Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Applications of Supported Ionic Liquids

Author(s): Pawanpreet Kaur and Harish Kumar Chopra*

Volume 23, Issue 26, 2019

Page: [2881 - 2915] Pages: 35

DOI: 10.2174/1385272823666191204151803

Price: $65

Abstract

The supported ionic liquids have shown immense potential for numerous applications in catalysis and separation science. In the present review, the remarkable contribution of supported ionic liquids has been highlighted. The main emphasis has been laid on describing the facile separation of gas from binary gas mixtures owing to the capability of selective transport of permeable gases across supported membranes and removal of environmentally hazard sulfur compounds from fuels. The catalytic action of supported ionic liquids has been discussed in other applications such as biodiesel (biofuel) synthesis by transesterification/esterification processes, waste CO2 fixation into advantageous cyclic carbonates, and various chemical transformations in organic green synthesis. This review enclosed a maximum of the published data of the last ten years and also recently accomplished work concerning applications in various research areas like separation sciences, chemical transformations in organic green synthesis, biofuel synthesis, waste CO2 fixation, and purification of fuels by desulfurization.

Keywords: Supported ionic liquids, biodiesel, CO2 fixation, desulfurization, organic synthesis, separation science.

Next »
Graphical Abstract
[1]
De los Ríos, A.P.; Irabien, A.; Hollmann, F.; Fernandez, F.J.H. Ionic liquids: green solvents for chemical processing. J. Chem.,2013 , 2013.
[http://dx.doi.org/10.1155/2013/402172]
[2]
Kaur, N.; Singh, A.; Chopra, H.K. Exploring low - cost natural precursors as chiral building blocks in synthesis: chiral carbohydrate-ionic liquids. Mini Rev. Org. Chem., 2018, 15, 208-219.
[http://dx.doi.org/10.2174/1570193X15666171218161135]
[3]
Thomas, P.A.; Marvey, B.B. Room temperature ionic liquids as green solvent alternatives in the metathesis of oleochemical feedstocks. Molecules, 2016, 21(2), 184.
[http://dx.doi.org/10.3390/molecules21020184] [PMID: 26861282]
[4]
Suresh; Sandhu, J.S. Recent advances in ionic liquids: green unconventional solvents of this century: part I. Green Chem. Lett. Rev., 2011, 4, 289-310.
[http://dx.doi.org/10.1080/17518253.2011.572294]
[5]
Kumari, K.; Singh, P.; Mehrotra, G.K. Ionic liquid: best alternate to organic solvent to carry out organic synthesis. Int. J. Green Nanotechnol., 2012, 4, 262-276.
[http://dx.doi.org/10.1080/19430892.2012.706122]
[6]
Welton, T. Ionic liquids in green chemistry. Green Chem., 2011, 13, 225-225.
[http://dx.doi.org/10.1039/c0gc90047h]
[7]
Duan, X.; Ma, J.; Lian, J.; Zheng, W. The art of using ionic liquids in the synthesis of inorganic nanomaterials. CrystEngComm, 2014, 16(13), 2550-2559.
[http://dx.doi.org/10.1039/c3ce41203b]
[8]
Ratti, R. Ionic liquids: synthesis and applications in catalysis. Adv. Chem., 2014, 2014, 1-16.
[http://dx.doi.org/10.1155/2014/729842]
[9]
Welton, T. Ionic liquids: a brief history. Biophys. Rev., 2018, 10(3), 691-706.
[http://dx.doi.org/10.1007/s12551-018-0419-2] [PMID: 29700779]
[10]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[11]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N.; Mashhadinezhad, M.; Nabinia, N. Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido [4, 5-b]-quinoline derivatives. J. Mol. Liq., 2017, 243, 302-312.
[http://dx.doi.org/10.1016/j.molliq.2017.07.080]
[12]
Hickman, T.; DesMarteau, D.D. Synthesis of 1, 3-dialkyl imidazolium ionic liquids containing difunctional and tetrafunctional perfluoroalkylsulfonyl imide anions. J. Fluor. Chem., 2012, 133, 11-15.
[http://dx.doi.org/10.1016/j.jfluchem.2011.11.001]
[13]
Nawała, J.; Dawidziuk, B.; Dziedzic, D.; Gordon, D.; Popiel, S. Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. Trends Analyt. Chem., 2018, 105, 18-36.
[http://dx.doi.org/10.1016/j.trac.2018.04.010]
[14]
Sun, P.; Armstrong, D.W. Ionic liquids in analytical chemistry. Anal. Chim. Acta, 2010, 661(1), 1-16.
[http://dx.doi.org/10.1016/j.aca.2009.12.007] [PMID: 20113709]
[15]
Wu, H.; Zhang, F.R.; Wan, Y.; Ye, L. An efficient protocol for Henry reaction using basic ionic liquid [bmIm]OH as catalyst and reaction medium. Lett. Org. Chem., 2008, 5, 209-211.
[http://dx.doi.org/10.2174/157017808783955817]
[16]
Hajipour, A.R.; Rafiee, F. Acidic bronsted ionic liquids. Org. Prep. Proced. Int., 2010, 42, 285-362.
[http://dx.doi.org/10.1080/00304948.2010.490177]
[17]
Qureshi, Z.S.; Deshmukh, K.M.; Bhor, M.D.; Bhanage, B.M. Bronsted acidic ionic liquid as an efficient and reusable catalyst for transesterification of β-ketoesters. Catal. Chem., 2009, 10, 833-837.
[http://dx.doi.org/10.1016/j.catcom.2008.12.048]
[18]
Betz, D.; Altmann, P.; Cokoja, M.; Herrmann, W.A.; Kuhn, F.E. Recent advances in oxidation catalysis using ionic liquids as solvents. Coord. Chem. Rev., 2011, 255, 1518-1540.
[http://dx.doi.org/10.1016/j.ccr.2010.12.004]
[19]
Sawant, A.D.; Raut, D.G.; Darvatkar, N.B.; Salunkhe, M.M. Recent developments of task-specific ionic liquids in organic synthesis. Green Chem. Lett. Rev., 2011, 4, 41-54.
[http://dx.doi.org/10.1080/17518253.2010.500622]
[20]
Yue, C.; Fang, D.; Liu, L.; Yi, T.F. Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J. Mol. Liq., 2011, 163, 99-121.
[http://dx.doi.org/10.1016/j.molliq.2011.09.001]
[21]
Singh, A.; Kumar Chopra, H. Chiral ionic liquids: design, synthesis and applications in asymmetric organo-catalysis. Curr. Org. Synth., 2017, 14, 488-510.
[http://dx.doi.org/10.2174/1570179413666160818145415]
[22]
Singh, A.; Chopra, H.K. S-Substituted-2-mercaptobenzthiazolium-based chiral ionic liquids: efficient organocatalysts for enantioselective sodium borohydride reductions of prochiral ketones. Tetrahedron Asymmetry, 2017, 28, 414-418.
[http://dx.doi.org/10.1016/j.tetasy.2017.02.008]
[23]
Xu, F.; Sun, J.; Konda, N.M.; Shi, J.; Dutta, T.; Scown, C.D.; Simmons, B.A.; Singh, S. Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ. Sci., 2016, 9, 1042-1049.
[http://dx.doi.org/10.1039/C5EE02940F]
[24]
Hou, Q.; Ju, M.; Li, W.; Liu, L.; Chen, Y.; Yang, Q. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 2017, 22(3), 490.
[http://dx.doi.org/10.3390/molecules22030490] [PMID: 28335528]
[25]
Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun. (Camb.), 2014, 50(66), 9228-9250.
[http://dx.doi.org/10.1039/C4CC02021A] [PMID: 24830849]
[26]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[27]
Marrucho, I.M.; Branco, L.C.; Rebelo, L.P.N. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 527-546.
[http://dx.doi.org/10.1146/annurev-chembioeng-060713-040024] [PMID: 24910920]
[28]
Liu, G.; Zhong, R.; Hu, R.; Zhang, F. Applications of ionic liquids in biomedicine. Biophys. Rev. Lett., 2012, 7, 121-134.
[http://dx.doi.org/10.1142/S179304801230006X]
[29]
Tang, B.; Bi, W.; Tian, M.; Row, K.H. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 904, 1-21.
[http://dx.doi.org/10.1016/j.jchromb.2012.07.020] [PMID: 22877739]
[30]
Han, D.; Row, K.H. Recent applications of ionic liquids in separation technology. Molecules, 2010, 15(4), 2405-2426.
[http://dx.doi.org/10.3390/molecules15042405] [PMID: 20428052]
[31]
Shiflett, M.B.; Niehaus, A.M.S.; Yokozeki, A. Separation of CO2 and H2S using room-temperature ionic liquid. J. Chem. Eng. Data, 2010, 55, 4785-4793.
[http://dx.doi.org/10.1021/je1004005]
[32]
Shamsuri, A.A.; Abdullah, D.K. Ionic liquids: preparations and limitations. Makara J. Sci., 2010, 14, 101-106.
[http://dx.doi.org/10.7454/mss.v14i2.677]
[33]
Chen, L.; Sharifzadeh, M.; Mac Dowell, N.; Welton, T.; Shah, N.; Hallett, J.P. Inexpensive ionic liquids: [HSO4]- - based solvent production at bulk scale. Green Chem., 2014, 16, 3098-3106.
[http://dx.doi.org/10.1039/C4GC00016A]
[34]
Sun, J.; Konda, N.M.; Parthasarathi, R.; Dutta, T.; Valiev, M.; Xu, F.; Simmons, B.A.; Singh, S. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem., 2017, 19, 3152-3163.
[http://dx.doi.org/10.1039/C7GC01179B]
[35]
Zhang, L.L.; Wang, J.X.; Xiang, Y.; Zeng, X.F.; Chen, J.F. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: mass transfer study. Ind. Eng. Chem. Res., 2011, 50, 6957-6964.
[http://dx.doi.org/10.1021/ie1025979]
[36]
Bubalo, M.C.; Radošević, K.; Redovniković, I.R.; Slivac, I.; Srček, V.G. Toxicity mechanisms of ionic liquids. Arh. Hig. Rada Toksikol., 2017, 68(3), 171-179.
[http://dx.doi.org/10.1515/aiht-2017-68-2979] [PMID: 28976886]
[37]
Fehrmann, R.; Riisager, A.; Haumann, M. Supported Ionic Liquids: Fundamentals and Applications; John Wiley & Sons: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527654789]
[38]
Khoshnevis, M.; Davoodnia, A.; Zare-Bidaki, A.; Tavakoli-Hoseini, N. Alumina supported acidic ionic liquid: preparation, characterization, and its application as catalyst in the synthesis of 1,8-dioxo-octahydroxanthenes. Synth. React. Inorg. M., 2013, 43, 1154-1161.
[http://dx.doi.org/10.1080/15533174.2012.756897]
[39]
Nasrollahzadeh, M.; Issaabadi, Z.; Sajadi, S.M. Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water. RSC Advances, 2018, 8, 27631-27644.
[http://dx.doi.org/10.1039/C8RA04368J]
[40]
Martak, J.; Schlosser, S.; Vlckova, S. Pertraction of lactic acid through supported ionic liquid membranes containing phosphonium ionic liquid. J. Membr. Sci., 2008, 318, 298-310.
[http://dx.doi.org/10.1016/j.memsci.2008.02.064]
[41]
Liang, S.; Zhou, Y.; Liu, H.; Jiang, T.; Han, B. Immobilized 1,1,3,3-tetramethylguanidine ionic liquids as the catalyst for synthesizing propylene glycol methyl ether. Catal. Lett., 2010, 140, 49-54.
[http://dx.doi.org/10.1007/s10562-010-0426-9]
[42]
Wang, B.; Lai, H.; Yue, Y.; Sheng, G.; Deng, Y.; He, H.; Guo, L.; Zhao, J.; Li, X. Zeolite supported ionic liquid catalysts for the hydrochlorination of acetylene. Catalysts, 2018, 8, 351.
[http://dx.doi.org/10.3390/catal8090351]
[43]
Huang, Y.; Xiao, Y.; Huang, H.; Liu, Z.; Liu, D.; Yang, Q.; Zhong, C. Ionic liquid functionalized multi-walled carbon nanotubes/zeolitic imidazolate framework hybrid membranes for efficient H2/CO2 separation. Chem. Commun. (Camb.), 2015, 51(97), 17281-17284.
[http://dx.doi.org/10.1039/C5CC05061H] [PMID: 26463102]
[44]
Xu, Z.; Wan, H.; Miao, J.; Han, M.; Yang, C.; Guan, G. Reusable and efficient polystyrene-supported ionic liquid catalyst for esterification. J. Mol. Catal. Chem., 2010, 332, 152-157.
[http://dx.doi.org/10.1016/j.molcata.2010.09.011]
[45]
Gupta, K.M.; Chen, Y.; Hu, Z.; Jiang, J. Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects. Phys. Chem. Chem. Phys., 2012, 14(16), 5785-5794.
[http://dx.doi.org/10.1039/c2cp23972h] [PMID: 22433933]
[46]
Abdollahi-Alibeik, M.; Pouriayevali, M. Nanosized MCM-41 supported protic ionic liquid as an efficient novel catalytic system for Friedlander synthesis of quinolines. Catal. Commun., 2012, 22, 13-18.
[http://dx.doi.org/10.1016/j.catcom.2012.02.004]
[47]
Malihan, L.B.; Nisola, G.M.; Mittal, N.; Lee, S.P.; Seo, J.G.; Kim, H.; Chung, W.J. SBA-15 Supported Ionic Liquid Phase (SILP) with H2PW12O40- for the hydrolytic catalysis of red macroalgal biomass to sugars. RSC Advances, 2016, 6, 33901-33909.
[http://dx.doi.org/10.1039/C6RA03740B]
[48]
Lou, L.L.; Dong, Y.; Yu, K.; Jiang, S.; Song, Y.; Cao, S.; Liu, S. Chiral Ru complex immobilized on mesoporous materials by ionic liquids as heterogeneous catalysts for hydrogenation of aromatic ketones. J. Mol. Catal., 2010, 333, 20-27.
[http://dx.doi.org/10.1016/j.molcata.2010.08.018]
[49]
Wu, Y.; Li, Z.; Xia, C. Silica-gel-supported dual acidic ionic liquids as efficient catalysts fot the synthesis of polyoxomethylene dimethyl ethers. Ind. Eng. Chem. Res., 2016, 55, 1859-1865.
[http://dx.doi.org/10.1021/acs.iecr.5b04177]
[50]
Balat, M.; Balat, H. A critical review of bio-diesel as a vehicular fuel. Energy Convers. Manage., 2008, 49, 2727-2741.
[http://dx.doi.org/10.1016/j.enconman.2008.03.016]
[51]
Di Serio, M.; Tesser, R.; Casale, L.; D’Angelo, A.; Trifuoggi, M.; Santacesaria, E. Heterogeneous catalysis in biodiesel production: the influence of leaching. Top. Catal., 2010, 53, 811-819.
[http://dx.doi.org/10.1007/s11244-010-9467-y]
[52]
Semwal, S.; Arora, A.K.; Badoni, R.P.; Tuli, D.K. Biodiesel production using heterogeneous catalysts. Bioresour. Technol., 2011, 102(3), 2151-2161.
[http://dx.doi.org/10.1016/j.biortech.2010.10.080] [PMID: 21106371]
[53]
Huang, D.; Zhou, H.; Lin, L. Biodiesel: an alternative to conventional fuel. Energy Procedia, 2012, 16, 1874-1885.
[http://dx.doi.org/10.1016/j.egypro.2012.01.287]
[54]
Yin, P.; Chen, L.; Wang, Z.; Qu, R.; Liu, X.; Ren, S. Production of biodiesel by esterification of oleic acid with ethanol over organophosphonic acid-functionalized silica. Bioresour. Technol., 2012, 110, 258-263.
[http://dx.doi.org/10.1016/j.biortech.2012.01.115] [PMID: 22341888]
[55]
Fan, M.; Huang, J.; Yang, J.; Zhang, P. Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst. Appl. Energy, 2013, 108, 333-339.
[http://dx.doi.org/10.1016/j.apenergy.2013.03.063]
[56]
Fauzi, A.H.M.; Amin, N.A.S.; Mat, R. Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study. Appl. Energy, 2014, 114, 809-818.
[http://dx.doi.org/10.1016/j.apenergy.2013.10.011]
[57]
Kang, X.; Guo, X.; You, H. Biodiesel development in the global scene. Energy Source. Part B, 2015, 10, 155-161.
[http://dx.doi.org/10.1080/15567249.2010.535095]
[58]
Balat, M. Biodiesel fuel from triglycerides via transesterification-a review. Energy Source Part A, 2009, 31, 1300-1314.
[http://dx.doi.org/10.1080/15567030802089573]
[59]
Zaher, F.A.; Soliman, H.M. Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols. Egypt. J. Pet., 2015, 24, 439-443.
[60]
Ghiaci, M.; Aghabarari, B.; Gil, A. Production of biodiesel by esterification of natural fatty acids over modified organoclay catalysts. Fuel, 2011, 90, 3382-3389.
[http://dx.doi.org/10.1016/j.fuel.2011.04.008]
[61]
Zhen, B.; Li, H.; Jiao, Q.; Li, Y.; Wu, Q.; Zhang, Y. SiW12O40-based ionic liquid catalysts: catalytic esterification of oleic acid for biodiesel production. Ind. Eng. Chem. Res., 2012, 51, 10374-10380.
[http://dx.doi.org/10.1021/ie301453c]
[62]
Wang, Y.; Zhao, D.; Wang, L.; Wang, X.; Li, L.; Xing, Z.; Ji, N.; Liu, S.; Ding, H. Immobilized phosphotungstic acid based ionic liquid: application for heterogeneous esterification of palmitic acid. Fuel, 2018, 216, 364-370.
[http://dx.doi.org/10.1016/j.fuel.2017.11.153]
[63]
Vafaeezadeh, M.; Hashemi, M.M. Efficient fatty acid esterification using silica supported Bronsted acidic ionic liquid catalyst: experimental study and DFT modeling. Chem. Eng. J., 2014, 250, 35-41.
[http://dx.doi.org/10.1016/j.cej.2014.04.001]
[64]
Zhen, B.; Jiao, Q.; Wu, Q.; Li, H. Catalytic performance of acidic ionic liquid-functionalized silica in biodiesel production. J. Energy Chem., 2014, 23, 97-104.
[http://dx.doi.org/10.1016/S2095-4956(14)60122-4]
[65]
Fan, M.; Liu, H.; Zhang, P. Ionic liquid on the acidic organic-inorganic hybrid mesoporous material with good acid-water resistance for biodiesel production. Fuel, 2018, 215, 541-550.
[http://dx.doi.org/10.1016/j.fuel.2017.11.085]
[66]
Hosseini, S.; Moradi, G.R.; Bahrami, K. Synthesis of a novel stabilized basic ionic liquid through immobilization on boehmite nanoparticles: a robust nanocatalyst for biodiesel production from soybean oil. Renew. Energy, 2019, 138, 70-78.
[http://dx.doi.org/10.1016/j.renene.2019.01.037]
[67]
Liang, X. Synthesis of biodiesel from waste oil under mild conditions using novel acidic ionic liquid immobilization on poly divinylbenzene. Energy, 2013, 63, 103-108.
[http://dx.doi.org/10.1016/j.energy.2013.10.043]
[68]
Cao, Y.; Zhou, H.; Li, J. Preparation of a supported acidic ionic liquid on silica-gel and its application to the synthesis of biodiesel from waste cooking oil. Renew. Sustain. Energy Rev., 2016, 58, 871-875.
[http://dx.doi.org/10.1016/j.rser.2015.12.237]
[69]
Zhang, L.; Cui, Y.; Zhang, C.; Wang, L.; Wan, H.; Guan, G. Biodiesel production by esterification of oleic acid over bronsted acidic ionic liquid supported onto Fe-incorporated SBA-15. Ind. Eng. Chem. Res., 2012, 51, 16590-16596.
[http://dx.doi.org/10.1021/ie302419y]
[70]
Wu, Z.; Li, Z.; Wu, G.; Wang, L.; Lu, S.; Wang, L.; Wan, H.; Guan, G. Bronsted acidic ionic liquid modified magnetic nanoparticle: an efficient and green catalyst for biodiesel production. Ind. Eng. Chem. Res., 2014, 53, 3040-3046.
[http://dx.doi.org/10.1021/ie4040016]
[71]
Wan, H.; Wu, Z.; Chen, W.; Guan, G.; Cai, Y.; Chen, C.; Li, Z.; Liu, X. Heterogenization of ionic liquid based on mesoporous material as magnetically recyclable catalyst for biodiesel production. J. Mol. Catal., 2015, 398, 127-132.
[http://dx.doi.org/10.1016/j.molcata.2014.12.002]
[72]
Xie, W.; Hu, L.; Yang, X. Basic ionic liquid supported on mesoporous SBA-15 silica as an efficient heterogeneous catalyst for biodiesel production. Ind. Eng. Chem. Res., 2015, 54, 1505-1512.
[http://dx.doi.org/10.1021/ie5045007]
[73]
Mikkelsen, M.; Jorgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3, 43-81.
[http://dx.doi.org/10.1039/B912904A]
[74]
North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem., 2010, 12, 1514-1539.
[http://dx.doi.org/10.1039/c0gc00065e]
[75]
Yu, K.M.K.; Curcic, I.; Gabriel, J.; Tsang, S.C.E. Recent advances in CO2 capture and utilization. ChemSusChem, 2008, 1(11), 893-899.
[http://dx.doi.org/10.1002/cssc.200800169] [PMID: 18985640]
[76]
Rulev, Y.A.; Gugkaeva, Z.; Maleev, V.I.; North, M.; Belokon, Y.N. Robust bifunctional aluminium-salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides. Beilstein J. Org. Chem., 2015, 11, 1614-1623.
[http://dx.doi.org/10.3762/bjoc.11.176] [PMID: 26664580]
[77]
Roy, P.; Sardar, A. SO2 emission control and finding a way out to produce sulphuric acid from industrial SO2 emission. J. Chem. Eng. Process. Technol., 2015, 6, 230.
[78]
Ravanchi, M.T.; Sahebdelfar, S. Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges. Appl. Petrochem. Res., 2014, 4, 63-77.
[http://dx.doi.org/10.1007/s13203-014-0050-5]
[79]
Schäffner, B.; Schäffner, F.; Verevkin, S.P.; Börner, A. Organic carbonates as solvents in synthesis and catalysis. Chem. Rev., 2010, 110(8), 4554-4581.
[http://dx.doi.org/10.1021/cr900393d] [PMID: 20345182]
[80]
Beattie, C.; North, M.; Villuendas, P. Proline-catalysed amination reactions in cyclic carbonate solvents. Molecules, 2011, 16(4), 3420-3432.
[http://dx.doi.org/10.3390/molecules16043420] [PMID: 21512450]
[81]
Parker, H.L.; Sherwood, J.; Hunt, A.J.; Clark, J.H. Cyclic carbonates as green alternatives solvents for the Heck reaction. ACS Sustain. Chem.& Eng., 2014, 2, 1739-1742.
[http://dx.doi.org/10.1021/sc5002287]
[82]
Seo, D.M.; Reininger, S.; Kutcher, M.; Redmond, K.; Euler, W.B.; Lucht, B.L. Role of mixed salvation and ion pairing in the solution structure of lithium ion battery electrolytes. J. Phys. Chem. C, 2015, 119, 14038-14046.
[http://dx.doi.org/10.1021/acs.jpcc.5b03694]
[83]
Eshetu, G.G.; Bertrand, J.P.; Lecocq, A.; Grugeon, S.; Laruelle, S.; Armand, M.; Marlair, G. Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts. J. Power Sources, 2014, 269, 804-811.
[http://dx.doi.org/10.1016/j.jpowsour.2014.07.065]
[84]
Guo, W.; Laserna, V.; Martin, E.; Escudero-Adán, E.C.; Kleij, A.W. Stereodivergent carbamate synthesis by selective in situ trapping of organic carbonate intermediates. Chemistry, 2016, 22(5), 1722-1727.
[http://dx.doi.org/10.1002/chem.201504510] [PMID: 26689436]
[85]
Suriano, F.; Pratt, R.; Tan, J.P.; Wiradharma, N.; Nelson, A.; Yang, Y.Y.; Dubois, P.; Hedrick, J.L. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials, 2010, 31(9), 2637-2645.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.022] [PMID: 20074794]
[86]
Besse, V.; Camara, F.; Voirin, C.; Auvergne, R.; Caillol, S.; Boutevin, B. Synthesis and applications of unsaturated cyclocarbonates. Polym. Chem., 2013, 4, 4545-4561.
[http://dx.doi.org/10.1039/c3py00343d]
[87]
Helou, M.; Miserque, O.; Brusson, J.M.; Carpentier, J.F.; Guillaume, S.M. Organocatalysts for the controlled “immortal” ring-opening polymerization of six-membered-ring cyclic carbonates: a metal-free, green process. Chemistry, 2010, 16(46), 13805-13813.
[http://dx.doi.org/10.1002/chem.201001111] [PMID: 20945312]
[88]
Lee, M.K.; Shim, H.L.; Dharman, M.M.; Kim, K.H.; Park, S.W.; Park, D.W. Synthesis of cyclic carbonate from allyl glycidyl ether and CO2 over silica-supported ionic liquid catalysts prepared by sol-gel method. Korean J. Chem. Eng., 2008, 25, 1004-1007.
[http://dx.doi.org/10.1007/s11814-008-0162-7]
[89]
Han, L.; Park, S.W.; Park, D.W. Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate. Energy Environ. Sci., 2009, 2, 1286-1292.
[http://dx.doi.org/10.1039/b910763k]
[90]
Zheng, X.; Luo, S.; Zhang, L.; Cheng, J.P. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem., 2009, 11, 455-458.
[http://dx.doi.org/10.1039/b823123k]
[91]
Han, L.; Choi, H.J.; Kim, D.K.; Park, S.W.; Liu, B.; Park, D.W. Porous polymer bead-supported ionic liquids for the synthesis of cyclic carbonate from CO2 and epoxide. J. Mol. Catal. Chem., 2011, 338, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2011.02.001]
[92]
Sun, J.; Cheng, W.; Fan, W.; Wang, Y.; Meng, Z.; Zhang, S. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal. Today, 2009, 148, 361-367.
[http://dx.doi.org/10.1016/j.cattod.2009.07.070]
[93]
Dai, W.L.; Chen, L.; Yin, S.F.; Li, W.H.; Zhang, Y.Y.; Luo, S.L.; Au, C.T. High-efficiency synthesis of cyclic carbonates from epoxides and CO2 over hydroxyl ionic liquid catalyst grafted onto cross-linked polymer. Catal. Lett., 2010, 137, 74-80.
[http://dx.doi.org/10.1007/s10562-010-0346-8]
[94]
Xie, Y.; Ding, K.; Liu, Z.; Li, J.; An, G.; Tao, R.; Sun, Z.; Yang, Z. The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions. Chemistry, 2010, 16(22), 6687-6692.
[http://dx.doi.org/10.1002/chem.201000020] [PMID: 20432416]
[95]
Dharman, M.M.; Choi, H.J.; Kim, D.W.; Park, D.W. Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: effect of variation in the silica support. Catal. Today, 2011, 164, 544-547.
[http://dx.doi.org/10.1016/j.cattod.2010.11.009]
[96]
Aprile, C.; Giacalone, F.; Agrigento, P.; Liotta, L.F.; Martens, J.A.; Pescarmona, P.P.; Gruttadauria, M. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: a high-throughput study in supercritical conditions. ChemSusChem, 2011, 4(12), 1830-1837.
[http://dx.doi.org/10.1002/cssc.201100446] [PMID: 22110020]
[97]
Agrigento, P.; Al-Amsyar, S.M.; Soree, B.; Taherimehr, M.; Gruttadauria, M.; Aprile, C.; Pescarmona, P.P. Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO2 and epoxides into cyclic carbonates. Catal. Sci. Technol., 2014, 4, 1598-1607.
[http://dx.doi.org/10.1039/C3CY01000G]
[98]
Han, L.; Li, H.; Choi, S.J.; Park, M.S.; Lee, S.M.; Kim, Y.J.; Park, D.W. Ionic liquids grafted on carbon nanotubes as highly efficient heterogeneous catalysts for the synthesis of cyclic carbonates. Appl. Catal. A Gen., 2012, 429, 67-72.
[http://dx.doi.org/10.1016/j.apcata.2012.04.008]
[99]
Watile, R.A.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catal. Sci. Technol., 2012, 2, 1051-1055.
[http://dx.doi.org/10.1039/c2cy00458e]
[100]
Chen, X.; Sun, J.; Wang, J.; Cheng, W. Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2. Tetrahedron Lett., 2012, 53, 2684-2688.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.058]
[101]
Zhang, Y.; Yin, S.; Luo, S.; Au, C.T. Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazolium-based ionic liquid grafted onto cross-linked polymer. Ind. Eng. Chem. Res., 2012, 51, 3951-3957.
[http://dx.doi.org/10.1021/ie203001u]
[102]
Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; She, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem., 2012, 14, 654-660.
[http://dx.doi.org/10.1039/c2gc16335g]
[103]
Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal. Today, 2013, 200, 117-124.
[http://dx.doi.org/10.1016/j.cattod.2012.10.001]
[104]
Zhang, W.; Wang, Q.; Wu, H.; Wu, P.; He, M. A highly ordered mesoporous polymer supported imidazolium-based ionic liquid: an efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates. Green Chem., 2014, 16, 4767-4774.
[http://dx.doi.org/10.1039/C4GC01245C]
[105]
Wang, T.; Wang, W.; Lyu, Y.; Chen, X.; Li, C.; Zhang, Y.; Song, X.; Ding, Y. Highly recyclable polymer supported ionic liquids as efficient heterogeneous catalysts for batch and flow conversion of CO2 to cyclic carbonates. RSC Advances, 2017, 7, 2836-2841.
[http://dx.doi.org/10.1039/C6RA26780G]
[106]
Guo, L.; Jin, X.; Wang, X.; Yin, L.; Wang, Y.; Yang, Y.W. Immobilizing polyether imidazole ionic liquids on ZSM-5 zeolite for the catalytic synthesis of propylene carbonate from carbon dioxide. Molecules, 2018, 23(10), 2710.
[http://dx.doi.org/10.3390/molecules23102710] [PMID: 30347858]
[107]
Guo, L.; Deng, L.; Jin, X.; Wang, Y.; Wang, H. Catalytic conversion of CO2 into propylene carbonate in a continuous fixed bed reactor by immobilized ionic liquids. RSC Advances, 2018, 8, 26554-26562.
[http://dx.doi.org/10.1039/C8RA03952F]
[108]
Wang, G.; Yu, N.; Peng, L.; Tan, R.; Zhao, H.; Yin, D.; Qiu, H.; Fu, Z.; Yin, D. Immobilized chloroferrate ionic liquid: an efficient and reusable catalyst for synthesis of diphenylmethane and its derivatives. Catal. Lett., 2008, 123, 252-258.
[http://dx.doi.org/10.1007/s10562-008-9415-7]
[109]
Joni, J.; Haumann, M.; Wasserscheid, P. Development of a Supported Ionic Liquid Phase (SILP) catalyst for slurry‐phase Friedel-crafts alkylations of cumene. Adv. Synth. Catal., 2009, 351, 423-431.
[http://dx.doi.org/10.1002/adsc.200800672]
[110]
Shi, X.L.; Lin, H.; Li, P.; Zhang, W. Friedel-Crafts alkylation of indoles exclusively in water catalyzed by ionic liquid supported on a polyacrylonitrile fiber: a simple “release and catch” catalyst. ChemCatChem, 2014, 6, 2947-2953.
[http://dx.doi.org/10.1002/cctc.201402396]
[111]
He, Y.; Zhang, Q.; Zhan, X.; Cheng, D.G.; Chen, F. Synthesis of efficient SBA-15 immobilized ionic liquid catalyst and its performance for Friedel-Crafts reaction. Catal. Today, 2016, 276, 112-120.
[http://dx.doi.org/10.1016/j.cattod.2016.01.045]
[112]
Zhu, A.; Feng, W.; Li, L.; Li, Q.; Wang, J. Hydroxyl functionalized Lewis acidic ionic liquid on silica: an efficient catalyst for the C-3 Friedel-crafts benzylation of indoles with benzyl alcohols. Catal. Lett., 2017, 147, 261-268.
[http://dx.doi.org/10.1007/s10562-016-1918-z]
[113]
Jiang, N.; Jin, H.; Mo, Y.H.; Prasetyanto, E.A.; Park, S.E. Direct immobilization of ImCl ionic liquid onto the platelet type SBA-15. Microporous Mesoporous Mater., 2011, 141, 16-19.
[http://dx.doi.org/10.1016/j.micromeso.2009.12.019]
[114]
Zhang, Y.; Zhao, Y.; Xia, C. Basic ionic liquids supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites: an efficient magnetic and recyclable heterogeneous catalyst for aqueous Knoevenagel condensation. J. Mol. Catal. Chem., 2009, 306, 107-112.
[http://dx.doi.org/10.1016/j.molcata.2009.02.032]
[115]
Parvin, M.N.; Jin, H.; Ansari, M.B.; Oh, S.M.; Park, S.E. Imidazolium chloride immobilized SBA-15 as a heterogenized organocatalyst for solvent free Knoevenagel condensation using microwave. Appl. Catal. A Gen., 2012, 413, 205-212.
[http://dx.doi.org/10.1016/j.apcata.2011.11.008]
[116]
Boroujeni, K.P.; Jafarinasab, M. Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation. Chin. Chem. Lett., 2012, 23, 1067-1070.
[http://dx.doi.org/10.1016/j.cclet.2012.06.019]
[117]
Luo, Q.X.; Song, X.D.; Ji, M.; Park, S.E.; Hao, C.; Li, Y.Q. Molecular size-and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Appl. Catal. A Gen., 2014, 478, 81-90.
[http://dx.doi.org/10.1016/j.apcata.2014.03.041]
[118]
Elhamifar, D.; Kazempoor, S.; Karimi, B. Amine-functionalized ionic liquid-based mesoporous organosilica as a highly efficient nanocatalyst for the Knoevenagel condensation. Catal. Sci. Technol., 2016, 6, 4318-4326.
[http://dx.doi.org/10.1039/C5CY01666E]
[119]
Ma, M.; Li, H.; Yang, W.; Wu, Q.; Shi, D.; Zhao, Y.; Feng, C.; Jiao, Q. Polystyrene nanometer-sized particles supported alkaline imidazolium ionic liquids as reusable and efficient catalysts for the Knoevenagel condensation in aqueous phase. Catal. Lett., 2018, 148, 134-143.
[http://dx.doi.org/10.1007/s10562-017-2255-6]
[120]
Rostamnia, S.; Hassankhani, A.; Hossieni, H.G.; Gholipour, B.; Xin, H. Bronsted acidic hydrogensulfate ionic liquid immobilized SBA-15:[MPIm][HSO4]@SBA-15 as an environmentally friendly, metal-and halogen-free recyclable catalyst for Knoevenagel–Michael-cyclization processes. J. Mol. Catal. Chem., 2014, 395, 463-469.
[http://dx.doi.org/10.1016/j.molcata.2014.09.017]
[121]
Boroujeni, K.P.; Shojaei, P. Poly (4-vinylpyridine)-supported dual acidic ionic liquid: an environmentally friendly heterogeneous catalyst for the one-pot synthesis of 4, 4′-(arylmethylene) bis (3-methyl-1-phenyl-1H-pyrazol-5-ols). Turk. J. Chem., 2013, 37, 756-764.
[http://dx.doi.org/10.3906/kim-1206-28]
[122]
Boroujeni, K.P.; Ghasemi, P.; Rafienia, Z. Synthesis of biscoumarin derivatives using poly (4-vinylpyridine)-supported dual acidic ionic liquid as a heterogeneous catalyst. Monatsh. Chem., 2014, 145, 1023-1026.
[http://dx.doi.org/10.1007/s00706-014-1156-2]
[123]
Likhar, P.R.; Roy, S.; Roy, M.; Subhas, M.S.; Kantam, M.L. Likhar, S. Roy, M. Roy, M.S. Subhas, M.L. Kantam, Aldol-type coupling of aldehydes with ethyl diazoacetate catalyzed by supported ionic liquid. Catal. Commun., 2009, 10, 728-731.
[http://dx.doi.org/10.1016/j.catcom.2008.11.026]
[124]
Davoodnia, A.; Yassaghi, G. Solvent-free selective cross-aldol condensation of ketones with aromatic aldehydes efficiently catalyzed by a reusable supported acidic ionic liquid. Chin. J. Catal., 2012, 33, 1950-1957.
[http://dx.doi.org/10.1016/S1872-2067(11)60470-1]
[125]
Goodrich, P.; Hardacre, C.; Paun, C.; Ribeiro, A.; Kennedy, S.; Lourenco, M.J.V.; Manyar, H.; de Castro, C.N.; Besnea, M.; Parvulescu, V.I. Asymmetric carbon‐carbon bond forming reactions catalysed by metal (ii) bis (oxazoline) complexes immobilized using supported ionic liquids. Adv. Synth. Catal., 2011, 353, 995-1004.
[http://dx.doi.org/10.1002/adsc.201000953]
[126]
Doherty, S.; Knight, J.G.; Ellison, J.R.; Goodrich, P.; Hall, L.; Hardacre, C.; Muldoon, M.J.; Park, S.; Ribeiro, A.; de Castro, C.A.N.; Lourenço, M.J. An efficient Cu (II)-bis (oxazoline)-based polymer immobilised ionic liquid phase catalyst for asymmetric carbon–carbon bond formation. Green Chem., 2014, 16, 1470-1479.
[http://dx.doi.org/10.1039/C3GC41378K]
[127]
Kaper, H.; Antonietti, M.; Goettmann, F. Metal-free activation of C-Cmultiple bonds through halide ion pairs: diels-Alder reactions with subsequent aromatization. Tetrahedron Lett., 2008, 49, 4546-4549.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.027]
[128]
Chrobok, A.; Baj, S.; Pudło, W.; Jarzębski, A. Supported hydrogensulfate ionic liquid catalysis in Baeyer-Villiger reaction. Appl. Catal. A Gen., 2009, 366, 22-28.
[http://dx.doi.org/10.1016/j.apcata.2009.06.040]
[129]
Zhang, Q.; Luo, J.; Wei, Y. A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem., 2010, 12, 2246-2254.
[http://dx.doi.org/10.1039/c0gc00472c]
[130]
Kotadia, D.A.; Soni, S.S. Silica gel supported-SO3H functionalised benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl naphthols. J. Mol. Catal. Chem., 2012, 353, 44-49.
[http://dx.doi.org/10.1016/j.molcata.2011.11.003]
[131]
Zhang, Q.; Su, H.; Luo, J.; Wei, Y. A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem., 2012, 14, 201-208.
[http://dx.doi.org/10.1039/C1GC16031A]
[132]
Damavandi, S.; Sandaroos, R. Novel multicomponent synthesis of 2, 9-dihydro-9-methyl-2-oxo-4-aryl-1H-pyrido [2, 3-b] indole-3-carbonitrile compounds. J. Chem. Sci., 2013, 125, 95-100.
[http://dx.doi.org/10.1007/s12039-013-0369-y]
[133]
Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Nano-silica supported acidic ionic liquid as an efficient catalyst for the multi-component synthesis of indazolophthalazine-triones and bis-indazolophthalazine-triones. Catal. Sci. Technol., 2013, 3, 2717-2722.
[http://dx.doi.org/10.1039/c3cy00344b]
[134]
Boroujeni, K.P.; Taheri, S.; Seyfipour, G. Poly (4-vinylpyridine)-supported dual acidic ionic liquid: a novel heterogeneous catalyst for the synthesis of β-acetamido ketones. Synth. React. Inorg. M., 2014, 44, 84-88.
[http://dx.doi.org/10.1080/15533174.2013.768647]
[135]
Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. Nano-Fe3O4-supported, hydrogensulfate ionic liquid-catalyzed, one-pot synthesis of polysubstituted pyridines. Synth. Commun., 2015, 45, 1964-1976.
[http://dx.doi.org/10.1080/00397911.2015.1041046]
[136]
Nguyen, H.T.; Le, N.P.T.; Chau, D.K.N.; Tran, P.H. New nano-Fe3O4-supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the preparation of benzoxanthenes and pyrroles under solvent-free sonication. RSC Advances, 2018, 8, 35681-35688.
[http://dx.doi.org/10.1039/C8RA04893B]
[137]
Jahanbin, B.; Davoodnia, A.; Behmadi, H.; Tavakoli-Hoseini, N. Polymer support immobilized acidic ionic liquid: Preparation and its application as catalyst in the synthesis of Hantzsch 1, 4-dihydropyridines. Bull. Korean Chem. Soc., 2012, 33, 2140-2144.
[http://dx.doi.org/10.5012/bkcs.2012.33.7.2140]
[138]
Kang, L.Q.; Jin, D.Y.; Cai, Y.Q. Silica-supported ionic liquid Si-[SbSipim][PF6]: an efficient catalyst for the synthesis of 3, 4-dihydropyrimidine-2-(1H)-ones. Synth. Commun., 2013, 43, 1896-1901.
[http://dx.doi.org/10.1080/00397911.2012.678462]
[139]
Safari, J.; Zarnegar, Z. Bronsted acidic ionic liquid based magnetic nanoparticles: a new promoter for the Biginelli synthesis of 3, 4-dihydropyrimidin-2(1H)-ones/thiones. New J. Chem., 2014, 38, 358-365.
[http://dx.doi.org/10.1039/C3NJ01065A]
[140]
Zarnegar, Z.; Safari, J. Magnetic nanoparticles supported imidazolium-based ionic liquids as nanocatalyst in microwave-mediated solvent-free Biginelli reaction. J. Nanopart. Res., 2014, 16, 2509.
[http://dx.doi.org/10.1007/s11051-014-2509-9]
[141]
Khiratkar, A.G.; Muskawar, P.N.; Bhagat, P.R. Polymer-supported benzimidazolium based ionic liquid: an efficient and reusable Brønsted acid catalyst for Biginelli reaction. RSC Advances, 2016, 6, 105087-105093.
[http://dx.doi.org/10.1039/C6RA23781A]
[142]
Burguete, M.I.; Erythropel, H.; Garcia-Verdugo, E.; Luis, S.V.; Sans, V. Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chem., 2008, 10, 401-407.
[http://dx.doi.org/10.1039/b714977h]
[143]
Jung, J.Y.; Taher, A.; Kim, H.J.; Ahn, W.S.; Jin, M.J. Heck reaction catalyzed by mesoporous SBA-15-supported ionic liquid- Pd(OAc)2. Synlett, 2009, 2009, 39-42.
[144]
Rodriguez-Perez, L.; Pradel, C.; Serp, P.; Gomez, M.; Teuma, E. Supported ionic liquid phase containing palladium nanoparticles on functionalized multiwalled carbon nanotubes: catalytic materials for sequential Heck coupling/hydrogenation process. ChemCatChem, 2011, 3, 749-754.
[http://dx.doi.org/10.1002/cctc.201000321]
[145]
Jansat, S.; Durand, J.; Favier, I.; Malbosc, F.; Pradel, C.; Teuma, E.; Gomez, M. A single catalyst for sequential reactions: dual homogeneous and heterogeneous behavior of palladium nanoparticles in solution. ChemCatChem, 2009, 1, 244-246.
[http://dx.doi.org/10.1002/cctc.200900127]
[146]
Han, P.; Zhang, H.; Qiu, X.; Ji, X.; Gao, L. Palladium within ionic liquid functionalized mesoporous silica SBA-15 and its catalytic application in room-temperature Suzuki coupling reaction. J. Mol. Catal. Chem., 2008, 295, 57-67.
[http://dx.doi.org/10.1016/j.molcata.2008.08.016]
[147]
Jin, M.J.; Taher, A.; Kang, H.J.; Choi, M.; Ryoo, R. Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water. Green Chem., 2009, 11, 309-313.
[http://dx.doi.org/10.1039/b817855k]
[148]
Gruttadauria, M.; Liotta, L.F.; Salvo, A.M.P.; Giacalone, F.; La Parola, V.; Aprile, C.; Noto, R. Multi-layered, covalently Supported Ionic Liquid Phase (mlc-SILP) as highly cross-linked support for recyclable palladium catalysts for the Suzuki reaction in aqueous medium. Adv. Synth. Catal., 2011, 353, 2119-2130.
[http://dx.doi.org/10.1002/adsc.201100186]
[149]
Khedkar, M.V.; Sasaki, T.; Bhanage, B.M. Efficient, recyclable and phosphine-free carbonylative Suzuki coupling reaction using immobilized palladium ion-containing ionic liquid: synthesis of aryl ketones and heteroaryl ketones. RSC Advances, 2013, 3, 7791-7797.
[http://dx.doi.org/10.1039/c3ra40730f]
[150]
Jiao, N.; Li, Z.; Wang, Y.; Liu, J.; Xia, C. Palladium nanoparticles immobilized onto supported ionic liquid-like phases (SILLPs) for the carbonylative Suzuki coupling reaction. RSC Advances, 2015, 5, 26913-26922.
[http://dx.doi.org/10.1039/C5RA00443H]
[151]
Karimi, B.; Elhamifar, D.; Clark, J.H.; Hunt, A.J. Ordered mesoporous organosilica with ionic-liquid framework: an efficient and reusable support for the palladium-catalyzed Suzuki-Miyaura coupling reaction in water. Chemistry, 2010, 16(27), 8047-8053.
[http://dx.doi.org/10.1002/chem.201000538] [PMID: 20512825]
[152]
Hagiwara, H.; Sato, K.; Hoshi, T.; Suzuki, T. A highly sustainable and active catalyst for Suzuki-Miyaura reaction: palladium-Supported Ionic Liquid Catalyst (SILC) coated with polymer. Synlett, 2011, 2011, 2545-2550.
[http://dx.doi.org/10.1055/s-0030-1260322]
[153]
Hagiwara, H.; Sasaki, H.; Hoshi, T.; Suzuki, T. Sustainable click reaction catalyzed by supported ionic liquid catalyst (Cu-SILC). Synlett, 2009, 2009, 643-647.
[http://dx.doi.org/10.1055/s-0028-1087926]
[154]
Patil, J.D.; Patil, S.A.; Pore, D.M. A polymer supported ascorbate functionalized task specific ionic liquid: an efficient reusable catalyst for 1, 3-dipolar cycloaddition. RSC Advances, 2015, 5, 21396-21404.
[http://dx.doi.org/10.1039/C4RA16481D]
[155]
Tavassoli, M.; Landarani-Isfahani, A.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I. Polystyrene-supported ionic liquid copper complex: a reusable catalyst for one-pot three-component click reaction. Appl. Catal., 2015, 503, 186-195.
[http://dx.doi.org/10.1016/j.apcata.2015.07.015]
[156]
Panda, A.G.; Bhor, M.D.; Jagtap, S.R.; Bhanage, B.M. Selective hydroformylation of unsaturated esters using a Rh/PPh3-supported ionic liquid-phase catalyst, followed by a novel route to pyrazolin-5-ones. Appl. Catal., 2008, 347, 142-147.
[http://dx.doi.org/10.1016/j.apcata.2008.06.008]
[157]
Panda, A.G.; Jagtap, S.R.; Nandurkar, N.S.; Bhanage, B.M. Regioselective hydroformylation of allylic alcohols using Rh/PPh3 supported ionic liquid-phase catalyst, followed by hydrogenation to 1, 4-butanediol using Ru/PPh3 supported ionic liquid-phase catalyst. Ind. Eng. Chem. Res., 2008, 47, 969-972.
[http://dx.doi.org/10.1021/ie0706865]
[158]
Haumann, M.; Jakuttis, M.; Franke, R.; Schonweiz, A.; Wasserscheid, P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts. ChemCatChem, 2011, 3, 1822-1827.
[http://dx.doi.org/10.1002/cctc.201100117]
[159]
Ha, H.N.T.; Duc, D.T.; Dao, T.V.; Le, M.T.; Riisager, A.; Fehrmann, R. Characterization and parametrical study of Rh-TPPTS Supported Ionic Liquid Phase (SILP) catalysts for ethylene hydroformylation. Catal. Commun., 2012, 25, 136-141.
[http://dx.doi.org/10.1016/j.catcom.2012.01.018]
[160]
Walter, S.; Haumann, M.; Wasserscheid, P.; Hahn, H.; Franke, R. n‐butane carbonylation to n‐pentanal using a cascade reaction of dehydrogenation and SILP‐catalyzed hydroformylation. AIChE J., 2015, 61, 893-897.
[http://dx.doi.org/10.1002/aic.14676]
[161]
Hanna, D.G.; Shylesh, S.; Werner, S.; Bell, A.T. The kinetics of gas-phase propene hydroformylation over a Supported Ionic Liquid-Phase (SILP) rhodium catalyst. J. Catal., 2012, 292, 166-172.
[http://dx.doi.org/10.1016/j.jcat.2012.05.011]
[162]
Shylesh, S.; Hanna, D.; Werner, S.; Bell, A.T. Factors influencing the activity, selectivity, and stability of Rh-based Supported Ionic Liquid Phase (SILP) catalysts for hydroformylation of propene. ACS Catal., 2012, 2, 487-493.
[http://dx.doi.org/10.1021/cs2004888]
[163]
Walter, S.; Spohr, H.; Franke, R.; Hieringer, W.; Wasserscheid, P.; Haumann, M. Detailed investigation of the mechanism of Rh-Diphosphite Supported Ionic Liquid Phase (SILP)-catalyzed 1-butene hydroformylation in the gas phase via combined kinetic and Density Functional Theory (DFT) modeling studies. ACS Catal., 2017, 7, 1035-1044.
[http://dx.doi.org/10.1021/acscatal.6b02315]
[164]
Schneider, M.J.; Lijewski, M.; Woelfel, R.; Haumann, M.; Wasserscheid, P. Continuous gas-phase hydroaminomethylation using supported ionic liquid phase catalysts. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 6996-6999.
[http://dx.doi.org/10.1002/anie.201301365] [PMID: 23681709]
[165]
Weib, A.; Munoz, M.; Haas, A.; Rietzler, F.; Steinruck, H.P.; Haumann, M.; Wasserscheid, P.; Etzold, B.J. Boosting the activity in supported ionic liquid-phase-catalyzed hydroformylation via surface functionalization of the carbon support. ACS Catal., 2016, 6, 2280-2286.
[http://dx.doi.org/10.1021/acscatal.5b02747]
[166]
Hagiwara, H.; Okunaka, N.; Hoshi, T.; Suzuki, T. Immobilization of Grubbs catalyst as Supported Ionic Liquid Catalyst (Ru-SILC). Synlett, 2008, 2008, 1813-1816.
[http://dx.doi.org/10.1055/s-2008-1078570]
[167]
Hagiwara, H.; Nakamura, T.; Okunaka, N.; Hoshi, T.; Suzuki, T. Catalytic performance of ruthenium-supported ionic-liquid catalysts in sustainable synthesis of macrocyclic lactones. Helv. Chim. Acta, 2010, 93, 175-182.
[http://dx.doi.org/10.1002/hlca.200900334]
[168]
Werner, S.; Szesni, N.; Fischer, R.W.; Haumann, M.; Wasserscheid, P. Homogeneous ruthenium-based water-gas shift catalysts via Supported Ionic Liquid Phase (SILP) technology at low temperature and ambient pressure. Phys. Chem. Chem. Phys., 2009, 11(46), 10817-10819.
[http://dx.doi.org/10.1039/b912688k] [PMID: 19924313]
[169]
Werner, S.; Szesni, N.; Kaiser, M.; Fischer, R.W.; Haumann, M.; Wasserscheid, P. Ultra‐low‐temperature water-gas shift catalysis using Supported Ionic Liquid Phase (SILP) materials. ChemCatChem, 2010, 2, 1399-1402.
[http://dx.doi.org/10.1002/cctc.201000245]
[170]
Werner, S.; Szesni, N.; Bittermann, A.; Schneider, M.J.; Harter, P.; Haumann, M.; Wasserscheid, P. Screening of Supported Ionic Liquid Phase (SILP) catalysts for the very low temperature water-gas-shift reaction. Appl. Catal. A Gen., 2010, 377, 70-75.
[http://dx.doi.org/10.1016/j.apcata.2010.01.019]
[171]
Haumann, M.; Schonweiz, A.; Breitzke, H.; Buntkowsky, G.; Werner, S.; Szesni, N. Solid‐state NMR investigations of supported ionic liquid phase water‐gas shift catalysts: ionic liquid film distribution vs. catalyst performance. Chem. Eng. Technol., 2012, 35, 1421-1426.
[http://dx.doi.org/10.1002/ceat.201200025]
[172]
Yasuda, T.; Uchiage, E.; Fujitani, T.; Tominaga, K.I.; Nishida, M. Reverse water gas shift reaction using supported ionic liquid phase catalysts. Appl. Catal. B, 2018, 232, 299-305.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.057]
[173]
Lou, L.L.; Peng, X.; Yu, K.; Liu, S. Asymmetric hydrogenation of acetophenone catalyzed by chiral Ru complex in mesoporous material supported ionic liquid. Catal. Commun., 2008, 9, 1891-1893.
[http://dx.doi.org/10.1016/j.catcom.2008.03.012]
[174]
Lou, L.L.; Dong, Y.; Yu, K.; Jiang, S.; Song, Y.; Cao, S.; Liu, S. Chiral Ru complex immobilized on mesoporous materials by ionic liquids as heterogeneous catalysts for hydrogenation of aromatic ketones. J. Mol. Catal. Chem., 2010, 333, 20-27.
[http://dx.doi.org/10.1016/j.molcata.2010.08.018]
[175]
Hintermair, U.; Hofener, T.; Pullmann, T.; Francio, G.; Leitner, W. Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem, 2010, 2, 150-154.
[http://dx.doi.org/10.1002/cctc.200900261]
[176]
Hintermair, U.; Franciò, G.; Leitner, W. A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase. Chemistry, 2013, 19(14), 4538-4547.
[http://dx.doi.org/10.1002/chem.201204159] [PMID: 23463487]
[177]
Ochsner, E.; Schneider, M.J.; Meyer, C.; Haumann, M.; Wasserscheid, P. Challenging the scope of continuous, gas-phase reactions with Supported Ionic Liquid Phase (SILP) catalysts-asymmetric hydrogenation of methyl acetoacetate. Appl. Catal. A Gen., 2011, 399, 35-41.
[http://dx.doi.org/10.1016/j.apcata.2011.03.038]
[178]
Schneider, M.J.; Haumann, M.; Wasserscheid, P. Asymmetric hydrogenation of methyl pyruvate in the continuous gas phase using Supported Ionic Liquid Phase (SILP) catalysis. J. Mol. Catal. Chem., 2013, 376, 103-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.022]
[179]
Kume, Y.; Qiao, K.; Tomida, D.; Yokoyama, C. Selective hydrogenation of cinnamaldehyde catalyzed by palladium nanoparticles immobilized on ionic liquids modified-silica gel. Catal. Commun., 2008, 9, 369-375.
[http://dx.doi.org/10.1016/j.catcom.2007.07.012]
[180]
Ruta, M.; Laurenczy, G.; Dyson, P.J.; Kiwi-Minsker, L. Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J. Phys. Chem. C, 2008, 112, 17814-17819.
[http://dx.doi.org/10.1021/jp806603f]
[181]
Kovtunov, K.V.; Zhivonitko, V.V.; Kiwi-Minsker, L.; Koptyug, I.V. Parahydrogen-induced polarization in alkyne hydrogenation catalyzed by Pd nanoparticles embedded in a supported ionic liquid phase. Chem. Commun. (Camb.), 2010, 46(31), 5764-5766.
[http://dx.doi.org/10.1039/c0cc01411g] [PMID: 20607176]
[182]
Salminen, E.; Virtanen, P.; Kordas, K.; Mikkola, J.P. Alkaline modifiers as performance boosters in citral hydrogenation over supported ionic liquid catalysts (SILCAs). Catal. Today, 2010, 196, 126-131.
[http://dx.doi.org/10.1016/j.cattod.2012.04.066]
[183]
Salminen, E.; Virtanen, P.; Mikkola, J.P.T. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal. Front Chem., 2014, 2, 3.
[http://dx.doi.org/10.3389/fchem.2014.00003] [PMID: 24790972]
[184]
Brunig, J.; Csendes, Z.; Weber, S.; Gorgas, N.; Bittner, R.W.; Limbeck, A.; Bica, K.; Hoffmann, H.; Kirchner, K. Chemoselective supported ionic-liquid-phase (SILP) aldehyde hydrogenation catalyzed by an Fe(II) PNP pincer complex. ACS Catal., 2018, 8, 1048-1051.
[http://dx.doi.org/10.1021/acscatal.7b04149]
[185]
Xing, G. Synthesis of a novel melamine-formaldehyde resin-supported ionic liquid with Brønsted acid sites and its catalytic activities. Monatsh. Chem., 2013, 144, 1369-1374.
[http://dx.doi.org/10.1007/s00706-013-1022-7]
[186]
Li, Z.M.; Zhou, Y.; Tao, D.J.; Huang, W.; Chen, X.S.; Yang, Z. MOR zeolite supported bronsted acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for ketalization. RSC Advances, 2014, 4, 12160-12167.
[http://dx.doi.org/10.1039/C4RA00092G]
[187]
Yuan, C.; Huang, Z.; Chen, J. Basic ionic liquid supported on mesoporous SBA-15: an efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal. Commun., 2012, 24, 56-60.
[http://dx.doi.org/10.1016/j.catcom.2012.03.003]
[188]
Candu, N.; Rizescu, C.; Podolean, I.; Tudorache, M.; Parvulescu, V.I.; Coman, S.M. Efficient magnetic and recyclable SBILC (Supported Basic Ionic Liquid Catalyst)-based heterogeneous organocatalysts for the asymmetric epoxidation of trans-methylcinnamate. Catal. Sci. Technol., 2015, 5, 729-737.
[http://dx.doi.org/10.1039/C4CY00891J]
[189]
Wang, J.; Zhao, D.; Li, K. Oxidative desulfurization of dibenzothiophene catalyzed by Bronsted acid ionic liquid. Energy Fuels, 2009, 23, 3831-3834.
[http://dx.doi.org/10.1021/ef900251a]
[190]
Zhang, J.; Zhu, W.; Li, H.; Jiang, W.; Jiang, Y.; Huang, W.; Yan, Y. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids. Green Chem., 2009, 11, 1801-1807.
[http://dx.doi.org/10.1039/b914130h]
[191]
Zhu, W.; Wu, P.; Yang, L.; Chang, Y.; Chao, Y.; Li, H.; Jiang, Y.; Jiang, W.; Xun, S. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chem. Eng. J., 2013, 229, 250-256.
[http://dx.doi.org/10.1016/j.cej.2013.05.115]
[192]
Zhang, C.; Pan, X.; Wang, F.; Liu, X. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids. Fuel, 2012, 102, 580-584.
[http://dx.doi.org/10.1016/j.fuel.2012.07.040]
[193]
Zhu, W.; Li, H.; Jiang, X.; Yan, Y.; Lu, J.; He, L.; Xia, J. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids. Green Chem., 2008, 10, 641-646.
[http://dx.doi.org/10.1039/b801185k]
[194]
Nie, Y.; Dong, Y.; Bai, L.; Dong, H.; Zhang, X. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids. Fuel, 2013, 103, 997-1002.
[http://dx.doi.org/10.1016/j.fuel.2012.07.071]
[195]
Wang, C.; Chen, Z.; Yao, X.; Jiang, W.; Zhang, M.; Li, H.; Liu, H.; Zhu, W.; Li, H. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V2O5/SBA-15 catalyst in ionic liquids. RSC Advances, 2017, 7, 39383-39390.
[http://dx.doi.org/10.1039/C7RA07286D]
[196]
Saha, B.; Yadav, S.K.; Sengupta, S. Synthesis of nano-Hap prepared through green route and its application in oxidative desulfurization. Fuel, 2018, 222, 743-752.
[http://dx.doi.org/10.1016/j.fuel.2018.02.139]
[197]
Xiong, J.; Zhu, W.; Li, H.; Yang, L.; Chao, Y.; Wu, P.; Xun, S.; Jiang, W.; Zhang, M.; Li, H. Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. J. Mater. Chem., 2015, 3, 12738-12747.
[http://dx.doi.org/10.1039/C5TA01346A]
[198]
Triantafyllidis, K.S.; Deliyanni, E.A. Desulfurization of diesel fuels: adsorption of 4, 6-DMDBT on different origin and surface chemistry nanoporous activated carbons. Chem. Eng. J., 2014, 236, 406-414.
[http://dx.doi.org/10.1016/j.cej.2013.09.099]
[199]
Zhang, W.; Liu, H.; Xia, Q.; Li, Z. Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma. Chem. Eng. J., 2012, 209, 597-600.
[http://dx.doi.org/10.1016/j.cej.2012.08.050]
[200]
Zhang, J.; Li, J.; Ren, T.; Hu, Y.; Ge, J.; Zhao, D. Oxidative desulfurization of dibenzothiophene based on air and cobalt phthalocyanine in an ionic liquid. RSC Advances, 2014, 4, 3206-3210.
[http://dx.doi.org/10.1039/C3RA43765E]
[201]
Xu, J.; Zhao, S.; Chen, W.; Wang, M.; Song, Y.F. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36⋅32H2O in [bmim]BF4 at room temperature. Chemistry, 2012, 18(15), 4775-4781.
[http://dx.doi.org/10.1002/chem.201102754] [PMID: 22374858]
[202]
(a)Li, C.; Li, D.; Zou, S.; Li, Z.; Yin, J.; Wang, A.; Cui, Y.; Yao, Z.; Zhao, Q. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chem., 2013, 15, 2793-2799.
[http://dx.doi.org/10.1039/c3gc41067f]
(b)Pejin, B.; Iodice, C.; Tommonaro, G.; De Rosa, S. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod., 2008, 71(11), 1850-1853.
[http://dx.doi.org/10.1021/np800318m] [PMID: 19007183]
(c)Tommonaro, G.; García-Font, N.; Vitale, R.M.; Pejin, B.; Iodice, C.; Cañadas, S.; Marco-Contelles, J.; Oset-Gasque, M.J. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 122, 326-338.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.036] [PMID: 27376495]
[203]
Kohler, F.; Roth, D.; Kuhlmann, E.; Wasserscheid, P.; Haumann, M. Continuous gas-phase desulfurisation using supported ionic liquid phase (SILP) materials. Green Chem., 2010, 12, 979-984.
[http://dx.doi.org/10.1039/c004883f]
[204]
Wang, X.; Wan, H.; Han, M.; Gao, L.; Guan, G. Removal of thiophene and its derivatives from model gasoline using polymer-supported metal chlorides ionic liquid moieties. Ind. Eng. Chem. Res., 2012, 51, 3418-3424.
[http://dx.doi.org/10.1021/ie201931a]
[205]
Khan, N.A.; Hasan, Z.; Jhung, S.H. Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization. Chemistry, 2014, 20(2), 376-380.
[http://dx.doi.org/10.1002/chem.201304291] [PMID: 24390909]
[206]
Wang, F.; Zhang, Z.; Yang, J.; Wang, L.; Lin, Y.; Wei, Y. Immobilization of Room Temperature Ionic Liquid (RTIL) on silica gel for adsorption removal of thiophenic sulfur compounds from fuel. Fuel, 2013, 107, 394-399.
[http://dx.doi.org/10.1016/j.fuel.2012.11.033]
[207]
Lin, Y.; Wang, F.; Zhang, Z.; Yang, J.; Wei, Y. Polymer-supported ionic liquids: synthesis, characterization and application in fuel desulfurization. Fuel, 2014, 116, 273-280.
[http://dx.doi.org/10.1016/j.fuel.2013.08.014]
[208]
Zhang, J.; Sun, S.; Bian, Y.; Li, W.; Liu, R.; Zhao, D. Adsorptive desulfurization of metal phthalocyanine functionalized poly-ionic liquids grafted to silica gel. Fuel, 2018, 220, 513-520.
[http://dx.doi.org/10.1016/j.fuel.2018.01.135]
[209]
Dai, B.; Wu, P.; Zhu, W.; Chao, Y.; Sun, J.; Xiong, J.; Jiang, W.; Li, H. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid. RSC Advances, 2016, 6, 140-147.
[http://dx.doi.org/10.1039/C5RA23272D]
[210]
Shen, C.; Wang, Y.J.; Xu, J.H.; Luo, G.S. Oxidative desulfurization of DBT with H2O2 catalysed by TiO2/porous glass. Green Chem., 2016, 18, 771-781.
[http://dx.doi.org/10.1039/C5GC01653C]
[211]
Tian, Y.; Wang, G.; Long, J.; Cui, J.; Jin, W.; Zeng, D. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by molybdenum oxide supported on alumina modified by Ca2+. RSC Advances, 2017, 7, 48208-48213.
[http://dx.doi.org/10.1039/C7RA08900G]
[212]
Lu, S.; Zhang, H.; Wu, D.; Han, X.; Yao, Y.; Zhang, Q. An efficient and recyclable polyoxometalate-based hybrid catalyst for heterogeneous deep oxidative desulfurization of dibenzothiophene derivatives with oxygen. RSC Advances, 2016, 6, 79520-79525.
[http://dx.doi.org/10.1039/C6RA15563D]
[213]
Bertleff, B.; Claubnitzer, J.; Korth, W.; Wasserscheid, P.; Jess, A.; Albert, J. Extraction coupled oxidative desulfurization of fuels to sulfate and water-soluble sulfur compounds using polyoxometalate catalysts and molecular oxygen. ACS Sustain. Chem.& Eng., 2017, 5, 4110-4118.
[http://dx.doi.org/10.1021/acssuschemeng.7b00087]
[214]
Ma, C.; Dai, B.; Liu, P.; Zhou, N.; Shi, A.; Ban, L.; Chen, H. Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. J. Ind. Eng. Chem., 2014, 20, 2769-2774.
[http://dx.doi.org/10.1016/j.jiec.2013.11.005]
[215]
Xiong, J.; Zhu, W.; Li, H.; Xu, Y.; Jiang, W.; Xun, S.; Liu, H.; Zhao, Z. Immobilized fenton‐like ionic liquid: catalytic performance for oxidative desulfurization. AIChE J., 2013, 59, 4696-4704.
[http://dx.doi.org/10.1002/aic.14197]
[216]
Xun, S.; Zhu, W.; Zheng, D.; Zhang, L.; Liu, H.; Yin, S.; Zhang, M.; Li, H. Synthesis of metal-based ionic liquid supported catalyst and its application in catalytic oxidative desulfurization of fuels. Fuel, 2014, 136, 358-365.
[http://dx.doi.org/10.1016/j.fuel.2014.07.029]
[217]
Wu, J.; Gao, Y.; Zhang, W.; Tan, Y.; Tang, A.; Men, Y.; Tang, B. Deep desulfurization by oxidation using an active ionic liquid‐supported Zr metal-organic framework as catalyst. Appl. Organomet. Chem., 2015, 29, 96-100.
[http://dx.doi.org/10.1002/aoc.3251]
[218]
Xiong, J.; Zhu, W.; Ding, W.; Yang, L.; Chao, Y.; Li, H.; Zhu, F.; Li, H. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel. Ind. Eng. Chem. Res., 2014, 53, 19895-19904.
[http://dx.doi.org/10.1021/ie503322a]
[219]
Xun, S.; Zhu, W.; Zheng, D.; Li, H.; Jiang, W.; Zhang, M.; Qin, Y.; Zhao, Z.; Li, H. Supported ionic liquid [Bmim] FeCl4/AmTiO2 as an efficient catalyst for the catalytic oxidative desulfurization of fuels. RSC Advances, 2015, 5, 43528-43536.
[http://dx.doi.org/10.1039/C5RA00999E]
[220]
Li, M.; Zhang, M.; Wei, A.; Zhu, W.; Xun, S.; Li, Y.; Li, H.; Li, H. Facile synthesis of amphiphilic polyoxometalate-based ionic liquid supported silica induced efficient performance in oxidative desulfurization. J. Mol. Catal. Chem., 2015, 406, 23-30.
[http://dx.doi.org/10.1016/j.molcata.2015.05.007]
[221]
Ding, W.; Zhu, W.; Xiong, J.; Yang, L.; Wei, A.; Zhang, M.; Li, H. Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chem. Eng. J., 2015, 266, 213-221.
[http://dx.doi.org/10.1016/j.cej.2014.12.040]
[222]
Zhu, W.; Dai, B.; Wu, P.; Chao, Y.; Xiong, J.; Xun, S.; Li, H.; Li, H. Graphene-analogue hexagonal BN supported with tungsten-based ionic liquid for oxidative desulfurization of fuels. ACS Sustain. Chem.& Eng., 2014, 3, 186-194.
[http://dx.doi.org/10.1021/sc5006928]
[223]
Xun, S.; Zhu, W.; Chang, Y.; Li, H.; Zhang, M.; Jiang, W.; Zheng, D.; Qin, Y.; Li, H. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chem. Eng. J., 2016, 288, 608-617.
[http://dx.doi.org/10.1016/j.cej.2015.12.005]
[224]
Azimzadeh, H.; Akbari, A.; Omidkhah, M.R. Catalytic oxidative desulfurization performance of immobilized NMP. FeCl3 ionic liquid on γ-Al2O3 support. Chem. Eng. J., 2017, 320, 189-200.
[http://dx.doi.org/10.1016/j.cej.2017.03.027]
[225]
Jiang, W.; Zheng, D.; Xun, S.; Qin, Y.; Lu, Q.; Zhu, W.; Li, H. Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels. Fuel, 2017, 190, 1-9.
[http://dx.doi.org/10.1016/j.fuel.2016.11.024]
[226]
Xun, S.; Jiang, W.; Guo, T.; He, M.; Ma, R.; Zhang, M.; Zhu, W.; Li, H. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. J. Colloid Interface Sci., 2019, 534, 239-247.
[http://dx.doi.org/10.1016/j.jcis.2018.08.115] [PMID: 30227380]
[227]
Safa, M.; Mokhtarani, B.; Mortaheb, H.R.; Tabar Heidar, K.; Sharifi, A.; Mirzaei, M. Oxidative desulfurization of diesel fuel using a Bronsted acidic ionic liquid supported on silica gel. Energy Fuels, 2017, 31, 10196-10205.
[http://dx.doi.org/10.1021/acs.energyfuels.6b03505]
[228]
Malik, M.A.; Hashim, M.A.; Nabi, F. Ionic liquids in supported liquid membrane technology. Chem. Eng. J., 2011, 171, 242-254.
[http://dx.doi.org/10.1016/j.cej.2011.03.041]
[229]
Barghi, S.H.; Adibi, M.; Rashtchian, D. An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: Investigation of temperature fluctuations effects. J. Membr. Sci., 2010, 362, 346-352.
[http://dx.doi.org/10.1016/j.memsci.2010.06.047]
[230]
Scovazzo, P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J. Membr. Sci., 2009, 343, 199-211.
[http://dx.doi.org/10.1016/j.memsci.2009.07.028]
[231]
Myers, C.; Pennline, H.; Luebke, D.; Ilconich, J.; Dixon, J.K.; Maginn, E.J.; Brennecke, J.F. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J. Membr. Sci., 2008, 322, 28-31.
[http://dx.doi.org/10.1016/j.memsci.2008.04.062]
[232]
Jindaratsamee, P.; Shimoyama, Y.; Morizaki, H.; Ito, A. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes. J. Chem. Thermodyn., 2011, 43, 311-314.
[http://dx.doi.org/10.1016/j.jct.2010.09.015]
[233]
Santos, E.; Albo, J.; Irabien, A. Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: Influence of the temperature. J. Membr. Sci., 2014, 452, 277-283.
[http://dx.doi.org/10.1016/j.memsci.2013.10.024]
[234]
Robeson, L.M. The upper bound revisited. J. Membr. Sci., 2008, 320, 390-400.
[http://dx.doi.org/10.1016/j.memsci.2008.04.030]
[235]
Raeissi, S.; Peters, C.J. A potential ionic liquid for CO2-separating gas membranes: selection and gas solubility studies. Green Chem., 2009, 11, 185-192.
[http://dx.doi.org/10.1039/B814246G]
[236]
Cserjesi, P.; Nemestothy, N.; Vass, A.; Csanadi, Z.; Belafi-Bako, K. Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination, 2009, 245, 743-747.
[http://dx.doi.org/10.1016/j.desal.2009.02.046]
[237]
Jiang, Y.; Youting, W. Wenting, Wang.; Lei, L.; Zheng, Zhou.; Zhang, Z. Permeability and selectivity of sulfur dioxide and carbon dioxide in supported ionic liquid membranes. Chin. J. Chem. Eng., 2009, 17, 594-601.
[http://dx.doi.org/10.1016/S1004-9541(08)60249-9]
[238]
Park, Y.I.; Kim, B.S.; Byun, Y.H.; Lee, S.H.; Lee, E.W.; Lee, J.M. Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination, 2009, 236, 342-348.
[http://dx.doi.org/10.1016/j.desal.2007.10.085]
[239]
Scovazzo, P.; Havard, D.; McShea, M.; Mixon, S.; Morgan, D. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J. Membr. Sci., 2009, 327, 41-48.
[http://dx.doi.org/10.1016/j.memsci.2008.10.056]
[240]
Neves, L.A.; Crespo, J.G.; Coelhoso, I.M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci., 2010, 357, 160-170.
[http://dx.doi.org/10.1016/j.memsci.2010.04.016]
[241]
Zhao, W.; He, G.; Zhang, L.; Ju, J.; Dou, H.; Nie, F.; Li, C.; Liu, H. Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2. J. Membr. Sci., 2010, 350, 279-285.
[http://dx.doi.org/10.1016/j.memsci.2010.01.002]
[242]
Cserjesi, P.; Nemestothy, N.; Belafi-Bako, K. Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J. Membr. Sci., 2010, 349, 6-11.
[http://dx.doi.org/10.1016/j.memsci.2009.10.044]
[243]
Iarikov, D.D.; Hacarlioglu, P.; Oyama, S.T. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chem. Eng. J., 2011, 166, 401-406.
[http://dx.doi.org/10.1016/j.cej.2010.10.060]
[244]
Hanioka, S.; Maruyama, T.; Sotani, T.; Teramoto, M.; Matsuyama, H.; Nakashima, K.; Hanaki, M.; Kubota, F.; Goto, M. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J. Membr. Sci., 2008, 314, 1-4.
[http://dx.doi.org/10.1016/j.memsci.2008.01.029]
[245]
Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Amino acid ionic liquid-based facilitated transport membranes for CO2 separation. Chem. Commun. (Camb.), 2012, 48(55), 6903-6905.
[http://dx.doi.org/10.1039/c2cc17380h] [PMID: 22374137]
[246]
Alkhouzaam, A.; Khraisheh, M.; Atilhan, M.; Al-Muhtaseb, S.A.; Qi, L.; Rooney, D. High-pressure CO2/N2 and CO2/CH4 separation using dense polysulfone-supported ionic liquid membranes. J. Nat. Gas Sci. Eng., 2016, 36, 472-485.
[http://dx.doi.org/10.1016/j.jngse.2016.10.061]
[247]
Kim, D.H.; Baek, I.H.; Hong, S.U.; Lee, H.K. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. J. Membr. Sci., 2011, 372, 346-354.
[http://dx.doi.org/10.1016/j.memsci.2011.02.025]
[248]
Close, J.J.; Farmer, K.; Moganty, S.S.; Baltus, R.E. CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: effect of the support on separation performance. J. Membr. Sci., 2012, 390, 201-210.
[http://dx.doi.org/10.1016/j.memsci.2011.11.037]
[249]
Albo, J.; Tsuru, T. Thin ionic liquid membranes based on inorganic supports with different pore sizes. Ind. Eng. Chem. Res., 2014, 53, 8045-8056.
[http://dx.doi.org/10.1021/ie500126x]
[250]
Akhmetshina, A.I.; Gumerova, O.R.; Atlaskin, A.A.; Petukhov, A.N.; Sazanova, T.S.; Yanbikov, N.R.; Nyuchev, A.V.; Razov, E.N.; Vorotyntsev, I.V. Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Separ. Purif. Tech., 2017, 176, 92-106.
[http://dx.doi.org/10.1016/j.seppur.2016.11.074]
[251]
Aranowski, R. Influence of ionic liquid structure on supported ionic liquid membranes effectiveness in carbon dioxide/methane separation. J. Chem.,2013, , 2013.
[252]
Bara, J.E.; Gabriel, C.J.; Carlisle, T.K.; Camper, D.E.; Finotello, A.; Gin, D.L.; Noble, R.D. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J., 2009, 147, 43-50.
[http://dx.doi.org/10.1016/j.cej.2008.11.021]
[253]
Tomé, L.C.; Patinha, D.J.; Ferreira, R.; Garcia, H.; Silva Pereira, C.; Freire, C.S.; Rebelo, L.P.N.; Marrucho, I.M. Cholinium-based supported ionic liquid membranes: a sustainable route for carbon dioxide separation. ChemSusChem, 2014, 7(1), 110-113.
[http://dx.doi.org/10.1002/cssc.201300613] [PMID: 24458737]
[254]
Hojniak, S.D.; Khan, A.L.; Hollóczki, O.; Kirchner, B.; Vankelecom, I.F.; Dehaen, W.; Binnemans, K. Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): influence of the cation charge of the ionic liquid. J. Phys. Chem. B, 2013, 117(48), 15131-15140.
[http://dx.doi.org/10.1021/jp409414t] [PMID: 24199938]
[255]
Althuluth, M.; Overbeek, J.P.; Van Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.; Peters, C.J.; Kroon, M.C. Natural gas purification using supported ionic liquid membrane. J. Membr. Sci., 2015, 484, 80-86.
[http://dx.doi.org/10.1016/j.memsci.2015.02.033]
[256]
Zhang, X.; Tu, Z.; Li, H.; Huang, K.; Hu, X.; Wu, Y.; MacFarlane, D.R. Selective separation of H2S and CO2 from CH4 by supported ionic liquid membranes. J. Membr. Sci., 2017, 543, 282-287.
[http://dx.doi.org/10.1016/j.memsci.2017.08.033]
[257]
Feng, S.; Wu, Y.; Luo, J.; Wan, Y. AgBF4/[emim][BF4] supported ionic liquid membrane for carbon monoxide/nitrogen separation. J. Energy Chem., 2019, 29, 31-39.
[http://dx.doi.org/10.1016/j.jechem.2018.02.004]
[258]
Karousos, D.S.; Labropoulos, A.I.; Tzialla, O.; Papadokostaki, K.; Gjoka, M.; Stefanopoulos, K.L.; Beltsios, K.G.; Iliev, B.; Schubert, T.J.S.; Romanos, G.E. Effect of a cyclic heating process on the CO2/N2 separation performance and structure of a ceramic nanoporous membrane supporting the ionic liquid 1-methyl-3-octylimidazolium tricyanomethanide. Separ. Purif. Tech., 2018, 200, 11-22.
[http://dx.doi.org/10.1016/j.seppur.2018.02.013]
[259]
Lee, W.G.; Kang, S.W. Highly selective poly (ethylene oxide)/ionic liquid electrolyte membranes containing CrO3 for CO2/N2 separation. Chem. Eng. J., 2019, 356, 312-317.
[http://dx.doi.org/10.1016/j.cej.2018.09.049]
[260]
Huang, K.; Zhang, X.M.; Li, Y.X.; Wu, Y.T.; Hu, X.B. Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids. J. Membr. Sci., 2014, 471, 227-236.
[http://dx.doi.org/10.1016/j.memsci.2014.08.022]
[261]
Akhmetshina, A.I.; Yanbikov, N.R.; Atlaskin, A.A.; Trubyanov, M.M.; Mechergui, A.; Otvagina, K.V.; Razov, E.N.; Mochalova, A.E.; Vorotyntsev, I.V. Acidic gases separation from gas mixtures on the supported ionic liquid membranes providing the facilitated and solution-diffusion transport mechanisms. Membranes (Basel), 2019, 9(1), 9.
[http://dx.doi.org/10.3390/membranes9010009] [PMID: 30621273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy