Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Impact of Heavy Metals on Host Cells: Special Focus on Nickel-Mediated Pathologies and Novel Interventional Approaches

Author(s): Thea Magrone*, Matteo A. Russo and Emilio Jirillo

Volume 20, Issue 7, 2020

Page: [1041 - 1058] Pages: 18

DOI: 10.2174/1871530319666191129120253

Price: $65

Abstract

Background: Heavy metals [arsenic, aluminium, cadmium, chromium, cobalt, lead, nickel (Ni), palladium and titanium] are environmental contaminants able to impact with host human cells, thus, leading to severe damage.

Objective: In this review, the detrimental effects of several heavy metals on human organs will be discussed and special emphasis will be placed on Ni. In particular, Ni is able to interact with Toll-like receptor-4 on immune and non-immune cells, thus, triggering the cascade of pro-inflammatory cytokines. Then, inflammatory and allergic reactions mediated by Ni will be illustrated within different organs, even including the central nervous system, airways and the gastrointestinal system.

Discussion: Different therapeutic strategies have been adopted to mitigate Ni-induced inflammatoryallergic reactions. In this context, the ability of polyphenols to counteract the inflammatory pathway induced by Ni on peripheral blood leukocytes from Ni-sensitized patients will be outlined. In particular, polyphenols are able to decrease serum levels of interleukin (IL)-17, while increasing levels of IL- 10. These data suggest that the equilibrium between T regulatory cells and T helper 17 cells is recovered with IL-10 acting as an anti-inflammatory cytokine. In the same context, polyphenols reduced elevated serum levels of nitric oxide, thus, expressing their anti-oxidant potential. Finally, the carcinogenic potential of heavy metals, even including Ni, will be highlighted.

Conclusion: Heavy metals, particularly Ni, are spread in the environment. Nutritional approaches seem to represent a novel option in the treatment of Ni-induced damage and, among them, polyphenols should be taken into consideration for their anti-oxidant and anti-inflammatory activities.

Keywords: Allergy, carcinogenesis, cellular and molecular rehabilitation, heavy metals, inflammation, immune response, nickel, polyphenols.

Graphical Abstract
[1]
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp Suppl, 2012, 101, 133-164.
[PMID: 22945569]
[2]
Silva, S.; Silva, P.; Oliveira, H.; Gaivão, I.; Matos, M.; Pinto-Carnide, O.; Santos, C. Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiol. Biochem., 2017, 112, 109-116.
[http://dx.doi.org/10.1016/j.plaphy.2016.12.026] [PMID: 28064118]
[3]
Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol., 2008, 82(8), 493-512.
[http://dx.doi.org/10.1007/s00204-008-0313-y] [PMID: 18496671]
[4]
Kopp, B.; Zalko, D.; Audebert, M. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines. Environ. Mol. Mutagen., 2018, 59(3), 202-210.
[http://dx.doi.org/10.1002/em.22157] [PMID: 29150881]
[5]
Guo, L.; Dial, S.; Shi, L.; Branham, W.; Liu, J.; Fang, J.L.; Green, B.; Deng, H.; Kaput, J.; Ning, B. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab. Dispos., 2011, 39(3), 528-538.
[http://dx.doi.org/10.1124/dmd.110.035873] [PMID: 21149542]
[6]
Graillot, V.; Takakura, N.; Hegarat, L.L.; Fessard, V.; Audebert, M.; Cravedi, J.P. Genotoxicity of pesticide mixtures present in the diet of the French population. Environ. Mol. Mutagen., 2012, 53(3), 173-184.
[http://dx.doi.org/10.1002/em.21676] [PMID: 22389207]
[7]
Graillot, V.; Tomasetig, F.; Cravedi, J.P.; Audebert, M. Evidence of the in vitro genotoxicity of methyl-pyrazole pesticides in human cells. Mutat. Res., 2012, 748(1-2), 8-16.
[http://dx.doi.org/10.1016/j.mrgentox.2012.05.014] [PMID: 22743356]
[8]
Khoury, L.; Zalko, D.; Audebert, M. Complementarity of phosphorylated histones H2AX and H3 quantification in different cell lines for genotoxicity screening. Arch. Toxicol., 2016, 90(8), 1983-1995.
[http://dx.doi.org/10.1007/s00204-015-1599-1] [PMID: 26404763]
[9]
Khoury, L.; Zalko, D.; Audebert, M. Evaluation of four human cell lines with distinct biotransformation properties for genotoxic screening. Mutagenesis, 2016, 31(1), 83-96.
[PMID: 26243742]
[10]
Khoury, L.; Zalko, D.; Audebert, M. Validation of high-throughput genotoxicity assay screening using γH2AX in-cell western assay on HepG2 cells. Environ. Mol. Mutagen., 2013, 54(9), 737-746.
[http://dx.doi.org/10.1002/em.21817] [PMID: 24105934]
[11]
Kim, H.S.; Kim, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev., 2015, 20(4), 232-240.
[http://dx.doi.org/10.15430/JCP.2015.20.4.232] [PMID: 26734585]
[12]
Morcillo, P.; Esteban, M.A.; Cuesta, A. Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere, 2016, 144, 225-233.
[http://dx.doi.org/10.1016/j.chemosphere.2015.08.020] [PMID: 26363324]
[13]
Morales, M.E.; Derbes, R.S.; Ade, C.M.; Ortego, J.C.; Stark, J.; Deininger, P.L.; Roy-Engel, A.M. Heavy metal exposure influences double strand break DNA repair outcomes. PLoS One, 2016, 11(3) e0151367
[http://dx.doi.org/10.1371/journal.pone.0151367]] [PMID: 26966913]
[14]
Martinez, V.D.; Vucic, E.A.; Adonis, M.; Gil, L.; Lam, W.L. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol. Biol. Int., 2011, 2011718974
[http://dx.doi.org/10.4061/2011/718974]] [PMID: 22091411]
[15]
Faita, F.; Cori, L.; Bianchi, F.; Andreassi, M.G. Arsenic-induced genotoxicity and genetic susceptibility to arsenic-related pathologies. Int. J. Environ. Res. Public Health, 2013, 10(4), 1527-1546.
[http://dx.doi.org/10.3390/ijerph10041527] [PMID: 23583964]
[16]
Cullen, J.T.; Maldonado, M.T. Biogeochemistry of cadmium and its release to the environment. Met. Ions Life Sci., 2013, 11, 31-62.
[http://dx.doi.org/10.1007/978-94-007-5179-8_2] [PMID: 23430769]
[17]
Celik, A.; Cömelekoğlu, U.; Yalin, S. A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis. Toxicol. Ind. Health, 2005, 21(10), 243-248.
[http://dx.doi.org/10.1191/0748233705th237oa] [PMID: 16463956]
[18]
Skipper, A.; Sims, J.N.; Yedjou, C.G.; Tchounwou, P.B. Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. Int. J. Environ. Res. Public Health, 2016, 13(1) E88
[http://dx.doi.org/10.3390/ijerph13010088]] [PMID: 26729151]
[19]
Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Aaseth, J. High content of lead is associated with the softness of drinking water and raised cardiovascular morbidity: A review. Biol. Trace Elem. Res., 2018, 186(2), 384-394.
[http://dx.doi.org/10.1007/s12011-018-1336-8] [PMID: 29656350]
[20]
Stansfield, K.H.; Ruby, K.N.; Soares, B.D.; McGlothan, J.L.; Liu, X.; Guilarte, T.R. Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia. Transl. Psychiatry, 2015. 5e522
[http://dx.doi.org/10.1038/tp.2014.147 ] [PMID: 25756805]
[21]
Smith, M.R.; Yevoo, P.; Sadahiro, M.; Austin, C.; Amarasiriwardena, C.; Awawda, M.; Arora, M.; Dudley, J.T.; Morishita, H. Integrative bioinformatics identifies postnatal lead (Pb) exposure disrupts developmental cortical plasticity. Sci. Rep., 2018, 8(1), 16388.
[http://dx.doi.org/10.1038/s41598-018-34592-4] [PMID: 30401819]
[22]
Willhite, C.C.; Ball, G.L.; McLellan, C.J. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit. Rev. Toxicol., 2012, 42(5), 358-442.
[http://dx.doi.org/10.3109/10408444.2012.674101] [PMID: 22512666]
[23]
Goiset, A.; Darrigade, A.S.; Labrèze, C.; Boralevi, F.; Milpied, B. Aluminium sensitization in a French paediatric patch test population. Contact Dermat., 2018, 79(6), 382-383.
[http://dx.doi.org/10.1111/cod.13087] [PMID: 30123966]
[24]
Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007- 2017). Antibiotics (Basel), 2018, 7(4) E93
[http://dx.doi.org/10.3390/antibiotics7040093]] [PMID: 30373130]
[25]
Hayashi, Y.; Engelmann, P.; Foldbjerg, R.; Szabó, M.; Somogyi, I.; Pollák, E.; Molnár, L.; Autrup, H.; Sutherland, D.S.; Scott-Fordsmand, J.; Heckmann, L.H. Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ. Sci. Technol., 2012, 46(7), 4166-4173.
[http://dx.doi.org/10.1021/es3000905] [PMID: 22432789]
[26]
Crosera, M.; Mauro, M.; Bovenzi, M.; Adami, G.; Baracchini, E.; Maina, G.; Larese Filon, F. In vitro permeation of palladium powders through intact and damaged human skin. Toxicol. Lett., 2018, 287, 108-112.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.009] [PMID: 29421332]
[27]
Marsidi, N.; Beijnen, J.H.; van Zuuren, E.J. Palladium-induced granulomas analysed with inductively coupled plasma mass spectrometry. Contact Dermat., 2018, 79(1), 41-42.
[http://dx.doi.org/10.1111/cod.12979] [PMID: 29492982]
[28]
Faurschou, A.; Menné, T.; Johansen, J.D.; Thyssen, J.P. Metal allergen of the 21st century--a review on exposure, epidemiology and clinical manifestations of palladium allergy. Contact Dermat., 2011, 64(4), 185-195.
[http://dx.doi.org/10.1111/j.1600-0536.2011.01878.x] [PMID: 21392026]
[29]
Chow, M.; Botto, N.; Maibach, H. Allergic contact dermatitis caused by palladium-containing dental implants. Dermatitis, 2014, 25(5), 273-274.
[http://dx.doi.org/10.1097/DER.0000000000000073] [PMID: 25207689]
[30]
Thijs, L.; Deraedt, K.; Goossens, A. Granuloma possibly induced by palladium after ear piercing. Dermatitis, 2008, 19(5), E26-E29.
[http://dx.doi.org/10.2310/6620.2008.07045] [PMID: 18845107]
[31]
Fernández-Aceñero, M.J.; Fernández-López, P. Granulomatous contact dermatitis to palladium following ear piercing. Indian J. Dermatol. Venereol. Leprol., 2008, 74(6), 651-652.
[http://dx.doi.org/10.4103/0378-6323.45115] [PMID: 19171996]
[32]
Durosaro, O.; el-Azhary, R.A. A 10-year retrospective study on palladium sensitivity. Dermatitis, 2009, 20(4), 208-213.
[http://dx.doi.org/10.2310/6620.2009.08108] [PMID: 19804697]
[33]
Forte, G.; Petrucci, F.; Bocca, B. Metal allergens of growing significance: epidemiology, immunotoxicology, strategies for testing and prevention. Inflamm. Allergy Drug Targets, 2008, 7(3), 145-162.
[http://dx.doi.org/10.2174/187152808785748146] [PMID: 18782021]
[34]
Muris, J.; Goossens, A.; Gonçalo, M.; Bircher, A.J.; Giménez-Arnau, A.; Foti, C.; Rustemeyer, T.; Feilzer, A.J.; Kleverlaan, C.J. Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys. Contact Dermat., 2015, 72(5), 286-296.
[http://dx.doi.org/10.1111/cod.12327] [PMID: 25580524]
[35]
Reale, M.; Vianale, G.; Lotti, L.V.; Mariani-Costantini, R.; Perconti, S.; Cristaudo, A.; Leopold, K.; Antonucci, A.; Di Giampaolo, L.; Iavicoli, I.; Di Gioacchino, M.; Boscolo, P. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of palladium-sensitized women. J. Occup. Environ. Med., 2011, 53(9), 1054-1060.
[http://dx.doi.org/10.1097/JOM.0b013e318228115e] [PMID: 21866053]
[36]
Joutey, N.T.; Sayel, H.; Bahafid, W.; El Ghachtouli, N. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. Toxicol., 2015, 233, 45-69.
[http://dx.doi.org/10.1007/978-3-319-10479-9_2] [PMID: 25367133]
[37]
Seishima, M.; Oyama, Z.; Oda, M. Cellular phone dermatitis with chromate allergy. Dermatology (Basel), 2003, 207(1), 48-50.
[http://dx.doi.org/10.1159/000070941] [PMID: 12835548]
[38]
Tan, S.; Nixon, R. Allergic contact dermatitis caused by chromium in a mobile phone. Contact Dermat., 2011, 65(4), 246-247.
[http://dx.doi.org/10.1111/j.1600-0536.2011.01955.x] [PMID: 21906076]
[39]
Bilhan, H.; Bural, C.; Geckili, O. Titanium hypersensitivity. A hidden threat for dental implant patients? N. Y. State Dent. J., 2013, 79(4), 38-43.
[PMID: 24027897]
[40]
Pacheco, K.A. Allergy to Surgical Implants. Clin. Rev. Allergy Immunol., 2019, 56(1), 72-85.
[http://dx.doi.org/10.1007/s12016-018-8707-y] [PMID: 30220068]
[41]
Hamann, D.; Thyssen, J.P.; Hamann, C.R.; Hamann, C.; Menné, T.; Johansen, J.D.; Spiewak, R.; Maibach, H.; Lundgren, L.; Lidén, C. Jewellery: alloy composition and release of nickel, cobalt and lead assessed with the EU synthetic sweat method. Contact Dermat., 2015, 73(4), 231-238.
[http://dx.doi.org/10.1111/cod.12434] [PMID: 26230312]
[42]
Grande, F.; Tucci, P. Titanium dioxide nanoparticles: A risk for human health? Mini Rev. Med. Chem., 2016, 16(9), 762-769.
[http://dx.doi.org/10.2174/1389557516666160321114341] [PMID: 26996620]
[43]
Thomas, P.; Bandl, W.D.; Maier, S.; Summer, B.; Przybilla, B. Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyperresponsiveness in vitro: case report and review of the literature. Contact Dermat., 2006, 55(4), 199-202.
[http://dx.doi.org/10.1111/j.1600-0536.2006.00931.x] [PMID: 16958916]
[44]
Egusa, H.; Ko, N.; Shimazu, T.; Yatani, H. Suspected association of an allergic reaction with titanium dental implants: a clinical report. J. Prosthet. Dent., 2008, 100(5), 344-347.
[http://dx.doi.org/10.1016/S0022-3913(08)60233-4] [PMID: 18992567]
[45]
Siddiqi, A.; Payne, A.G.; Zafar, S. Bisphosphonate-induced osteonecrosis of the jaw: A medical enigma? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2009, 108(3), e1-e8.
[http://dx.doi.org/10.1016/j.tripleo.2009.04.027] [PMID: 19570696]
[46]
Hosoki, M.; Nishigawa, K.; Miyamoto, Y.; Ohe, G.; Matsuka, Y. Allergic contact dermatitis caused by titanium screws and dental implants. J. Prosthodont. Res., 2016, 60(3), 213-219.
[http://dx.doi.org/10.1016/j.jpor.2015.12.004] [PMID: 26774509]
[47]
Hosoki, M.; Nishigawa, K.; Tajima, T.; Ueda, M.; Matsuka, Y. Cross-sectional observational study exploring clinical risk of titanium allergy caused by dental implants. J. Prosthodont. Res., 2018, 62(4), 426-431.
[http://dx.doi.org/10.1016/j.jpor.2018.03.003] [PMID: 29673741]
[48]
Larsen, S.T.; Roursgaard, M.; Jensen, K.A.; Nielsen, G.D. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin. Pharmacol. Toxicol., 2010, 106(2), 114-117.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00473.x] [PMID: 19874288]
[49]
Yazdi, A.S.; Guarda, G.; Riteau, N.; Drexler, S.K.; Tardivel, A.; Couillin, I.; Tschopp, J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA, 2010, 107(45), 19449-19454.
[http://dx.doi.org/10.1073/pnas.1008155107] [PMID: 20974980]
[50]
Yanagisawa, R.; Takano, H.; Inoue, K.; Koike, E.; Kamachi, T.; Sadakane, K.; Ichinose, T. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp. Biol. Med. (Maywood), 2009, 234(3), 314-322.
[http://dx.doi.org/10.3181/0810-RM-304] [PMID: 19144875]
[51]
Wang, J.; Li, N.; Zheng, L.; Wang, S.; Wang, Y.; Zhao, X.; Duan, Y.; Cui, Y.; Zhou, M.; Cai, J.; Gong, S.; Wang, H.; Hong, F. P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol. Trace Elem. Res., 2011, 140(2), 186-197.
[http://dx.doi.org/10.1007/s12011-010-8687-0] [PMID: 20422311]
[52]
Sheng, L.; Wang, L.; Sang, X.; Zhao, X.; Hong, J.; Cheng, S.; Yu, X.; Liu, D.; Xu, B.; Hu, R.; Sun, Q.; Cheng, J.; Cheng, Z.; Gui, S.; Hong, F. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology. J. Hazard. Mater., 2014, 278, 180-188.
[http://dx.doi.org/10.1016/j.jhazmat.2014.06.005] [PMID: 24968254]
[53]
Park, M.V.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 2011, 32(36), 9810-9817.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.085] [PMID: 21944826]
[54]
Liu, R.; Zhang, X.; Pu, Y.; Yin, L.; Li, Y.; Zhang, X.; Liang, G.; Li, X.; Zhang, J. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J. Nanosci. Nanotechnol., 2010, 10(8), 5161-5169.
[http://dx.doi.org/10.1166/jnn.2010.2420] [PMID: 21125865]
[55]
Giovanni, M.; Yue, J.; Zhang, L.; Xie, J.; Ong, C.N.; Leong, D.T. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. J. Hazard. Mater., 2015, 297, 146-152.
[http://dx.doi.org/10.1016/j.jhazmat.2015.04.081] [PMID: 25956645]
[56]
Lozano-Fernández, T.; Ballester-Antxordoki, L.; Pérez-Temprano, N.; Rojas, E.; Sanz, D.; Iglesias-Gaspar, M.; Moya, S.; González-Fernández, Á.; Rey, M. Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine (Lond.), 2014, 10(6), 1301-1310.
[http://dx.doi.org/10.1016/j.nano.2014.03.007] [PMID: 24650882]
[57]
Romoser, A.A.; Figueroa, D.E.; Sooresh, A.; Scribner, K.; Chen, P.L.; Porter, W.; Criscitiello, M.F.; Sayes, C.M. Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicol. Lett., 2012, 210(3), 293-301.
[http://dx.doi.org/10.1016/j.toxlet.2012.01.022] [PMID: 22342292]
[58]
Diepgen, T.L.; Ofenloch, R.F.; Bruze, M.; Bertuccio, P.; Cazzaniga, S.; Coenraads, P.J.; Elsner, P.; Goncalo, M.; Svensson, Å.; Naldi, L. Prevalence of contact allergy in the general population in different European regions. Br. J. Dermatol., 2016, 174(2), 319-329.
[http://dx.doi.org/10.1111/bjd.14167] [PMID: 26370659]
[59]
Lagrelius, M.; Wahlgren, C.F.; Matura, M.; Kull, I.; Lidén, C. High prevalence of contact allergy in adolescence: Results from the population-based BAMSE birth cohort. Contact Dermat., 2016, 74(1), 44-51.
[http://dx.doi.org/10.1111/cod.12492] [PMID: 26538115]
[60]
Fischer, L.A.; Menné, T.; Voelund, A.; Johansen, J.D. Can exposure limitations for well-known contact allergens be simplified? An analysis of dose-response patch test data. Contact Dermat., 2011, 64(6), 337-342.
[http://dx.doi.org/10.1111/j.1600-0536.2011.01876.x] [PMID: 21535006]
[61]
Julander, A.; Skare, L.; Mulder, M.; Grandér, M.; Vahter, M.; Lidén, C. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components. Ann. Occup. Hyg., 2010, 54(3), 340-350.
[PMID: 20150401]
[62]
Carino, M.; Romita, P.; Foti, C. Allergy-related disorders in the construction industry. ISRN Prev. Med., 2013, 2013864679
[http://dx.doi.org/10.5402/2013/864679] [PMID: 24971193]
[63]
Thyssen, J.P. Cobalt sensitization and dermatitis: considerations for the clinician. Dermatitis, 2012, 23(5), 203-209.
[http://dx.doi.org/10.1097/DER.0b013e31826e4591] [PMID: 23010826]
[64]
Thyssen, J.P.; Jellesen, M.S.; Menné, T.; Lidén, C.; Julander, A.; Møller, P.; Johansen, J.D. Cobalt release from inexpensive jewellery: Has the use of cobalt replaced nickel following regulatory intervention? Contact Dermat., 2010, 63(2), 70-76.
[http://dx.doi.org/10.1111/j.1600-0536.2010.01752.x] [PMID: 20629672]
[65]
Thyssen, J.P.; Jensen, P.; Lidén, C.; Julander, A.; Jellesen, M.S.; Menné, T.; Johansen, J.D. Assessment of nickel and cobalt release from 200 unused hand-held work tools for sale in Denmark - Sources of occupational metal contact dermatitis? Sci. Total Environ., 2011, 409(22), 4663-4666.
[http://dx.doi.org/10.1016/j.scitotenv.2011.07.056] [PMID: 21889189]
[66]
Hamann, D.; Hamann, C.; Li, L.F.; Xiang, H.; Hamann, K.; Maibach, H.; Taylor, J.S.; Thyssen, J.P. The Sino-American belt study: Nickel and cobalt exposure, epidemiology, and clinical considerations. Dermatitis, 2012, 23(3), 117-123.
[http://dx.doi.org/10.1097/DER.0b013e318250c354] [PMID: 22653172]
[67]
Hamann, D.; Hamann, C.R.; Thyssen, J.P. The impact of common metal allergens in daily devices. Curr. Opin. Allergy Clin. Immunol., 2013, 13(5), 525-530.
[http://dx.doi.org/10.1097/ACI.0b013e32836457bf] [PMID: 23974681]
[68]
Uter, W.; Schmid, M.; Schmidt, O.; Bock, C.; Wolter, J. Cobalt release from earrings and piercing jewellery - analytical results of a German survey. Contact Dermat., 2014, 70(6), 369-375.
[http://dx.doi.org/10.1111/cod.12227] [PMID: 24690041]
[69]
Thyssen, J.P.; Johansen, J.D.; Jellesen, M.S.; Møller, P.; Sloth, J.J.; Zachariae, C.; Menné, T. Consumer leather exposure: An unrecognized cause of cobalt sensitization. Contact Dermat., 2013, 69(5), 276-279.
[http://dx.doi.org/10.1111/cod.12101] [PMID: 24117739]
[70]
Hamann, C.; Hamann, D.; Hamann, K.K.; Thyssen, J.P. Cobalt release from inexpensive earrings from Thailand and China. Contact Dermat., 2011, 64(4), 238-240.
[http://dx.doi.org/10.1111/j.1600-0536.2010.01866.x] [PMID: 21392033]
[71]
Midander, K.; Hurtig, A.; Borg Tornberg, A.; Julander, A. Allergy risks with laptop computers - nickel and cobalt release. Contact Dermat., 2016, 74(6), 353-359.
[http://dx.doi.org/10.1111/cod.12525] [PMID: 27133625]
[72]
Bregnbak, D.; Thyssen, J.P.; Zachariae, C.; Menné, T.; Johansen, J.D. Association between cobalt allergy and dermatitis caused by leather articles--a questionnaire study. Contact Dermat., 2015, 72(2), 106-114.
[http://dx.doi.org/10.1111/cod.12319] [PMID: 25407465]
[73]
Walters, G.I.; Robertson, A.S.; Moore, V.C.; Burge, P.S. Cobalt asthma in metalworkers from an automotive engine valve manufacturer. Occup. Med. (Lond.), 2014, 64(5), 358-364.
[http://dx.doi.org/10.1093/occmed/kqu043] [PMID: 24727564]
[74]
Arrandale, V.H.; Liss, G.M.; Tarlo, S.M.; Pratt, M.D.; Sasseville, D.; Kudla, I.; Holness, D.L. Occupational contact allergens: Are they also associated with occupational asthma? Am. J. Ind. Med., 2012, 55(4), 353-360.
[http://dx.doi.org/10.1002/ajim.22015] [PMID: 22238032]
[75]
Adams, T.N.; Butt, Y.M.; Batra, K.; Glazer, C.S. Cobalt related interstitial lung disease. Respir. Med., 2017, 129, 91-97.
[http://dx.doi.org/10.1016/j.rmed.2017.06.008] [PMID: 28732841]
[76]
Packer, M. Cobalt cardiomyopathy: A critical reappraisal in light of a recent resurgence. Circ Heart Fail, 2016, 9(12) e003604
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.116.003604]] [PMID: 27852654]
[77]
Mauro, M.; Crosera, M.; Pelin, M.; Florio, C.; Bellomo, F.; Adami, G.; Apostoli, P.; De Palma, G.; Bovenzi, M.; Campanini, M.; Filon, F.L. Cobalt oxide nanoparticles: Behavior towards intact and impaired human skin and keratinocytes toxicity. Int. J. Environ. Res. Public Health, 2015, 12(7), 8263-8280.
[http://dx.doi.org/10.3390/ijerph120708263] [PMID: 26193294]
[78]
Klasson, M.; Lindberg, M.; Bryngelsson, I.L.; Arvidsson, H.; Pettersson, C.; Husby, B.; Westberg, H. Biological monitoring of dermal and air exposure to cobalt at a Swedish hard metal production plant: Does dermal exposure contribute to uptake? Contact Dermat., 2017, 77(4), 201-207.
[http://dx.doi.org/10.1111/cod.12790] [PMID: 28675438]
[79]
Gorman Ng, M.; Semple, S.; Cherrie, J.W.; Christopher, Y.; Northage, C.; Tielemans, E.; Veroughstraete, V.; Van Tongeren, M. The relationship between inadvertent ingestion and dermal exposure pathways: a new integrated conceptual model and a database of dermal and oral transfer efficiencies. Ann. Occup. Hyg., 2012, 56(9), 1000-1012.
[PMID: 22805749]
[80]
Zajdel, N.J.; Smith, W.A.; Taintor, A.R.; Jacob, S.E.; Olasz, E.B. Chemical tattoo treatment leading to systemic cobalt hypersensitivity. Skinmed, 2017, 15(3), 221-222.
[PMID: 28705288]
[81]
Stannard, L.; Doak, S.H.; Doherty, A.; Jenkins, G.J. Is nickel chloride really a non-genotoxic carcinogen? Basic Clin. Pharmacol. Toxicol., 2017, 121(Suppl. 3), 10-15.
[http://dx.doi.org/10.1111/bcpt.12689] [PMID: 27748567]
[82]
Sharma, A.D. Low nickel diet in dermatology. Indian J. Dermatol., 2013, 58(3), 240.
[http://dx.doi.org/10.4103/0019-5154.110846] [PMID: 23723488]
[83]
Schuttelaar, M.L.A.; Ofenloch, R.F.; Bruze, M.; Cazzaniga, S.; Elsner, P.; Gonçalo, M.; Naldi, L.; Svensson, Å.; Diepgen, T.L. Prevalence of contact allergy to metals in the European general population with a focus on nickel and piercings: The EDEN Fragrance Study. Contact Dermat., 2018, 79(1), 1-9.
[http://dx.doi.org/10.1111/cod.12983] [PMID: 29635802]
[84]
Chen, C.Y.; Lin, T.K.; Chang, Y.C.; Wang, Y.F.; Shyu, H.W.; Lin, K.H.; Chou, M.C. Nickel(II)-induced oxidative stress, apoptosis, G2/M arrest, and genotoxicity in normal rat kidney cells. J. Toxicol. Environ. Health A, 2010, 73(8), 529-539.
[http://dx.doi.org/10.1080/15287390903421250] [PMID: 20391133]
[85]
Lou, J.; Jin, L.; Wu, N.; Tan, Y.; Song, Y.; Gao, M.; Liu, K.; Zhang, X.; He, J. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds. Food Chem. Toxicol., 2013, 55, 533-540.
[http://dx.doi.org/10.1016/j.fct.2013.01.053] [PMID: 23410589]
[86]
Thyssen, J.P.; Menné, T.; Johansen, J.D. Identification of metallic items that caused nickel dermatitis in Danish patients. Contact Dermat., 2010, 63(3), 151-156.
[http://dx.doi.org/10.1111/j.1600-0536.2010.01767.x] [PMID: 20690938]
[87]
Darlenski, R.; Kazandjieva, J.; Pramatarov, K. The many faces of nickel allergy. Int. J. Dermatol., 2012, 51(5), 523-530.
[http://dx.doi.org/10.1111/j.1365-4632.2011.05233.x] [PMID: 22515577]
[88]
Ortiz, A.J.; Fernández, E.; Vicente, A.; Calvo, J.L.; Ortiz, C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage. Am. J. Orthod. Dentofacial Orthop., 2011, 140(3), e115-e122.
[http://dx.doi.org/10.1016/j.ajodo.2011.02.021] [PMID: 21889059]
[89]
Saghiri, M.A.; Orangi, J.; Asatourian, A.; Mehriar, P.; Sheibani, N. Effect of mobile phone use on metal ion release from fixed orthodontic appliances. Am. J. Orthod. Dentofacial Orthop., 2015, 147(6), 719-724.
[http://dx.doi.org/10.1016/j.ajodo.2015.01.023] [PMID: 26038076]
[90]
Nanjannawar, L.G.; Girme, T.S.; Agrawal, J.M.; Agrawal, M.S.; Fulari, S.G.; Shetti, S.S.; Kagi, V.A. Effect of mobile phone usage on nickel ions release and pH of saliva in patients undergoing fixed orthodontic treatment. J. Clin. Diagn. Res., 2017, 11(9), ZC84-ZC87.
[http://dx.doi.org/10.7860/JCDR/2017/27800.10679] [PMID: 29207841]
[91]
Saluja, S.S.; Davis, C.L.; Chong, T.A.; Powell, D.L. Contact Urticaria to Nickel: A Series of 11 Patients Who Were Prick Test Positive and Patch Test Negative to Nickel Sulfate 2.5% and 5.0. Dermatitis, 2016, 27(5), 282-287.
[http://dx.doi.org/10.1097/DER.0000000000000211] [PMID: 27649351]
[92]
Çifci, N. Nickel Sensitivity in Rosacea Patients: A Prospective case control study. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(3), 367-372.
[http://dx.doi.org/10.2174/1871530319666190101120437] [PMID: 30621570]
[93]
Magrone, T.; Candore, G.; Caruso, C.; Jirillo, E.; Covelli, V. Polyphenols from red wine modulate immune responsiveness: Biological and clinical significance. Curr. Pharm. Des., 2008, 14(26), 2733-2748.
[http://dx.doi.org/10.2174/138161208786264098] [PMID: 18991692]
[94]
Magrone, T.; Jirillo, E. Potential application of dietary polyphenols from red wine to attaining healthy ageing. Curr. Top. Med. Chem., 2011, 11(14), 1780-1796.
[http://dx.doi.org/10.2174/156802611796235116] [PMID: 21506931]
[95]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[96]
Magrone, T.; Jirillo, E. Polyphenols from red wine are potent modulators of innate and adaptive immune responsiveness. Proc. Nutr. Soc., 2010, 69(3), 279-285.
[http://dx.doi.org/10.1017/S0029665110000121] [PMID: 20522276]
[97]
Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. contribution of red wine consumption to human health protection. Molecules, 2018, 23(7) E1684
[http://dx.doi.org/10.3390/molecules23071684]] [PMID: 29997312]
[98]
Amor, S.; Châlons, P.; Aires, V.; Delmas, D. Polyphenol extracts from red wine and grapevine: Potential effects on cancers. Diseases, 2018, 6(4) E106
[http://dx.doi.org/10.3390/diseases6040106]] [PMID: 30453669]
[99]
Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem., 2019, 67(4), 1029-1043.
[http://dx.doi.org/10.1021/acs.jafc.8b06146] [PMID: 30653316]
[100]
Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients, 2018, 11(1) E39
[http://dx.doi.org/10.3390/nu11010039]] [PMID: 30585192]
[101]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive Leaf Extracts Act as Modulators of the Human Immune Response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 85-93.
[PMID: 29149822]
[102]
Serreli, G.; Deiana, M. Biological relevance of extra virgin olive oil polyphenols metabolites. Antioxidants, 2018, 7(12) E170
[http://dx.doi.org/10.3390/antiox7120170]] [PMID: 30469520]
[103]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune profile of obese people and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017. 20179210862
[PMID: 28243360]
[104]
Magrone, T.; Jirillo, E. Effects of Polyphenols on InflammatoryAllergic Conditions: Experimental and Clinical Evidences Polyphenols: Prevention and Treatment of Human Disease. Eds. Elsevier, 2018; 2, pp. 253-59. ISBN 978-0-12-813008-7
[105]
Marzulli, G.; Magrone, T.; Vonghia, L.; Kaneko, M.; Takimoto, H.; Kumazawa, Y.; Jirillo, E. Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis vinifera fermented grape marc (FGM). Curr. Pharm. Des., 2014, 20(6), 864-868.
[http://dx.doi.org/10.2174/138161282006140220120640] [PMID: 23701568]
[106]
Magrone, T.; Jirillo, E. Influence of polyphenols on allergic immune reactions: mechanisms of action. Proc. Nutr. Soc., 2012, 71(2), 316-321.
[http://dx.doi.org/10.1017/S0029665112000109] [PMID: 22369886]
[107]
Magrone, T.; Panaro, M.A.; Jirillo, E.; Covelli, V. Molecular effects elicited in vitro by red wine on human healthy peripheral blood mononuclear cells: potential therapeutical application of polyphenols to diet-related chronic diseases. Curr. Pharm. Des., 2008, 14(26), 2758-2766.
[http://dx.doi.org/10.2174/138161208786264179] [PMID: 18991694]
[108]
Schmidt, M.; Raghavan, B.; Müller, V.; Vogl, T.; Fejer, G.; Tchaptchet, S.; Keck, S.; Kalis, C.; Nielsen, P.J.; Galanos, C.; Roth, J.; Skerra, A.; Martin, S.F.; Freudenberg, M.A.; Goebeler, M. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol., 2010, 11(9), 814-819.
[http://dx.doi.org/10.1038/ni.1919] [PMID: 20711192]
[109]
Schmidt, M.; Goebeler, M. Nickel allergies: paying the Toll for innate immunity. J. Mol. Med. (Berl.), 2011, 89(10), 961-970.
[http://dx.doi.org/10.1007/s00109-011-0780-0] [PMID: 21698426]
[110]
Peana, M.; Zdyb, K.; Medici, S.; Pelucelli, A.; Simula, G.; Gumienna-Kontecka, E.; Zoroddu, M.A. Ni(II) interaction with a peptide model of the human TLR4 ectodomain. J. Trace Elem. Med. Biol., 2017, 44, 151-160.
[http://dx.doi.org/10.1016/j.jtemb.2017.07.006] [PMID: 28965571]
[111]
Kaplan, D.H.; Igyártó, B.Z.; Gaspari, A.A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol., 2012, 12(2), 114-124.
[http://dx.doi.org/10.1038/nri3150] [PMID: 22240625]
[112]
Magrone, T.; Romita, P.; Verni, P.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E.; Foti, C. In vitro Effects of Polyphenols on the Peripheral Immune Responses in Nickel-sensitized Patients. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(4), 324-331.
[http://dx.doi.org/10.2174/1871530317666171003161314] [PMID: 28982342]
[113]
Magrone, T.; Tafaro, A.; Jirillo, F.; Panaro, M.A.; Cuzzuol, P.; Cuzzuol, A.C.; Pugliese, V.; Amati, L.; Jirillo, E.; Covelli, V. Red wine consumption and prevention of atherosclerosis: an in vitro model using human peripheral blood mononuclear cells. Curr. Pharm. Des., 2007, 13(36), 3718-3725.
[http://dx.doi.org/10.2174/138161207783018581] [PMID: 18220811]
[114]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In Vitro Effects of Nickel on Healthy Non-Allergic Peripheral Blood Mononuclear Cells. The Role of Red Grape Polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(2), 166-173.
[http://dx.doi.org/10.2174/1871530317666170713145350] [PMID: 28707594]
[115]
Di Gioacchino, M.; Ricciardi, L.; De Pità, O.; Minelli, M.; Patella, V.; Voltolini, S.; Di Rienzo, V.; Braga, M.; Ballone, E.; Mangifesta, R.; Schiavino, D. Nickel oral hyposensitization in patients with systemic nickel allergy syndrome. Ann. Med., 2014, 46(1), 31-37.
[http://dx.doi.org/10.3109/07853890.2013.861158] [PMID: 24256166]
[116]
Watanabe, M.; Masieri, S.; Costantini, D.; Tozzi, R.; De Giorgi, F.; Gangitano, E.; Tuccinardi, D.; Poggiogalle, E.; Mariani, S.; Basciani, S.; Petrangeli, E.; Gnessi, L.; Lubrano, C. Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals. PLoS One, 2018, 13(8) e0202683
[http://dx.doi.org/10.1371/journal.pone.0202683] [PMID: 30153310]
[117]
Mulrooney, S.B.; Hausinger, R.P. Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev., 2003, 27(2-3), 239-261.
[http://dx.doi.org/10.1016/S0168-6445(03)00042-1] [PMID: 12829270]
[118]
Remy, L.; Carrière, M.; Derré-Bobillot, A.; Martini, C.; Sanguinetti, M.; Borezée-Durant, E. The Staphylococcus aureus Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Mol. Microbiol., 2013, 87(4), 730-743.
[http://dx.doi.org/10.1111/mmi.12126] [PMID: 23279021]
[119]
Hiron, A.; Posteraro, B.; Carrière, M.; Remy, L.; Delporte, C.; La Sorda, M.; Sanguinetti, M.; Juillard, V.; Borezée-Durant, E. A nickel ABC-transporter of Staphylococcus aureus is involved in urinary tract infection. Mol. Microbiol., 2010, 77(5), 1246-1260.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07287.x] [PMID: 20662775]
[120]
Hong, S.W.; Kim, M.R.; Lee, E.Y.; Kim, J.H.; Kim, Y.S.; Jeon, S.G.; Yang, J.M.; Lee, B.J.; Pyun, B.Y.; Gho, Y.S.; Kim, Y.K. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy, 2011, 66(3), 351-359.
[http://dx.doi.org/10.1111/j.1398-9995.2010.02483.x] [PMID: 20831718]
[121]
Oranje, A.P. Practical issues on interpretation of scoring atopic dermatitis: SCORAD Index, objective SCORAD, patient-oriented SCORAD and Three-Item Severity score. Curr. Probl. Dermatol., 2011, 41, 149-155.
[http://dx.doi.org/10.1159/000323308] [PMID: 21576955]
[122]
Falsafi-Amin, H.; Holst, M.; Lundeberg, L. Early expression of interleukin-2 mRNA by peripheral blood mononuclear cells isolated from nickel-allergic subjects and subsequently exposed to nickel in vitro. Immunopharmacol. Immunotoxicol., 2008, 30(2), 227-234.
[http://dx.doi.org/10.1080/08923970801948960] [PMID: 18569080]
[123]
Bogdali, A.M.; Grazyna, A.; Wojciech, D.; Aleksander, O.; Anna, B.; Andrzej, K.; Zofia, M.; Krystyna, O. Nickel allergy and relationship with Staphylococcus aureus in atopic dermatitis. J. Trace Elem. Med. Biol., 2016, 33, 1-7.
[http://dx.doi.org/10.1016/j.jtemb.2015.06.009] [PMID: 26653736]
[124]
Boguniewicz, M.; Leung, D.Y. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol. Rev., 2011, 242(1), 233-246.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01027.x] [PMID: 21682749]
[125]
Thierse, H.J.; Moulon, C.; Allespach, Y.; Zimmermann, B.; Doetze, A.; Kuppig, S.; Wild, D.; Herberg, F.; Weltzien, H.U. Metal-protein complex-mediated transport and delivery of Ni2+ to TCR/MHC contact sites in nickel-specific human T cell activation. J. Immunol., 2004, 172(3), 1926-1934.
[http://dx.doi.org/10.4049/jimmunol.172.3.1926] [PMID: 14734778]
[126]
Saline, M.; Rödström, K.E.; Fischer, G.; Orekhov, V.Y.; Karlsson, B.G.; Lindkvist-Petersson, K. The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nat. Commun., 2010, 1, 119.
[http://dx.doi.org/10.1038/ncomms1117] [PMID: 21081917]
[127]
Busse, D.; de la Rosa, M.; Hobiger, K.; Thurley, K.; Flossdorf, M.; Scheffold, A.; Höfer, T. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. USA, 2010, 107(7), 3058-3063.
[http://dx.doi.org/10.1073/pnas.0812851107] [PMID: 20133667]
[128]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[129]
Gulati, A.; Kaur, D.; Krishna Prasad, G.V.R.; Mukhopadhaya, A. PRR function of innate immune receptors in recognition of bacteria or bacterial ligands. Adv. Exp. Med. Biol., 2018, 1112, 255-280.
[http://dx.doi.org/10.1007/978-981-13-3065-0_18] [PMID: 30637703]
[130]
Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[131]
Brown, J.; Wang, H.; Hajishengallis, G.N.; Martin, M. TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res., 2011, 90(4), 417-427.
[http://dx.doi.org/10.1177/0022034510381264] [PMID: 20940366]
[132]
Hayden, M.S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev., 2004, 18(18), 2195-2224.
[http://dx.doi.org/10.1101/gad.1228704] [PMID: 15371334]
[133]
Li, X.; Zhong, F. Nickel induces interleukin-1β secretion via the NLRP3-ASC-caspase-1 pathway. Inflammation, 2014, 37(2), 457-466.
[http://dx.doi.org/10.1007/s10753-013-9759-z] [PMID: 24158569]
[134]
Raghavan, B.; Martin, S.F.; Esser, P.R.; Goebeler, M.; Schmidt, M. Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep., 2012, 13(12), 1109-1115.
[http://dx.doi.org/10.1038/embor.2012.155] [PMID: 23059983]
[135]
Alinaghi, F.; Bennike, N.H.; Egeberg, A.; Thyssen, J.P.; Johansen, J.D. Prevalence of contact allergy in the general population: A systematic review and meta-analysis. Contact Dermat., 2019, 80(2), 77-85.
[http://dx.doi.org/10.1111/cod.13119] [PMID: 30370565]
[136]
Bonefeld, C.M.; Nielsen, M.M.; Vennegaard, M.T.; Johansen, J.D.; Geisler, C.; Thyssen, J.P. Nickel acts as an adjuvant during cobalt sensitization. Exp. Dermatol., 2015, 24(3), 229-231.
[http://dx.doi.org/10.1111/exd.12634] [PMID: 25580744]
[137]
Ermolli, M.; Menné, C.; Pozzi, G.; Serra, M.A.; Clerici, L.A. Nickel, cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes. Toxicology, 2001, 159(1-2), 23-31.
[http://dx.doi.org/10.1016/S0300-483X(00)00373-5] [PMID: 11250052]
[138]
Esser, P.R.; Wölfle, U.; Dürr, C.; von Loewenich, F.D.; Schempp, C.M.; Freudenberg, M.A.; Jakob, T.; Martin, S.F. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PLoS One, 2012, 7(7) e41340
[http://dx.doi.org/10.1371/journal.pone.0041340]] [PMID: 22848468]
[139]
Thyssen, J.P.; Linneberg, A.; Ross-Hansen, K.; Carlsen, B.C.; Meldgaard, M.; Szecsi, P.B.; Stender, S.; Menné, T.; Johansen, J.D. Filaggrin mutations are strongly associated with contact sensitization in individuals with dermatitis. Contact Dermat., 2013, 68(5), 273-276.
[http://dx.doi.org/10.1111/cod.12021] [PMID: 23343419]
[140]
Levin, J.; Friedlander, S.F.; Del Rosso, J.Q. Atopic dermatitis and the stratum corneum: Part 1: the role of filaggrin in the stratum corneum barrier and atopic skin. J. Clin. Aesthet. Dermatol., 2013, 6(10), 16-22.
[PMID: 24155988]
[141]
Thyssen, J.P.; Ross-Hansen, K.; Johansen, J.D.; Zachariae, C.; Carlsen, B.C.; Linneberg, A.; Bisgaard, H.; Carson, C.G.; Nielsen, N.H.; Meldgaard, M.; Szecsi, P.B.; Stender, S.; Menné, T. Filaggrin loss-of-function mutation R501X and 2282del4 carrier status is associated with fissured skin on the hands: results from a cross-sectional population study. Br. J. Dermatol., 2012, 166(1), 46-53.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10530.x] [PMID: 21777221]
[142]
Deleuran, M.; Hvid, M.; Kemp, K.; Christensen, G.B.; Deleuran, B.; Vestergaard, C. IL-25 induces both inflammation and skin barrier dysfunction in atopic dermatitis. Chem. Immunol. Allergy, 2012, 96, 45-49.
[http://dx.doi.org/10.1159/000331871] [PMID: 22433370]
[143]
Gutowska-Owsiak, D.; Schaupp, A.L.; Salimi, M.; Taylor, S.; Ogg, G.S. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br. J. Dermatol., 2011, 165(3), 492-498.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10400.x] [PMID: 21564072]
[144]
Gutowska-Owsiak, D.; Schaupp, A.L.; Salimi, M.; Selvakumar, T.A.; McPherson, T.; Taylor, S.; Ogg, G.S. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp. Dermatol., 2012, 21(2), 104-110.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01412.x] [PMID: 22229441]
[145]
Mai, W.; Lu, D.; Liu, X.; Chen, L. MCP-1 produced by keratinocytes is associated with leucocyte recruitment during elicitation of nickel-induced occupational allergic contact dermatitis. Toxicol. Ind. Health, 2018, 34(1), 36-43.
[http://dx.doi.org/10.1177/0748233717738633] [PMID: 29132256]
[146]
Larsen, J.M.; Bonefeld, C.M.; Poulsen, S.S.; Geisler, C.; Skov, L. IL-23 and T(H)17-mediated inflammation in human allergic contact dermatitis. J. Allergy Clin. Immunol., 2009, 123(2), 486-492.
[http://dx.doi.org/10.1016/j.jaci.2008.09.036] [PMID: 18986691]
[147]
Bechara, R.; Antonios, D.; Azouri, H.; Pallardy, M. Nickel sulfate promotes IL-17A producing CD4+ T cells by an IL-23-dependent mechanism regulated by TLR4 and Jak-STAT pathways. J. Invest. Dermatol., 2017, 137(10), 2140-2148.
[http://dx.doi.org/10.1016/j.jid.2017.05.025] [PMID: 28634033]
[148]
Ooboshi, H.; Shichita, T. DAMPs (damage-associated molecular patterns) and inflammation. Nihon Rinsho, 2016, 74(4), 573-578.
[PMID: 27333742]
[149]
Jakob, A.; Mussotter, F.; Ohnesorge, S.; Dietz, L.; Pardo, J.; Haidl, I.D.; Thierse, H.J. Immunoproteomic identification and characterization of Ni2+-regulated proteins implicates Ni2+ in the induction of monocyte cell death. Cell Death Dis., 2017, 8(3) e2684
[http://dx.doi.org/10.1038/cddis.2017.112] [PMID: 28300831]
[150]
Silva, M.; Videira, P.A.; Sackstein, R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front. Immunol., 2018, 8, 1878.
[http://dx.doi.org/10.3389/fimmu.2017.01878] [PMID: 29403469]
[151]
Lee, M.; Rey, K.; Besler, K.; Wang, C.; Choy, J. Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase. Results Probl. Cell Differ., 2017, 62, 181-207.
[http://dx.doi.org/10.1007/978-3-319-54090-0_8] [PMID: 28455710]
[152]
Freitas, M.; Fernandes, E. Zinc, cadmium and nickel increase the activation of NF-κB and the release of cytokines from THP-1 monocytic cells. Metallomics, 2011, 3(11), 1238-1243.
[http://dx.doi.org/10.1039/c1mt00050k] [PMID: 21842098]
[153]
Hirota, M.; Suzuki, M.; Hagino, S.; Kagatani, S.; Sasaki, Y.; Aiba, S.; Itagaki, H. Modification of cell-surface thiols elicits activation of human monocytic cell line THP-1: possible involvement in effect of haptens 2,4-dinitrochlorobenzene and nickel sulfate. J. Toxicol. Sci., 2009, 34(2), 139-150.
[http://dx.doi.org/10.2131/jts.34.139] [PMID: 19336971]
[154]
Wan, R.; Mo, Y.; Chien, S.; Li, Y.; Li, Y.; Tollerud, D.J.; Zhang, Q. The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles. Nanotoxicology, 2011, 5(4), 568-582.
[http://dx.doi.org/10.3109/17435390.2010.537791] [PMID: 21401309]
[155]
Hitzler, M.; Majdic, O.; Heine, G.; Worm, M.; Ebert, G.; Luch, A.; Peiser, M. Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy. PLoS One, 2012, 7(10) e46776
[http://dx.doi.org/10.1371/journal.pone.0046776]] [PMID: 23056446]
[156]
Saresella, M.; Rainone, V.; Al-Daghri, N.M.; Clerici, M.; Trabattoni, D. The PD-1/PD-L1 pathway in human pathology. Curr. Mol. Med., 2012, 12(3), 259-267.
[http://dx.doi.org/10.2174/156652412799218903] [PMID: 22300137]
[157]
Fife, B.T.; Pauken, K.E. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann. N. Y. Acad. Sci., 2011, 1217, 45-59.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05919.x] [PMID: 21276005]
[158]
Carbone, T.; Nasorri, F.; Pennino, D.; Eyerich, K.; Foerster, S.; Cifaldi, L.; Traidl-Hoffman, C.; Behrendt, H.; Cavani, A. CD56highCD16-CD62L- NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J. Immunol., 2010, 184(2), 1102-1110.
[http://dx.doi.org/10.4049/jimmunol.0902518] [PMID: 20008290]
[159]
Sebastiani, S.; Albanesi, C.; De, P.O.; Puddu, P.; Cavani, A.; Girolomoni, G. The role of chemokines in allergic contact dermatitis. Arch. Dermatol. Res., 2002, 293(11), 552-559.
[http://dx.doi.org/10.1007/s00403-001-0276-9] [PMID: 11876523]
[160]
Muñoz, A.; Costa, M. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol. Appl. Pharmacol., 2012, 260(1), 1-16.
[http://dx.doi.org/10.1016/j.taap.2011.12.014] [PMID: 22206756]
[161]
Ahamed, M.; Ali, D.; Alhadlaq, H.A.; Akhtar, M.J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 2013, 93(10), 2514-2522.
[http://dx.doi.org/10.1016/j.chemosphere.2013.09.047] [PMID: 24139157]
[162]
Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev., 2012, 64(2), 129-137.
[http://dx.doi.org/10.1016/j.addr.2011.09.001] [PMID: 21925220]
[163]
Kim, Y.J.; Yu, M.; Park, H.O.; Yang, S.I. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol. Cell. Toxicol., 2010, 6(4), 337-344.
[http://dx.doi.org/10.1007/s13273-010-0045-y]
[164]
Abudayyak, M.; Guzel, E.; Özhan, G. Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem. Int., 2017, 108, 7-14.
[http://dx.doi.org/10.1016/j.neuint.2017.01.017] [PMID: 28159626]
[165]
Minigalieva, I.A.; Katsnelson, B.A.; Privalova, L.I.; Sutunkova, M.P.; Gurvich, V.B.; Shur, V.Y.; Shishkina, E.V.; Valamina, I.E.; Makeyev, O.H.; Panov, V.G.; Varaksin, A.N.; Grigoryeva, E.V.; Meshtcheryakova, E.Y. Attenuation of combined Nickel(II) oxide and manganese (II, III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int. J. Mol. Sci., 2015, 16(9), 22555-22583.
[http://dx.doi.org/10.3390/ijms160922555] [PMID: 26393577]
[166]
Sriram, K.; Lin, G.X.; Jefferson, A.M.; Roberts, J.R.; Wirth, O.; Hayashi, Y.; Krajnak, K.M.; Soukup, J.M.; Ghio, A.J.; Reynolds, S.H.; Castranova, V.; Munson, A.E.; Antonini, J.M. Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB J., 2010, 24(12), 4989-5002.
[http://dx.doi.org/10.1096/fj.10-163964] [PMID: 20798247]
[167]
He, M.D.; Xu, S.C.; Zhang, X.; Wang, Y.; Xiong, J.C.; Zhang, X.; Lu, Y.H.; Zhang, L.; Yu, Z.P.; Zhou, Z. Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice. Neurotoxicology, 2013, 38, 9-16.
[http://dx.doi.org/10.1016/j.neuro.2013.05.011] [PMID: 23727075]
[168]
Ijomone, O.M.; Okori, S.O.; Ijomone, O.K.; Ebokaiwe, A.P. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats’ brain. Drug Chem. Toxicol., 2018, 41(4), 377-384.
[http://dx.doi.org/10.1080/01480545.2018.1437173] [PMID: 29482365]
[169]
Ijomone, O.M.; Olatunji, S.Y.; Owolabi, J.O.; Naicker, T.; Aschner, M. Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. J. Trace Elem. Med. Biol., 2018, 50, 16-23.
[http://dx.doi.org/10.1016/j.jtemb.2018.05.017] [PMID: 30262274]
[170]
Wu, T.; Tang, M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine (Lond.), 2018, 13(2), 233-249.
[http://dx.doi.org/10.2217/nnm-2017-0270] [PMID: 29199887]
[171]
Antonini, J.M.; Roberts, J.R.; Stone, S.; Chen, B.T.; Schwegler-Berry, D.; Chapman, R.; Zeidler-Erdely, P.C.; Andrews, R.N.; Frazer, D.G. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Arch. Toxicol., 2011, 85(5), 487-498.
[http://dx.doi.org/10.1007/s00204-010-0601-1] [PMID: 20924559]
[172]
Lee, Y.J.; Lim, S.S.; Baek, B.J.; An, J.M.; Nam, H.S.; Woo, K.M.; Cho, M.K.; Kim, S.H.; Lee, S.H. Nickel(II)-induced nasal epithelial toxicity and oxidative mitochondrial damage. Environ. Toxicol. Pharmacol., 2016, 42, 76-84.
[http://dx.doi.org/10.1016/j.etap.2016.01.005] [PMID: 26809061]
[173]
Pan, Y.L.; Xin, R.; Wang, S.Y.; Wang, Y.; Zhang, L.; Yu, C.P.; Wu, Y.H. Nickel-smelting fumes induce mitochondrial damage and apoptosis, accompanied by decreases in viability, in NIH/3T3 cells. Arch. Biochem. Biophys., 2018, 660, 20-28.
[http://dx.doi.org/10.1016/j.abb.2018.10.008] [PMID: 30321500]
[174]
Oyabu, T.; Myojo, T.; Lee, B.W.; Okada, T.; Izumi, H.; Yoshiura, Y.; Tomonaga, T.; Li, Y.S.; Kawai, K.; Shimada, M.; Kubo, M.; Yamamoto, K.; Kawaguchi, K.; Sasaki, T.; Morimoto, Y. Biopersistence of NiO and TiO2 Nanoparticles Following Intratracheal Instillation and Inhalation. Int. J. Mol. Sci., 2017, 18(12) E2757
[http://dx.doi.org/10.3390/ijms18122757]] [PMID: 29257061]
[175]
Cao, Z.; Fang, Y.; Lu, Y.; Qian, F.; Ma, Q.; He, M.; Pi, H.; Yu, Z.; Zhou, Z. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int. J. Nanomedicine, 2016, 11, 3331-3346.
[http://dx.doi.org/10.2147/IJN.S106912] [PMID: 27524893]
[176]
Chang, X.; Zhu, A.; Liu, F.; Zou, L.; Su, L.; Li, S.; Sun, Y. Role of NF-κB activation and Th1/Th2 imbalance in pulmonary toxicity induced by nano NiO. Environ. Toxicol., 2017, 32(4), 1354-1362.
[http://dx.doi.org/10.1002/tox.22329] [PMID: 27464988]
[177]
Shoeb, M.; Kodali, V.; Farris, B.; Bishop, L.M.; Meighan, T.; Salmen, R.; Eye, T.; Roberts, J.R.; Zeidler-Erdely, P.; Erdely, A.; Antonini, J.M. Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles. Nanotoxicology, 2017, 11(6), 725-736.
[http://dx.doi.org/10.1080/17435390.2017.1349200] [PMID: 28660804]
[178]
Cao, J.; Xu, X.; Hylkema, M.N.; Zeng, E.Y.; Sly, P.D.; Suk, W.A.; Bergman, Å.; Huo, X. Early-life Exposure to Widespread Environmental Toxicants and Health Risk: A Focus on the Immune and Respiratory Systems. Ann. Glob. Health, 2016, 82(1), 119-131.
[http://dx.doi.org/10.1016/j.aogh.2016.01.023] [PMID: 27325070]
[179]
Taylor, M.D.; Roberts, J.R.; Leonard, S.S.; Shi, X.; Antonini, J.M. Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Toxicol. Sci., 2003, 75(1), 181-191.
[http://dx.doi.org/10.1093/toxsci/kfg173] [PMID: 12832661]
[180]
Antonini, J.M.; Badding, M.A.; Meighan, T.G.; Keane, M.; Leonard, S.S.; Roberts, J.R. Evaluation of the pulmonary toxicity of a fume generated from a nickel-, copper-based electrode to be used as a substitute in stainless steel welding. Environ. Health Insights, 2014, 8(Suppl. 1), 11-20.
[http://dx.doi.org/10.4137/EHI.S15260] [PMID: 25392698]
[181]
Aherrera, A.; Olmedo, P.; Grau-Perez, M.; Tanda, S.; Goessler, W.; Jarmul, S.; Chen, R.; Cohen, J.E.; Rule, A.M.; Navas-Acien, A. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environ. Res., 2017, 159, 313-320.
[http://dx.doi.org/10.1016/j.envres.2017.08.014] [PMID: 28837903]
[182]
Camporro, F.A.; Gutierrez Magaldi, I.; Bulacio, E. Electronic Cigarette: not all that glitters is gold. Rev. Fac. Cien. Med. Univ. Nac. Cordoba, 2017, 74(3), 271-276.
[http://dx.doi.org/10.31053/1853.0605.v74.n3.16545] [PMID: 29890103]
[183]
Ricciardi, L.; Arena, A.; Arena, E.; Zambito, M.; Ingrassia, A.; Valenti, G.; Loschiavo, G.; D’Angelo, A.; Saitta, S. Systemic nickel allergy syndrome: epidemiological data from four Italian allergy units. Int. J. Immunopathol. Pharmacol., 2014, 27(1), 131-136.
[http://dx.doi.org/10.1177/039463201402700118] [PMID: 24674689]
[184]
Sharma, A.D. Relationship between nickel allergy and diet. Indian J. Dermatol. Venereol. Leprol., 2007, 73(5), 307-312.
[http://dx.doi.org/10.4103/0378-6323.35733] [PMID: 17921609]
[185]
Borghini, R.; Donato, G.; Alvaro, D.; Picarelli, A. New insights in IBS-like disorders: Pandora’s box has been opened; a review. Gastroenterol. Hepatol. Bed Bench, 2017, 10(2), 79-89.
[PMID: 28702130]
[186]
Volta, U.; Bardella, M.T.; Calabrò, A.; Troncone, R.; Corazza, G.R. Study Group for Non-Celiac Gluten Sensitivity. An Italian prospective multicenter survey on patients suspected of having non-celiac gluten sensitivity. BMC Med., 2014, 12, 85.
[http://dx.doi.org/10.1186/1741-7015-12-85] [PMID: 24885375]
[187]
D’Alcamo, A.; Mansueto, P.; Soresi, M.; Iacobucci, R.; Blasca, F.; Geraci, G.; Cavataio, F.; Fayer, F.; Arini, A.; Di Stefano, L.; Iacono, G.; Bosco, L.; Carroccio, A. Contact Dermatitis Due to Nickel Allergy in Patients Suffering from Non-Celiac Wheat Sensitivity. Nutrients, 2017, 9(2) E103
[http://dx.doi.org/10.3390/nu9020103] [PMID: 28157173]
[188]
Catassi, C.; Bai, J.C.; Bonaz, B.; Bouma, G.; Calabrò, A.; Carroccio, A.; Castillejo, G.; Ciacci, C.; Cristofori, F.; Dolinsek, J.; Francavilla, R.; Elli, L.; Green, P.; Holtmeier, W.; Koehler, P.; Koletzko, S.; Meinhold, C.; Sanders, D.; Schumann, M.; Schuppan, D.; Ullrich, R.; Vécsei, A.; Volta, U.; Zevallos, V.; Sapone, A.; Fasano, A. Non-Celiac Gluten sensitivity: the new frontier of gluten related disorders. Nutrients, 2013, 5(10), 3839-3853.
[http://dx.doi.org/10.3390/nu5103839] [PMID: 24077239]
[189]
Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; de Magistris, L.; Dolinsek, J.; Dieterich, W.; Francavilla, R.; Hadjivassiliou, M.; Holtmeier, W.; Körner, U.; Leffler, D.A.; Lundin, K.E.; Mazzarella, G.; Mulder, C.J.; Pellegrini, N.; Rostami, K.; Sanders, D.; Skodje, G.I.; Schuppan, D.; Ullrich, R.; Volta, U.; Williams, M.; Zevallos, V.F.; Zopf, Y.; Fasano, A. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients, 2015, 7(6), 4966-4977.
[http://dx.doi.org/10.3390/nu7064966] [PMID: 26096570]
[190]
Carroccio, A.; Rini, G.; Mansueto, P. Non-celiac wheat sensitivity is a more appropriate label than non-celiac gluten sensitivity. Gastroenterology, 2014, 146(1), 320-321.
[http://dx.doi.org/10.1053/j.gastro.2013.08.061] [PMID: 24275240]
[191]
Carroccio, A.; Mansueto, P.; Iacono, G.; Soresi, M.; D’Alcamo, A.; Cavataio, F.; Brusca, I.; Florena, A.M.; Ambrosiano, G.; Seidita, A.; Pirrone, G.; Rini, G.B. Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. Am. J. Gastroenterol., 2012, 107(12), 1898-1906.
[http://dx.doi.org/10.1038/ajg.2012.236] [PMID: 22825366]
[192]
Fabbro, S.K.; Zirwas, M.J. Systemic contact dermatitis to foods: nickel, BOP, and more. Curr. Allergy Asthma Rep., 2014, 14(10), 463.
[http://dx.doi.org/10.1007/s11882-014-0463-3] [PMID: 25149165]
[193]
Magaye, R.; Zhao, J.; Bowman, L.; Ding, M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp. Ther. Med., 2012, 4(4), 551-561.
[http://dx.doi.org/10.3892/etm.2012.656] [PMID: 23170105]
[194]
Hsu, J.W.; Matiz, C.; Jacob, S.E. Nickel allergy: localized, id, and systemic manifestations in children. Pediatr. Dermatol., 2011, 28(3), 276-280.
[http://dx.doi.org/10.1111/j.1525-1470.2010.01196.x] [PMID: 21087298]
[195]
Matiz, C.; Jacob, S.E. Systemic contact dermatitis in children: how an avoidance diet can make a difference. Pediatr. Dermatol., 2011, 28(4), 368-374.
[http://dx.doi.org/10.1111/j.1525-1470.2010.01130.x] [PMID: 20807367]
[196]
Borghini, R.; Puzzono, M.; Rosato, E.; Di Tola, M.; Marino, M.; Greco, F.; Picarelli, A. Nickel-Related Intestinal Mucositis in IBS-Like Patients: Laser Doppler Perfusion Imaging and Oral Mucosa Patch Test in Use. Biol. Trace Elem. Res., 2016, 173(1), 55-61.
[http://dx.doi.org/10.1007/s12011-016-0650-2] [PMID: 26899317]
[197]
Di Tola, M.; Marino, M.; Amodeo, R.; Tabacco, F.; Casale, R.; Portaro, L.; Borghini, R.; Cristaudo, A.; Manna, F.; Rossi, A.; De Pità, O.; Cardelli, P.; Picarelli, A. Immunological characterization of the allergic contact mucositis related to the ingestion of nickel-rich foods. Immunobiology, 2014, 219(7), 522-530.
[http://dx.doi.org/10.1016/j.imbio.2014.03.010] [PMID: 24703602]
[198]
Antico, A.; Soana, R. Chronic allergic-like dermatopathies in nickel-sensitive patients. Results of dietary restrictions and challenge with nickel salts. Allergy Asthma Proc., 1999, 20(4), 235-242.
[http://dx.doi.org/10.2500/108854199778338991] [PMID: 10476323]
[199]
Schiavino, D.; Nucera, E.; Alonzi, C.; Buonomo, A.; Pollastrini, E.; Roncallo, C.; De Pasquale, T.; Lombardo, C.; La Torre, G.; Sabato, V.; Pecora, V.; Patriarca, G. A clinical trial of oral hyposensitization in systemic allergy to nickel. Int. J. Immunopathol. Pharmacol., 2006, 19(3), 593-600.
[http://dx.doi.org/10.1177/039463200601900315] [PMID: 17026844]
[200]
Rizzi, A.; Nucera, E.; Laterza, L.; Gaetani, E.; Valenza, V.; Corbo, G.M.; Inchingolo, R.; Buonomo, A.; Schiavino, D.; Gasbarrini, A. Irritable Bowel Syndrome and Nickel Allergy: What Is the Role of the Low Nickel Diet? J. Neurogastroenterol. Motil., 2017, 23(1), 101-108.
[http://dx.doi.org/10.5056/jnm16027] [PMID: 28049864]
[201]
Stanghellini, V.; Tosetti, C.; Benedetto, E.; Condoluci, M.; De Bastiani, R.; Cogliandro, R.; Mastronuzzi, T.; De Polo, M.; Di Mita, F.; Napoli, L.; Ubaldi, E.; Nebiacolombo, C.; Cottone, C.; Grattagliano, I.; Zamparella, M.; Baldi, E.; Sanna, G. Nickel sensitization in patients with gastro-esophageal reflux disease. United European Gastroenterol. J., 2016, 4(2), 184-190.
[http://dx.doi.org/10.1177/2050640615595917] [PMID: 27087945]
[202]
Aslan, N.; Sezikli, M.; Erdal, E. Nickel sensitivity in patients with gastroesophageal reflux disease. Cutan. Ocul. Toxicol., 2017, 36(4), 347-350.
[http://dx.doi.org/10.1080/15569527.2017.1295252] [PMID: 28366009]
[203]
Wu, B.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Huang, J. Dietary nickel chloride induces oxidative intestinal damage in broilers. Int. J. Environ. Res. Public Health, 2013, 10(6), 2109-2119.
[http://dx.doi.org/10.3390/ijerph10062109] [PMID: 23702803]
[204]
Wu, B.; Cui, H.; Peng, X.; Pan, K.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Huang, J. Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol. Environ. Saf., 2014, 109, 70-76.
[http://dx.doi.org/10.1016/j.ecoenv.2014.08.002] [PMID: 25164205]
[205]
Tallkvist, J.; Bowlus, C.L.; Lönnerdal, B. Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol. Toxicol., 2003, 92(3), 121-124.
[http://dx.doi.org/10.1034/j.1600-0773.2003.920303.x] [PMID: 12753426]
[206]
Zirwas, M.J.; Molenda, M.A. Dietary nickel as a cause of systemic contact dermatitis. J. Clin. Aesthet. Dermatol., 2009, 2(6), 39-43.
[PMID: 20729949]
[207]
Das, K.K.; Buchner, V. Effect of nickel exposure on peripheral tissues: Role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev. Environ. Health, 2007, 22(2), 157-173.
[http://dx.doi.org/10.1515/REVEH.2007.22.2.157] [PMID: 17894205]
[208]
Cempel, M. Effect of nickel(II) chloride on iron content in rat organs after oral administration. Biol. Trace Elem. Res., 2004, 102(1-3), 189-198.
[http://dx.doi.org/10.1385/BTER:102:1-3:189] [PMID: 15621938]
[209]
Medici, V.; Shibata, N.M.; Kharbanda, K.K.; LaSalle, J.M.; Woods, R.; Liu, S.; Engelberg, J.A.; Devaraj, S.; Török, N.J.; Jiang, J.X.; Havel, P.J.; Lönnerdal, B.; Kim, K.; Halsted, C.H. Wilson’s disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology, 2013, 57(2), 555-565.
[http://dx.doi.org/10.1002/hep.26047] [PMID: 22945834]
[210]
Sookoian, S.; Pirola, C.J. DNA methylation and hepatic insulin resistance and steatosis. Curr. Opin. Clin. Nutr. Metab. Care, 2012, 15(4), 350-356.
[http://dx.doi.org/10.1097/MCO.0b013e3283546f9f] [PMID: 22617561]
[211]
Brocato, J.; Costa, M. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit. Rev. Toxicol., 2013, 43(6), 493-514.
[http://dx.doi.org/10.3109/10408444.2013.794769] [PMID: 23844698]
[212]
Liu, C.M.; Ma, J.Q.; Xie, W.R.; Liu, S.S.; Feng, Z.J.; Zheng, G.H.; Wang, A.M. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway. Food Chem. Toxicol., 2015, 82, 19-26.
[http://dx.doi.org/10.1016/j.fct.2015.05.001] [PMID: 25957741]
[213]
Li, E.; Beard, C.; Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature, 1993, 366(6453), 362-365.
[http://dx.doi.org/10.1038/366362a0] [PMID: 8247133]
[214]
Kang, K.A.; Piao, M.J.; Kim, K.C.; Kang, H.K.; Chang, W.Y.; Park, I.C.; Keum, Y.S.; Surh, Y.J.; Hyun, J.W. Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 2014. 5e1183
[http://dx.doi.org/10.1038/cddis.2014.149] [PMID: 24743738]
[215]
Wang, K.P.; Zhang, C.; Zhang, S.G.; Liu, E.D.; Dong, L.; Kong, X.Z.; Cao, P.; Hu, C.P.; Zhao, K.; Zhan, Y.Q.; Dong, X.M.; Ge, C.H.; Yu, M.; Chen, H.; Wang, L.; Yang, X.M.; Li, C.Y. 3-(3-pyridylmethylidene)-2-indolinone reduces the severity of colonic injury in a murine model of experimental colitis. Oxid. Med. Cell. Longev., 2015, 2015959253
[http://dx.doi.org/10.1155/2015/959253]] [PMID: 25874026]
[216]
Liu, C.M.; Ma, J.Q.; Liu, S.S.; Feng, Z.J.; Wang, A.M. Puerarin protects mouse liver against nickel-induced oxidative stress and inflammation associated with the TLR4/p38/CREB pathway. Chem. Biol. Interact., 2016, 243, 29-34.
[http://dx.doi.org/10.1016/j.cbi.2015.11.017] [PMID: 26607348]
[217]
Pavela, M.; Uitti, J.; Pukkala, E. Cancer incidence among copper smelting and nickel refining workers in Finland. Am. J. Ind. Med., 2017, 60(1), 87-95.
[http://dx.doi.org/10.1002/ajim.22662] [PMID: 27747921]
[218]
Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational toxicology of nickel and nickel compounds. J. Environ. Pathol. Toxicol. Oncol., 2009, 28(3), 177-208.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v28.i3.10] [PMID: 19888907]
[219]
Binazzi, A.; Ferrante, P.; Marinaccio, A. Occupational exposure and sinonasal cancer: a systematic review and meta-analysis. BMC Cancer, 2015, 15, 49.
[http://dx.doi.org/10.1186/s12885-015-1042-2] [PMID: 25885319]
[220]
National Toxicology Program. Nickel compounds and metallic nickel. Rep. Carcinog., 2011, 12, 280-283.
[PMID: 21860490]
[221]
Cameron, K.S.; Buchner, V.; Tchounwou, P.B. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev. Environ. Health, 2011, 26(2), 81-92.
[http://dx.doi.org/10.1515/reveh.2011.012] [PMID: 21905451]
[222]
Davidson, T.L.; Chen, H.; Di Toro, D.M.; D’Angelo, G.; Costa, M. Soluble nickel inhibits HIF-prolyl-hydroxylases creating persistent hypoxic signaling in A549 cells. Mol. Carcinog., 2006, 45(7), 479-489.
[http://dx.doi.org/10.1002/mc.20176] [PMID: 16649251]
[223]
Chen, H.; Costa, M. Iron- and 2-oxoglutarate-dependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. Biometals, 2009, 22(1), 191-196.
[http://dx.doi.org/10.1007/s10534-008-9190-3] [PMID: 19096759]
[224]
Chen, H.; Kluz, T.; Zhang, R.; Costa, M. Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis, 2010, 31(12), 2136-2144.
[http://dx.doi.org/10.1093/carcin/bgq197] [PMID: 20881000]
[225]
Chen, H.; Ke, Q.; Kluz, T.; Yan, Y.; Costa, M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol. Cell. Biol., 2006, 26(10), 3728-3737.
[http://dx.doi.org/10.1128/MCB.26.10.3728-3737.2006] [PMID: 16648469]
[226]
Ke, Q.; Davidson, T.; Chen, H.; Kluz, T.; Costa, M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis, 2006, 27(7), 1481-1488.
[http://dx.doi.org/10.1093/carcin/bgl004] [PMID: 16522665]
[227]
Zhou, X.; Li, Q.; Arita, A.; Sun, H.; Costa, M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol. Appl. Pharmacol., 2009, 236(1), 78-84.
[http://dx.doi.org/10.1016/j.taap.2009.01.009] [PMID: 19371620]
[228]
Bindra, R.S.; Gibson, S.L.; Meng, A.; Westermark, U.; Jasin, M.; Pierce, A.J.; Bristow, R.G.; Classon, M.K.; Glazer, P.M. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res., 2005, 65(24), 11597-11604.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2119] [PMID: 16357170]
[229]
Rezvani, H.R.; Mahfouf, W.; Ali, N.; Chemin, C.; Ged, C.; Kim, A.L.; de Verneuil, H.; Taïeb, A.; Bickers, D.R.; Mazurier, F. Hypoxia-inducible factor-1alpha regulates the expression of nucleotide excision repair proteins in keratinocytes. Nucleic Acids Res., 2010, 38(3), 797-809.
[http://dx.doi.org/10.1093/nar/gkp1072] [PMID: 19934262]
[230]
Chan, N.; Ali, M.; McCallum, G.P.; Kumareswaran, R.; Koritzinsky, M.; Wouters, B.G.; Wells, P.G.; Gallinger, S.; Bristow, R.G. Hypoxia provokes base excision repair changes and a repair-deficient, mutator phenotype in colorectal cancer cells. Mol. Cancer Res., 2014, 12(10), 1407-1415.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0246] [PMID: 25030372]
[231]
Scanlon, S.E.; Scanlon, C.D.; Hegan, D.C.; Sulkowski, P.L.; Glazer, P.M. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis, 2017, 38(6), 627-637.
[http://dx.doi.org/10.1093/carcin/bgx038] [PMID: 28472268]
[232]
Arita, A.; Niu, J.; Qu, Q.; Zhao, N.; Ruan, Y.; Nadas, A.; Chervona, Y.; Wu, F.; Sun, H.; Hayes, R.B.; Costa, M. Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ. Health Perspect., 2012, 120(2), 198-203.
[http://dx.doi.org/10.1289/ehp.1104140] [PMID: 22024396]
[233]
Ma, L.; Bai, Y.; Pu, H.; Gou, F.; Dai, M.; Wang, H.; He, J.; Zheng, T.; Cheng, N. Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One, 2015, 10(10) e0140339
[http://dx.doi.org/10.1371/journal.pone.0140339]] [PMID: 26474320]
[234]
Schaumlöffel, D. Nickel species: analysis and toxic effects. J. Trace Elem. Med. Biol., 2012, 26(1), 1-6.
[http://dx.doi.org/10.1016/j.jtemb.2012.01.002] [PMID: 22366237]
[235]
Oller, A.R.; Costa, M.; Oberdörster, G. Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol., 1997, 143(1), 152-166.
[http://dx.doi.org/10.1006/taap.1996.8075] [PMID: 9073603]
[236]
Oller, A.R. Respiratory carcinogenicity assessment of soluble nickel compounds. Environ. Health Perspect., 2002, 110(Suppl. 5), 841-844.
[http://dx.doi.org/10.1289/ehp.02110s5841] [PMID: 12426143]
[237]
Di Bucchianico, S.; Gliga, A.R.; Åkerlund, E.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Part. Fibre Toxicol., 2018, 15(1), 32.
[http://dx.doi.org/10.1186/s12989-018-0268-y] [PMID: 30016969]
[238]
El Safty, A.M.K.; Samir, A.M.; Mekkawy, M.K.; Fouad, M.M. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers. Int. J. Toxicol., 2018, 37(3), 234-240.
[http://dx.doi.org/10.1177/1091581818764084] [PMID: 29554825]
[239]
Grimsrud, T.K.; Andersen, A. Evidence of carcinogenicity in humans of water-soluble nickel salts. J. Occup. Med. Toxicol., 2010, 5, 7.
[http://dx.doi.org/10.1186/1745-6673-5-7] [PMID: 20377901]
[240]
Kjaerheim, K.; Martinsen, J.I.; Lynge, E.; Gunnarsdottir, H.K.; Sparen, P.; Tryggvadottir, L.; Weiderpass, E.; Pukkala, E. Effects of occupation on risks of avoidable cancers in the Nordic countries. Eur. J. Cancer, 2010, 46(14), 2545-2554.
[http://dx.doi.org/10.1016/j.ejca.2010.07.038] [PMID: 20843484]
[241]
Grimsrud, T.K.; Berge, S.R.; Martinsen, J.I.; Andersen, A. Lung cancer incidence among Norwegian nickel-refinery workers 1953-2000. J. Environ. Monit., 2003, 5(2), 190-197.
[http://dx.doi.org/10.1039/b211722n] [PMID: 12729252]
[242]
Arita, A.; Muñoz, A.; Chervona, Y.; Niu, J.; Qu, Q.; Zhao, N.; Ruan, Y.; Kiok, K.; Kluz, T.; Sun, H.; Clancy, H.A.; Shamy, M.; Costa, M. Gene expression profiles in peripheral blood mononuclear cells of Chinese nickel refinery workers with high exposures to nickel and control subjects. Cancer Epidemiol. Biomarkers Prev., 2013, 22(2), 261-269.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-1011] [PMID: 23195993]
[243]
Park, R.M. Risk assessment for metalworking fluids and cancer outcomes. Am. J. Ind. Med., 2018, 61(3), 198-203.
[http://dx.doi.org/10.1002/ajim.22809] [PMID: 29327473]
[244]
Mirer, F. Updated epidemiology of workers exposed to metalworking fluids provides sufficient evidence for carcinogenicity. Appl. Occup. Environ. Hyg., 2003, 18(11), 902-912.
[http://dx.doi.org/10.1080/10473220390237511] [PMID: 14555443]
[245]
Clapp, R.W.; Jacobs, M.M.; Loechler, E.L. Environmental and occupational causes of cancer: New evidence 2005-2007. Rev. Environ. Health, 2008, 23(1), 1-37.
[http://dx.doi.org/10.1515/REVEH.2008.23.1.1] [PMID: 18557596]
[246]
Garcia, E.; Bradshaw, P.T.; Eisen, E.A. Breast cancer incidence and exposure to metalworking fluid in a cohort of female autoworkers. Am. J. Epidemiol., 2018, 187(3), 539-547.
[http://dx.doi.org/10.1093/aje/kwx264] [PMID: 29020170]
[247]
Lightfoot, N.E.; Berriault, C.J.; Seilkop, S.K.; Conard, B.R. Nonrespiratory mortality and cancer incidence in a cohort of Canadian nickel workers. Arch. Environ. Occup. Health, 2017, 72(4), 187-203.
[http://dx.doi.org/10.1080/19338244.2016.1197879] [PMID: 27268254]
[248]
Bishak, Y.K.; Payahoo, L.; Osatdrahimi, A.; Nourazarian, A. Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac. J. Cancer Prev., 2015, 16(1), 9-21.
[http://dx.doi.org/10.7314/APJCP.2015.16.1.9] [PMID: 25640397]
[249]
Chen, X.; Li, Y.; Zhang, B.; Zhou, A.; Zheng, T.; Huang, Z.; Pan, X.; Liu, W.; Liu, H.; Jiang, Y.; Sun, X.; Hu, C.; Xing, Y.; Xia, W.; Xu, S. Maternal exposure to nickel in relation to preterm delivery. Chemosphere, 2018, 193, 1157-1163.
[http://dx.doi.org/10.1016/j.chemosphere.2017.11.121] [PMID: 29874744]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy