-220.
[http://dx.doi.org/10.1021/ol017117s] [PMID: 11796054]
[52]
Zhu, C.; Yoshimura, A.; Ji, L.; Wei, Y.; Nemykin, V.N.; Zhdankin, V.V. Design, preparation, X-ray crystal structure, and reactivity of o-alkoxyphenyliodonium bis(methoxycarbonyl)methanide, a highly soluble carbene precursor. Org. Lett., 2012, 14(12), 3170-3173.
[http://dx.doi.org/10.1021/ol301268j] [PMID: 22625654]
[53]
Guo, J.; Liu, Y.; Li, X.; Liu, X.; Lin, L.; Feng, X. Nickel(II)-catalyzed enantioselective cyclopropanation of 3-alkenyl-oxindoles with phenyliodonium ylide via free carbene. Chem. Sci. (Camb.), 2016, 7(4), 2717-2721.
[http://dx.doi.org/10.1039/C5SC03658E] [PMID: 28660046]
[54]
Saito, M.; Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Direct dehydroxylative coupling reaction of alcohols with organosilanes through Si-X bond activation by halogen bonding. Org. Lett., 2015, 17(12), 3000-3003.
[http://dx.doi.org/10.1021/acs.orglett.5b01290] [PMID: 26020103]
[55]
Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. InCl3/I2-catalyzed cross-coupling of alkyl trimethylsilyl ethers and allylsilanes via an in situ derived combined Lewis acid of InCl3 and Me3SiI. J. Org. Chem., 2007, 72(22), 8588-8590.
[http://dx.doi.org/10.1021/jo7015289] [PMID: 17914847]
[56]
Takeda, Y.; Okumura, S.; Minakata, S. Oxidative dimerization of aromatic amines using tBuOI: entry to unsymmetric aromatic azo compounds. Angew. Chem. Int. Ed. Engl., 2012, 51(31), 7804-7808.
[http://dx.doi.org/10.1002/anie.201202786] [PMID: 22740244]
[57]
Okumura, S.; Lin, C-H.; Takeda, Y.; Minakata, S. Oxidative dimerization of (hetero)aromatic amines utilizing t-BuOI leading to (hetero)aromatic azo compounds: scope and mechanistic studies. J. Org. Chem., 2013, 78(23), 12090-12105.
[http://dx.doi.org/10.1021/jo402120w] [PMID: 24175677]
[58]
Takeda, Y.; Hisakuni, D.; Lin, C-H.; Minakata, S. 2-Halogenoimidazolium salt catalyzed aza-Diels-Alder reaction through halogen-bond formation. Org. Lett., 2015, 17(2), 318-321.
[http://dx.doi.org/10.1021/ol503426f] [PMID: 25551775]
[59]
Jiang, X.; Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels-Alder reaction. Chem. Rev., 2013, 113(7), 5515-5546.
[http://dx.doi.org/10.1021/cr300436a] [PMID: 23521039]
[60]
Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev., 1991, 91, 165-195.
[http://dx.doi.org/10.1021/cr00002a004]
[61]
Amyes, T.L.; Diver, S.T.; Richard, J.P.; Rivas, F.M.; Toth, K. Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. J. Am. Chem. Soc., 2004, 126(13), 4366-4374.
[http://dx.doi.org/10.1021/ja039890j] [PMID: 15053626]
[62]
Lindsay, V.N.G.; Charette, A.B. Design and synthesis of chiral heteroleptic rhodium(II) carboxylate catalysts: experimental investigation of halogen bond rigidification effects in asymmetric cyclopropanation. ACS Catal. 2012, 2, 1221-1225.
[http://dx.doi.org/10.1021/cs300214v]
[63]
Nakatsuji, H.; Sawamura, Y.; Sakakura, A.; Ishihara, K. Cooperative activation with chiral nucleophilic catalysts and N-haloimides: enantioselective iodolactonization of 4-arylmethyl-4-pentenoic acids. Angew. Chem. Int. Ed. Engl., 2014, 53(27), 6974-6977.
[http://dx.doi.org/10.1002/anie.201400946] [PMID: 24840957]
[64]
Zong, L.; Ban, X.; Kee, C.W.; Tan, C-H. Catalytic enantioselective alkylation of sulfenate anions to chiral heterocyclic sulfoxides using halogenated pentanidium salts. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11849-11853.
[http://dx.doi.org/10.1002/anie.201407512] [PMID: 25209332]
[65]
Lim, J.Y.C.; Marques, I.; Ferreira, L.; Félix, V.; Beer, P.D. Enhancing the enantioselective recognition and sensing of chiral anions by halogen bonding. Chem. Commun. (Camb.), 2016, 52(32), 5527-5530.
[http://dx.doi.org/10.1039/C6CC01701K] [PMID: 27021913]
[66]
Kaasik, M.; Kaabel, S.; Kriis, K.; Järving, I.; Aav, R.; Rissanen, K.; Kanger, T. Synthesis and characterisation of chiral triazole-based halogen-bond donors: halogen bonds in the solid state and in solution. Chemistry, 2017, 23(30), 7337-7344.
[http://dx.doi.org/10.1002/chem.201700618] [PMID: 28266794]
[67]
Arai, T.; Suzuki, T.; Inoue, T.; Kuwano, S. Chiral Bis(imidazolidine)iodo-benzene (I-bidine) organocatalyst for thiochromane synthesis using an asymmetric Michael/Henry reaction. Synlett, 2017, 28(1), 122-127.
[http://dx.doi.org/10.1055/s-0036-1588614]
[68]
Sarwar, M.G.; Dragisic, B.; Sagoo, S.; Taylor, M.S. A tridentate halogen-bonding receptor for tight binding of halide anions. Angew. Chem. Int. Ed. Engl., 2010, 49(9), 1674-1677.
[http://dx.doi.org/10.1002/anie.200906488] [PMID: 20120002]
[69]
Kuwano, S.; Suzuki, T.; Hosaka, Y.; Arai, T. A chiral organic base catalyst with halogen-bonding-donor functionality: asymmetric Mannich reactions of malononitrile with N-Boc aldimines and ketimines. Chem. Commun. (Camb.), 2018, 54(31), 3847-3850.
[http://dx.doi.org/10.1039/C8CC00865E] [PMID: 29594299]
[70]
Matsuzawa, A.; Takeuchi, S.; Sugita, K. Iodoalkyne-based catalyst-mediated activation of thioamides through halogen bonding. Chem. Asian J., 2016, 11(20), 2863-2866.
[http://dx.doi.org/10.1002/asia.201601130] [PMID: 27576356]
[71]
Matsuzaki, K.; Uno, H.; Tokunaga, E.; Shibata, N. Fluorobissulfonylmethyl iodides: an efficient scaffold for halogen bonding catalysts with an sp3-hybridized carbon-iodine moiety. ACS Catal, 2018, 8(), 6601-6605.
[http://dx.doi.org/10.1021/acscatal.8b01330]
[72]
He, W.; Ge, Y-C.; Tan, C-H. Halogen-bonding-induced hydrogen transfer to C═N bond with Hantzsch ester. Org. Lett., 2014, 16(12), 3244-3247.
[http://dx.doi.org/10.1021/ol501259q] [PMID: 24904974]
[73]
Kirsch, P. Modern Fluoroorganic Chemistry, Synthesis, Reactivity, Applications; John Wiley & Sons, 2013.
[http://dx.doi.org/10.1002/9783527651351]
[74]
Chambers, R.D., Ed.; Fluorine in Organic Chemistry; CRC Press, Blackwell Publishing Ltd.: Oxford, 2004.
[http://dx.doi.org/10.1002/9781444305371]
[75]
Postigo, A. Electron donor-acceptor complexes in perfluoroalkylation reactions. Eur. J. Org. Chem., 2018, 2018(46), 6391-6404.
[http://dx.doi.org/10.1002/ejoc.201801079]
[76]
Dordonne, S.; Crousse, B.; Bonnet-Delpon, D.; Legros, J. Fluorous tagging of DABCO through halogen bonding: recyclable catalyst for the Morita-Baylis-Hillman reaction. Chem. Commun. (Camb.), 2011, 47(20), 5855-5857.
[http://dx.doi.org/10.1039/c1cc10869g] [PMID: 21494739]
[77]
Sladojevich, F.; McNeill, E.; Börgel, J.; Zheng, S-L.; Ritter, T. Condensedphase, halogen-bonded CF3I and C2F5I adducts for perfluoroalkylation reactions. Angew. Chem. Int. Ed. Engl. 2015, 54(12), 3712-3716.
[http://dx.doi.org/10.1002/anie.201410954] [PMID: 25651531]
[78]
Wang, Y.; Wang, J.; Li, G-X.; He, G.; Chen, G. Halogen-bond-promoted photoactivation of perfluoroalkyl iodides: a photochemical protocol for perfluoroalkylation reactions. Org. Lett., 2017, 19(6), 1442-1445.
[http://dx.doi.org/10.1021/acs.orglett.7b00375] [PMID: 28263075]
[79]
Sun, X.; He, Y.; Yu, S. Halogen-bond-mediated atom transfer radical addition of perfluoroalkyl iodides to alkynes under visible light irradiation. J. Photochem. Photobiol. Chem., 2018, 355, 326-331.
[http://dx.doi.org/10.1016/j.jphotochem.2017.08.026]
[80]
Chen, T.; Guo, Y. Sun, K. Wu, L.-Z.; Liu, W.-Q.; Liu, C.; Huang, Y.; Chen, Q.-Y. Photoinduced hydroxyperfluoroalkylation of styrenes. Org. Chem. Front., 2018, 5, 1045-1048.
[http://dx.doi.org/10.1039/C7QO00946A]
[81]
Su, Z.; Guo, Y.; Chen, Q-Y.; Zhao, Z-G.; Nian, B-Y. Catalyst-Free hydroxytrifluoromethylation of alkenes using iodotrifluoromethane. Chin. J. Chem., 2019, 37, 597-604.
[http://dx.doi.org/10.1002/cjoc.201900087]
[82]
Tang, X.; Studer, A. Alkene 1,2-difunctionalization by radical alkenyl migration. Angew. Chem. Int. Ed. Engl., 2018, 57(3), 814-817.
[http://dx.doi.org/10.1002/anie.201710397] [PMID: 29165859]
[83]
Tang, X.; Studer, A. α-Perfluoroalkyl-β-alkynylation of alkenes via radical alkynyl migration. Chem. Sci. (Camb.), 2017, 8(10), 6888-6892.
[http://dx.doi.org/10.1039/C7SC02175E] [PMID: 29147514]
[84]
Zheng, D.; Studer, A. Photoinitiated three-component α-perfluoroalkyl-β-heteroarylation of unactivated alkenes via electron catalysis. Org. Lett., 2019, 21(1), 325-329.
[http://dx.doi.org/10.1021/acs.orglett.8b03849] [PMID: 30576162]
[85]
Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Halogen-bond-promoted double radical isocyanide insertion under visible-light irradiation: synthesis of 2-fluoroalkylated quinoxalines. Org. Lett., 2016, 18(18), 4638-4641.
[http://dx.doi.org/10.1021/acs.orglett.6b02271] [PMID: 27579571]
[86]
Nappi, M.; Bergonzini, G.; Melchiorre, P. Metal-free photochemical aromatic perfluoroalkylation of α-cyano arylacetates. Angew. Chem. Int. Ed. Engl., 2014, 53(19), 4921-4925.
[http://dx.doi.org/10.1002/anie.201402008] [PMID: 24668827]
[87]
Filippini, G.; Nappi, M.; Melchiorre, P. Photochemical direct perfluoroalkylation of phenols. Tetrahedron, 2015, 71, 4535-4542.
[http://dx.doi.org/10.1016/j.tet.2015.02.034 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy