Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Natural Fused Heterocyclic Flavonoids: Potent Candidates as Anti- Inflammatory and Anti-Allergic Agents in the Treatment of Asthma

Author(s): Rajwinder Kaur*, Kirandeep Kaur, Rashmi Arora, Balraj Saini and Sandeep Arora

Volume 17, Issue 1, 2021

Published on: 20 November, 2019

Page: [28 - 40] Pages: 13

DOI: 10.2174/1573407215666191120125608

Price: $65

Abstract

Background: In the last two decades, the flavonoids containing fused heterocyclic nucleus in their chemical structure have emerged to display a variety of pharmacological effects including antiallergic and anti-inflammatory the most recent to the list. These polyphenolic compounds exert their pharmacological effect by various mechanisms including inhibition of human neutrophil elastase, cytokines (Interleukins- IL-3 and IL-4) and mast cells.

Methods: We adopted a structured search of notorious journal publication websites and electronic databases such as Science Direct, Bentham, Scopus, PubMed, Nature, Springer etc. for the collection of peer-reviewed research and review articles for the present review. The quality papers (109) were retrieved, studied, categorized into different sections, analyzed and used for article writing.

Results: The backbone of this review article is based on four review articles of natural phenolics. Seventeen papers out of total one hundred and nine were about Quercetin the main molecule of interest, five papers outlined the potential benefits of Pycnogenol, Rutin was discussed in detail by considering eight papers in mind, Kaempferol which can be considered as a candidate of interest was referred from six articles.

Conclusion: This review identified the Quercetin, Pycnogenol, Rutin and Kampferol as few bioflavonols out of hundreds of other compounds still under clinical trials that have been studied most. Marketed formulations of Pycnogenol are also available as nutraceuticals. These flavonoids have been also reported to the other pharmacological effects like anti-cancer, anti-oxidants, anti-hypertensive, antiviral, anti-ulcerogenic, anti-platelet, anti-hypotensive and anti-hepatotoxic. With all these versatile properties heterocyclic containing flavonoids may be a powerful candidate for the discovery of their utilization in other ailments like asthma.

Keywords: Flavonoids, asthma, lawsonia, Thuja orientalis, Camptothecin, mediators, pollutants.

Graphical Abstract
[2]
Toshio, T. The effect of flavonoids on allergic diseases. Antiinflamm. Antiallergy Agents Med. Chem., 2011, 10(5), 374-381.
[3]
Pan, M.H.; Lai, C.S.; Ho, C.T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct., 2010, 1(1), 15-31.
[http://dx.doi.org/10.1039/c0fo00103a] [PMID: 21776454]
[4]
Saleem, M.; Nazir, M.; Hussain, H.; Tousif, M.I.; Elsebai, M.F.; Riaz, N.; Akhtar, N. Natural phenolics as inhibitors of the Human Neutrophil Elastase (HNE) Release: An overview of natural anti-inflammatory discoveries during recent years. Antiinflamm. Antiallergy Agents Med. Chem., 2018, 17(2), 70-94.
[http://dx.doi.org/10.2174/1871523017666180910104946] [PMID: 30198444]
[5]
DeBeer, D.; Joubert, E.; Gelderblom, W.C.A.; Manley, M. Phenolic compounds: A review of their possible role as in vivo antioxidants of wine. S. Afr. J. Enol. Vitic., 2002, 23, 48-61.
[6]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[7]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[8]
Siedle, B.; Hrenn, A.; Merfort, I. Natural compounds as inhibitors of human neutrophil elastase. Planta Med., 2007, 73(5), 401-420.
[http://dx.doi.org/10.1055/s-2007-967183] [PMID: 17447201]
[9]
Singh, B.; Sharma, R.A. Anti-inflammatory and antimicrobial properties of Flavonoids from Heliotropium subulatum exudate. Inflamm. Allergy Drug Targets, 2015, 14(2), 125-132.
[http://dx.doi.org/10.2174/1871528114666160105113155] [PMID: 26728771]
[10]
Brown, D.F.; Kothari, D. Comparison of antibiotic discs from different sources. J. Clin. Pathol., 1975, 28(10), 779-783.
[http://dx.doi.org/10.1136/jcp.28.10.779] [PMID: 1214010]
[11]
Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[13]
Lago, J.H.G.; Toledo-Arruda, A.C.; Mernak, M.; Barrosa, K.H.; Martins, M.A.; Tibério, I.F.L.C.; Prado, C.M. Structure-activity association of flavonoids in lung diseases. Molecules, 2014, 19(3), 3570-3595.
[http://dx.doi.org/10.3390/molecules19033570] [PMID: 24662074]
[14]
Banjarnahor, S.D.S.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones., 2014, 23(4), 239-244.
[http://dx.doi.org/10.13181/mji.v23i4.1015]
[15]
Belcaro, G.; Luzzi, R.; Cesinaro Di Rocco, P.; Cesarone, M.R.; Dugall, M.; Feragalli, B.; Errichi, B.M.; Ippolito, E.; Grossi, M.G.; Hosoi, M.; Errichi, S.; Cornelli, U.; Ledda, A.; Gizzi, G. Pycnogenol® improvements in asthma management. Panminerva Med., 2011, 53(3)(Suppl. 1), 57-64.
[PMID: 22108478]
[16]
Ceren, G.; Buket, D.; Aylin, E.; Mustafa, Y.; İbrahim, M.; İmran, K.; Yeşim, B. Inhibitory effect of pycnogenol ® on airway inflammation in ovalbumin-induced allergic rhinitis. Balkan Med. J., 2016, 33(6), 620-626.
[http://dx.doi.org/10.5152/balkanmedj.2016.150057] [PMID: 27994914]
[17]
Rohdewald, P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharmacol. Ther., 2002, 40(4), 158-168.
[http://dx.doi.org/10.5414/CPP40158] [PMID: 11996210]
[18]
Menaa, F.; Menaa, A.; Treton, J. Polyphenols agianst skin aging.Polyphenols in Human Health and Disease; Watson, R.R.; Preedy, V.R.; Zibadi, S., Eds.; Science Direct,; , 2014. Vol. 1, pp. 819-830..
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00063-3]
[19]
Mark John, D. Asthma. Science Direct; Medicine, I; Rakel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018, pp. 288-299.
[20]
Rogers, J.; Perkins, I.; Van Olphen, A.; Burdash, N.; Klein, T.W.; Friedman, H. Epigallocatechingallate modulates cytokine production by bone marrow-derived dendritic cells stimulated with lipopolysaccharide or muramyldipeptide, or infected with Legionella pneumophil. Exp. Biol. Med. (Maywood), 2005, 230(9), 645-651.
[21]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2016, 25(2), 151-164.
[PMID: 28344465]
[22]
Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco, 2001, 56(9), 683-687.
[http://dx.doi.org/10.1016/S0014-827X(01)01111-9] [PMID: 11680812]
[23]
Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature, 2008, 454(7203), 445-454.
[http://dx.doi.org/10.1038/nature07204] [PMID: 18650915]
[24]
Elias, J.A.; Lee, C.G.; Zheng, T.; Ma, B.; Homer, R.J.; Zhu, Z. New insights into the pathogenesis of asthma. J. Clin. Invest., 2003, 111(3), 291-297.
[http://dx.doi.org/10.1172/JCI17748] [PMID: 12569150]
[25]
Bao, Z. Guan. S.P.; Cheng, C.; Wu, S.; Wong, S.H.; Kemeny. D.M.; Leung, B.P.; Wong W.S.F. A novel anti-inflammatory role for andrographolide in asthma via inhibition of the NF-κB pathway. Am. J. Respir. Crit. Care Med., 2009, 179, 657-665.
[http://dx.doi.org/10.1164/rccm.200809-1516OC] [PMID: 19201922]
[26]
Jin, H.; Luo, Q.; Zheng, Y.; Nurahmat, M.; Wu, J.; Li, B.; Lv, Y.; Wang, G.; Duan, X.; Dong, J. CD4+CD25+Foxp3+ T cells contribute to the antiasthmatic effects of Astragalus membranaceus extract in a rat model of asthma. Int. Immunopharmacol., 2013, 15(1), 42-49.
[http://dx.doi.org/10.1016/j.intimp.2012.11.009] [PMID: 23186751]
[27]
Hong-yan, Lv.; Chen, J.; Wang, T. Rutin has anti-asthmatic effects in an ovalbumin-induced asthmatic mouse model. Trop. J. Pharm. Res., 2017, 16(6), 1337-1347.
[http://dx.doi.org/10.4314/tjpr.v16i6.18]
[28]
Lee, E.J.; Ji, G.E.; Sung, M.K. Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm. Res., 2010, 59(10), 847-854.
[http://dx.doi.org/10.1007/s00011-010-0196-2] [PMID: 20383790]
[29]
Baliga, M.S.; Saxena, A.; Kaur, K.; Kalekhan, F.; Chacko, A.; Venkatesh, P.; Fayad, R. Polyphenols in the Prevention of Ulcerative Colitis. Polyphenols in Human Health and Disease; Watson, R.R.; Preedy, V.R.; Zibadi, S., Eds.; Science Direct, , 2014. Vol. 1, pp. 655-663..
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00050-5]
[30]
Gong, J.H.; Shin, D.; Han, S.Y.; Kim, J.L.; Kang, Y.H. Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J. Nutr., 2012, 142(1), 47-56.
[http://dx.doi.org/10.3945/jn.111.150748] [PMID: 22157542]
[31]
Aggarwal, B.B.; Kunnumakkara, A.B.; Harikumar, K.B.; Gupta, S.R.; Tharakan, S.T.; Koca, C.; Dey, S.; Sung, B. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Ann. N. Y. Acad. Sci., 2009, 1171, 59-76.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x] [PMID: 19723038]
[32]
Gong, J.H.; Shin, D.; Han, S.Y.; Park, S.H.; Kang, M.K.; Kim, J.L.; Kang, Y.H. Blockade of airway inflammation by kaempferol via disturbing Tyk-STAT signaling in airway epithelial cells and in asthmatic mice. Evid. Based Complement. Alternat. Med., 2013, 2013250725
[http://dx.doi.org/10.1155/2013/250725] [PMID: 23737822]
[33]
Eun-Ju, L.; Geun-Eok, J.; Mi-Kyung, S. Quercetin and kaempferol suppress immunoglobulin E-mediated allergic inflammation in RBL-2H3 and Caco-2 cells. Inflamm. Res., 2010, 59(10), 847-854.
[35]
Shishehbor, F.; Behroo, L.; Ghafouriyan Broujerdnia, M.; Namjoyan, F.; Latifi, S.M. Quercetin effectively quells peanut-induced anaphylactic reactions in the peanut sensitized rats. Iran. J. Allergy Asthma Immunol., 2010, 9(1), 27-34.
[PMID: 20548131]
[36]
Wei, J.; Bhatt, S.; Chang, L.M.; Sampson, H.A.; Masilamani, M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS One,; 2012, 7(10), 1-11.e47979..
[37]
Juríková, T.; Mlček, J.; Sochor, J.; Hegedűsová, A. Polyphenols and their mechanism of action in allergic immune response. Glob. J. Allergy., 2015, 1(2), 37-39.
[http://dx.doi.org/10.17352/2455-8141.000008]
[38]
Chirumbolo, S. Quercetin as a potential anti-allergic drug: Which perspectives? Iran. J. Allergy Asthma Immunol., 2011, 10(2), 139-140.
[PMID: 21625024]
[39]
Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy, 2000, 30(4), 501-508.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00768.x] [PMID: 10718847]
[40]
Johri, R.; Zutshi, U.; Kameshwaran, L.; Atal, C. Effect of quercetin and albizziasaponins on rat mast cell. Ind. J. Physiol. Pharm., 1984, 29, 43-46.
[41]
Min, Y.D.; Choi, C.H.; Bark, H.; Son, H.Y.; Park, H.H.; Lee, S.; Park, J.W.; Park, E.K.; Shin, H.I.; Kim, S.H. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res., 2007, 56(5), 210-215.
[http://dx.doi.org/10.1007/s00011-007-6172-9] [PMID: 17588137]
[42]
Oliveira, T.T.; Campos, K.M.; Cerqueira-Lima, A.T.; Cana Brasil Carneiro, T.; da Silva Velozo, E.; Ribeiro Melo, I.C.; Figueiredo, E.A.; de Jesus Oliveira, E.; de Vasconcelos, D.F.; Pontes-de-Carvalho, L.C.; Alcântara-Neves, N.M.; Figueiredo, C.A. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. Daru, 2015, 23(18), 18.
[http://dx.doi.org/10.1186/s40199-015-0098-5] [PMID: 25890178]
[43]
Moon, H.; Choi, H.H.; Lee, J.Y.; Moon, H.J.; Sim, S.S.; Kim, C.J. Quercetin inhalation inhibits the asthmatic responses by exposure to aerosolized-ovalbumin in conscious guinea-pigs. Arch. Pharm. Res., 2008, 31(6), 771-778.
[http://dx.doi.org/10.1007/s12272-001-1225-2] [PMID: 18563360]
[44]
Rogerio, A.P.; Kanashiro, A.; Fontanari, C.; da Silva, E.V.; Lucisano-Valim, Y.M.; Soares, E.G.; Faccioli, L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res., 2007, 56(10), 402-408.
[http://dx.doi.org/10.1007/s00011-007-7005-6] [PMID: 18026696]
[45]
Jung, C.H.; Lee, J.Y.; Cho, C.H.; Kim, C.J. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch. Pharm. Res., 2007, 30(12), 1599-1607.
[http://dx.doi.org/10.1007/BF02977330] [PMID: 18254248]
[46]
Sakai-Kashiwabara, M.; Asano, K. Inhibitory action of quercetin on eosinophil activation in vitro. Evid. Based Complement. Alternat. Med., 2013, 2013127105
[http://dx.doi.org/10.1155/2013/127105] [PMID: 23840245]
[47]
Fewtrell, C.M.; Gomperts, B.D. Quercetin: A novel inhibitor of Ca2+ influx and exocytosis in rat peritoneal mast cells. Biochim. Biophys. Acta, 1977, 469(1), 52-60.
[http://dx.doi.org/10.1016/0005-2736(77)90325-X] [PMID: 70222]
[48]
Park, H.J.; Lee, C.M.; Jung, I.D.; Lee, J.S.; Jeong, Y.I.; Chang, J.H.; Chun, S.H.; Kim, M.J.; Choi, I.W.; Ahn, S.C.; Shin, Y.K.; Yeom, S.R.; Park, Y.M. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int. Immunopharmacol., 2009, 9(3), 261-267.
[http://dx.doi.org/10.1016/j.intimp.2008.10.021] [PMID: 19061976]
[49]
Chan, A.L.F.; Huang, H.L.; Chien, H.C.; Chen, C.M.; Lin, C.N.; Ko, W.C. Inhibitory effects of quercetin derivatives on phosphodiesterase isozymes and high-affinity [(3) H]-rolipram binding in guinea pig tissues. Invest. New Drugs, 2008, 26(5), 417-424.
[http://dx.doi.org/10.1007/s10637-008-9114-7] [PMID: 18264679]
[50]
Tabak, C.; Arts, I.C.W.; Smit, H.A.; Heederik, D.; Kromhout, D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the MORGEN Study. Am. J. Respir. Crit. Care Med., 2001, 164(1), 61-64.
[http://dx.doi.org/10.1164/ajrccm.164.1.2010025] [PMID: 11435239]
[51]
Weng, Z.; Zhang, B.; Asadi, S.; Sismanopoulos, N.; Butcher, A.; Fu, X.; Katsarou-Katsari, A.; Antoniou, C.; Theoharides, T.C. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One, 2012, 7(3)e33805
[52]
Suzuki, T.; Wang, W.; Lin, J.T.; Shirato, K.; Mitsuhashi, H.; Inoue, H. Aerosolized human neutrophil elastase induces airway constriction and hyperresponsiveness with protection by intravenous pretreatment with half-length secretory leukoprotease inhibitor. Am. J. Respir. Crit. Care Med., 1996, 153(4 Pt 1), 1405-1411.
[http://dx.doi.org/10.1164/ajrccm.153.4.8616573] [PMID: 8616573]
[53]
Heutinck, K.M.; ten Berge, I.J.; Hack, C.E.; Hamann, J.; Rowshani, A.T. Serine proteases of the human immune system in health and disease. Mol. Immunol., 2010, 47(11-12), 1943-1955.
[http://dx.doi.org/10.1016/j.molimm.2010.04.020] [PMID: 20537709]
[54]
Kanehiro, A.; Ikemura, T.; Mäkelä, M.J.; Lahn, M.; Joetham, A.; Dakhama, A.; Gelfand, E.W. Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge. Am. J. Respir. Crit. Care Med., 2001, 163(1), 173-184.
[http://dx.doi.org/10.1164/ajrccm.163.1.2001118] [PMID: 11208644]
[55]
Fuchimoto, Y.; Kanehiro, A.; Miyahara, N.; Koga, H.; Ikeda, G.; Waseda, K.; Tanimoto, Y.; Ueha, S.; Kataoka, M.; Gelfand, E.W.; Tanimoto, M. Requirement for CCR5 in the development of allergen-induced airway hyperresponsiveness and inflammation. Am. J. Respir. Cell Mol. Biol., 2011, 45(6), 1248-1255.
[http://dx.doi.org/10.1165/rcmb.2010-0465OC] [PMID: 21757680]
[56]
Yashiro, M.; Tsukahara, H.; Matsukawa, A.; Yamada, M.; Fujii, Y.; Nagaoka, Y.; Tsuge, M.; Yamashita, N.; Ito, T.; Yamada, M.; Masutani, H.; Yodoi, J.; Morishima, T. Redox-active protein thioredoxin-1 administration ameliorates influenza A virus (H1N1)-induced acute lung injury in mice. Crit. Care Med., 2013, 41(1), 171-181.
[http://dx.doi.org/10.1097/CCM.0b013e3182676352] [PMID: 23222257]
[57]
Miyahara, N.; Takeda, K.; Kodama, T.; Joetham, A.; Taube, C.; Park, J.W.; Miyahara, S.; Balhorn, A.; Dakhama, A.; Gelfand, E.W. Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J. Immunol., 2004, 172(4), 2549-2558.
[http://dx.doi.org/10.4049/jimmunol.172.4.2549] [PMID: 14764728]
[58]
Ito, W.; Tanimoto, M.; Ono, K.; Mizuno, S.; Yoshida, A.; Koga, H.; Fuchimoto, Y.; Kondo, N.; Tanimoto, Y.; Kiura, K.; Matsumoto, K.; Kataoka, M.; Nakamura, T.; Gelfand, E.W.; Kanehiro, A. Growth factors temporally associate with airway responsiveness and inflammation in allergen-exposed mice. Int. Arch. Allergy Immunol., 2008, 145(4), 324-339.
[http://dx.doi.org/10.1159/000110891] [PMID: 18004075]
[59]
Rydell-Törmänen, K.; Johnson, J.R.; Fattouh, R.; Jordana, M.; Erjefält, J.S. Induction of vascular remodeling in the lung by chronic house dust mite exposure. Am. J. Respir. Cell Mol. Biol., 2008, 39(1), 61-67.
[http://dx.doi.org/10.1165/rcmb.2007-0441OC] [PMID: 18314535]
[60]
Aikawa, N.; Ishizaka, A.; Hirasawa, H.; Shimazaki, S.; Yamamoto, Y.; Sugimoto, H.; Shinozaki, M.; Taenaka, N.; Endo, S.; Ikeda, T.; Kawasaki, Y. Reevaluation of the efficacy and safety of the neutrophil elastase inhibitor, Sivelestat, for the treatment of acute lung injury associated with systemic inflammatory response syndrome; a phase IV study. Pulm. Pharmacol. Ther., 2011, 24(5), 549-554.
[http://dx.doi.org/10.1016/j.pupt.2011.03.001] [PMID: 21540122]
[61]
Aikawa, N.; Kawasaki, Y. Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome. Ther. Clin. Risk Manag., 2014, 10, 621-629.
[PMID: 25120368]
[62]
Zeiher, B.G.; Artigas, A.; Vincent, J-L.; Dmitrienko, A.; Jackson, K.; Thompson, B.T.; Bernard, G. Neutrophil elastase inhibition in acute lung injury: Results of the STRIVE study. Crit. Care Med., 2004, 32(8), 1695-1702.
[http://dx.doi.org/10.1097/01.CCM.0000133332.48386.85] [PMID: 15286546]
[63]
Sinha, S.; Watorek, W.; Karr, S.; Giles, J.; Bode, W.; Travis, J. Primary structure of human neutrophil elastase. Proc. Natl. Acad. Sci. USA, 1987, 84(8), 2228-2232.
[http://dx.doi.org/10.1073/pnas.84.8.2228] [PMID: 3550808]
[64]
Hoshi, K.; Kurosawa, S.; Kato, M.; Andoh, K.; Satoh, D.; Kaise, A. Sivelestat, a neutrophil elastase inhibitor, reduces mortality rate of critically ill patients. Tohoku J. Exp. Med., 2005, 207(2), 143-148.
[http://dx.doi.org/10.1620/tjem.207.143] [PMID: 16141683]
[65]
Koga, H.; Miyahara, N.; Fuchimoto, Y.; Ikeda, G.; Waseda, K.; Ono, K.; Tanimoto, Y.; Kataoka, M.; Gelfand, E.W.; Tanimoto, M.; Kanehiro, A. Inhibition of neutrophil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: Neutrophil elastase inhibition attenuates allergic airway responses. Respir. Res., 2013, 14(1), 1-13.
[http://dx.doi.org/10.1186/1465-9921-14-8]
[66]
van Neerven, R.J.J.; Savelkoul, H. Nutrition and allergic diseases. Nutrients, 2017, 9(7), 1-8.
[67]
Nowak, S.; Rychlińska, I. Phenolic acids in the flowers and leaves of Grindelia robusta Nutt. and Grindelia squarrosa Dun. (Asteraceae). Acta Pol. Pharm., 2012, 69(4), 693-698.
[PMID: 22876612]
[68]
Krenn, L.; Wollenweber, E.; Steyrleuthner, K.; Görick, C.; Melzig, M.F. Contribution of methylated exudate flavonoids to the anti-inflammatory activity of Grindelia robusta. Fitoterapia, 2009, 80(5), 267-269.
[http://dx.doi.org/10.1016/j.fitote.2009.03.001] [PMID: 19278665]
[69]
Löser, B.; Kruse, S.O.; Melzig, M.F.; Nahrstedt, A. Inhibition of neutrophil elastase activity by cinnamic acid derivatives from Cimicifuga racemosa. Planta Med., 2000, 66(8), 751-753.
[http://dx.doi.org/10.1055/s-2000-9563] [PMID: 11199135]
[71]
Xu, G-H.; Ryoo, I-J.; Kim, Y-H.; Choo, S-J.; Yoo, I-D. Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja orientalis. Arch. Pharm. Res., 2009, 32(2), 275-282.
[http://dx.doi.org/10.1007/s12272-009-1233-y] [PMID: 19280159]
[72]
Melzig, M.F.; Löser, B.; Ciesielski, S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie, 2001, 56(12), 967-970.
[PMID: 11802662]
[73]
Yen, C.T.; Hsieh, P.W.; Hwang, T.L.; Lan, Y.H.; Chang, F.R.; Wu, Y.C. Flavonol glycosides from Muehlenbeckia platyclada and their anti-inflammatory activity. Chem. Pharm. Bull. (Tokyo), 2009, 57(3), 280-282.
[http://dx.doi.org/10.1248/cpb.57.280] [PMID: 19252320]
[74]
Granica, S.; Czerwińska, M.E.; Żyżyńska-Granica, B.; Kiss, A.K. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia, 2013, 91, 180-188.
[http://dx.doi.org/10.1016/j.fitote.2013.08.026] [PMID: 24028968]
[75]
Luo, X.; Xue, L.; Xu, H.; Zhao, Q.Y. Polygonum aviculare L. extract and quercetin attenuate contraction in airway smooth muscle. Sci. Rep., 2018, 8(1), 1-12.
[76]
Lee, S.M.; Song, Y.H.; Uddin, Z.; Ban, Y.J.; Park, K.H. Prenylated flavonoids from Epimedium koreanum Nakai and their human neutrophil elastase inhibitory effects. Rec. Nat. Prod., 2017, 11, 514-520.
[http://dx.doi.org/10.25135/rnp.66.17.05.090]
[77]
Uddin, Z.; Li, Z.; Song, Y.H.; Kim, J.Y.; Park, K.H. Visconata: A rare flavonol having long chain fatty acid from Dodonaea viscosa which inhibits Human Neutrophil Elastase (HNE). Tetrahedron Lett., 2017, 58, 2507-2511.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.059]
[78]
Kim, J.Y.; Lee, J.H.; Song, Y.H.; Jeong, W.M.; Tan, X.; Uddin, Z.; Park, K.H. Human neutrophil elastase inhibitory alkaloids from Chelidonium majus L. J. Appl. Biol. Chem., 2015, 58, 281-285.
[http://dx.doi.org/10.3839/jabc.2015.044]
[79]
Ryu, H.W.; Kim, K.O.; Yuk, H.J.; Kwon, O-K.; Kim, J.H.; Kim, D-Y.; Na, M.K.; Ahn, K-S.; Oh, S-R. The constituent, anti-inflammation, and human neutrophil elastase inhibitory activity of Gnaphalium affine. J. Funct. Foods, 2016, 27, 674-684.
[http://dx.doi.org/10.1016/j.jff.2016.10.018]
[80]
Leu, Y-L.; Hwang, T-L.; Kuo, P-C.; Liou, K-P.; Huang, B-S.; Chen, G-F. Constituents from Vigna vexillata and their anti-inflammatory activity. Int. J. Mol. Sci., 2012, 13(8), 9754-9768.
[http://dx.doi.org/10.3390/ijms13089754] [PMID: 22949828]
[81]
Hwang, T.L.; Li, G.L.; Lan, Y.H.; Chia, Y.C.; Hsieh, P.W.; Wu, Y.H.; Wu, Y.C. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radic. Biol. Med., 2009, 46(4), 520-528.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.014] [PMID: 19100830]
[82]
Chen, C-H.; Hwang, T-L.; Chen, L-C.; Chang, T-H.; Wei, C-S.; Chen, J.J. Isoflavones and anti-inflammatory constituents from the fruits of Psoralea corylifolia. Phytochemistry, 2017, 143, 186-193.
[http://dx.doi.org/10.1016/j.phytochem.2017.08.004] [PMID: 28825980]
[83]
Hwang, T.L.; Leu, Y.L.; Kao, S.H.; Tang, M.C.; Chang, H.L. Viscolin, a new chalcone from Viscum coloratum, inhibits human neutrophil superoxide anion and elastase release via a cAMP-dependent pathway. Free Radic. Biol. Med., 2006, 41(9), 1433-1441.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.08.001] [PMID: 17023270]
[84]
Liou, J.R.; El-Shazly, M.; Du, Y.C.; Tseng, C.N.; Hwang, T.L.; Chuang, Y.L.; Hsu, Y.M.; Hsieh, P.W.; Wu, C.C.; Chen, S.L.; Hou, M.F.; Chang, F.R.; Wu, Y.C. 1,5-Diphenylpent-3-en-1-ynes and methyl naphthalene carboxylates from Lawsonia inermis and their anti-inflammatory activity. Phytochemistry, 2013, 88, 67-73.
[http://dx.doi.org/10.1016/j.phytochem.2012.11.010] [PMID: 23351982]
[85]
Kanashiro, A.; Souza, J.G.; Kabeya, L.M.; Azzolini, A.E.; Lucisano-Valim, Y.M. Elastase release by stimulated neutrophils inhibited by flavonoids: Importance of the catechol group. Z. Natforsch. C J. Biosci., 2007, 62(5-6), 357-361.
[http://dx.doi.org/10.1515/znc-2007-5-607] [PMID: 17708440]
[86]
Tan, X.F.; Kim, D.W.; Song, Y.H.; Kim, J.Y.; Yuk, H.J.; Wang, Y.; Curtis-Long, M.J.; Park, K.H. Human neutrophil elastase inhibitory potential of flavonoids from Campylotropis hirtella and their kinetics. J. Enzyme Inhib. Med. Chem., 2016. 31(sup1), 16-22.
[http://dx.doi.org/10.3109/14756366.2015.1118683] [PMID: 27558014]
[87]
Vasänge, M.; Liu, B.; Welch, C.J.; Rolfsen, W.; Bohlin, L. The flavonoid constituents of two Polypodium species (Calaguala) and their effect on the elastase release in human neutrophils. Planta Med., 1997, 63(6), 511-517.
[http://dx.doi.org/10.1055/s-2006-957753] [PMID: 9434602]
[88]
Mukherjee, A.B.; Zhang, Z. Allergic asthma: Influence of genetic and environmental factors. J. Biol. Chem., 2011, 286(38), 32883-32889.
[http://dx.doi.org/10.1074/jbc.R110.197046] [PMID: 21799018]
[89]
Tarasidis, G.S.; Wilson, K.F. Diagnosis of asthma: Clinical assessment. Int. Forum Allergy Rhinol., 2015, 5(S1)(Suppl. 1), S23-S26.
[http://dx.doi.org/10.1002/alr.21518] [PMID: 25787268]
[90]
Barnes, P.J.; Drazen, J.M.; Rennard, S.; Thomson, N. Asthma and COPD-Basic Mechanisms and Clinical Management - Pathophysiology of Asthma, 2nd ed; Academic Press, Elsevier: USA, 2009.
[92]
Dipiro, J.T.; Talbert, R.L.; Yee, G.C.; Matzke, G.R.; Wells, B.G.; Michael, P.L. Pharmacotherapy- A Pathophysiological Approach, 7th ed; McGraw-Hill Companies: United States of America, 2008.
[94]
Ranu, H.; Wilde, M.; Madden, B. Pulmonary function tests. Ulster Med. J., 2011, 80(2), 84-90.
[PMID: 22347750]
[95]
Tripathi, K.D., Jr Essentials of Medical Pharmacology; 5th ed.; Jaypee Brothers Medical Publishers (Pvt) Ltd. , 2003.
[96]
Middleton, E., Jr; Kandaswami, C. Effects of flavonoids on immune and inflammatory cell functions. Biochem. Pharmacol., 1992, 43(6), 1167-1179.
[http://dx.doi.org/10.1016/0006-2952(92)90489-6] [PMID: 1562270]
[97]
Middleton, E. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol., 1998, 439, 175-182.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_13] [PMID: 9781303]
[98]
Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988, 334(6184), 661-665.
[http://dx.doi.org/10.1038/334661a0] [PMID: 3045562]
[99]
Hunter, T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236.
[http://dx.doi.org/10.1016/0092-8674(95)90405-0] [PMID: 7834742]
[100]
Tuñón, M.J.; García-Mediavilla, M.V.; Sánchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: Modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab., 2009, 10(3), 256-271.
[http://dx.doi.org/10.2174/138920009787846369] [PMID: 19442088]
[101]
Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev., 2002, 102(12), 4501-4524.
[http://dx.doi.org/10.1021/cr000033x] [PMID: 12475199]
[102]
Dale, D.C.; Link, D.C. The many causes of severe congenital neutropenia. N. Engl. J. Med., 2009, 360(1), 3-5.
[http://dx.doi.org/10.1056/NEJMp0806821] [PMID: 19118300]
[104]
Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759.
[http://dx.doi.org/10.1124/pr.110.002733] [PMID: 21079042]
[105]
Brower, M.S.; Harpel, P.C. Proteolytic cleavage and inactivation of alpha 2-plasmin inhibitor and C1 inactivator by human polymorphonuclear leukocyte elastase. J. Biol. Chem., 1982, 257(16), 9849-9854.
[PMID: 6980881]
[106]
Shieh, B.H.; Travis, J. The reactive site of human alpha 2-antiplasmin. J. Biol. Chem., 1987, 262(13), 6055-6059.
[PMID: 2437112]
[107]
Tamada, T.; Kinoshita, T.; Kurihara, K.; Adachi, M.; Ohhara, T.; Imai, K.; Kuroki, R.; Tada, T. Combined high-resolution neutron and X-ray analysis of inhibited elastase confirms the active-site oxyanion hole but rules against a low-barrier hydrogen bond. J. Am. Chem. Soc., 2009, 131(31), 11033-11040.
[http://dx.doi.org/10.1021/ja9028846] [PMID: 19603802]
[108]
Groutas, W.C.; Dou, D.; Alliston, K.R. Neutrophil elastase inhibitors. Expert Opin. Ther. Pat., 2011, 21(3), 339-354.
[http://dx.doi.org/10.1517/13543776.2011.551115] [PMID: 21235378]
[109]
Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759.
[http://dx.doi.org/10.1124/pr.110.002733] [PMID: 21079042]
[110]
Roghanian, A.; Sallenave, J.M. Neutrophil Elastase (NE) and NE inhibitors: Canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J. Aerosol Med. Pulm. Drug Deliv., 2008, 21(1), 125-144.
[http://dx.doi.org/10.1089/jamp.2007.0653] [PMID: 18518838]
[111]
Wright, J.L.; Cosio, M.; Churg, A. Animal models of chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 295(1), L1-L15.
[http://dx.doi.org/10.1152/ajplung.90200.2008] [PMID: 18456796]
[112]
Bruno, F.; Spaziano, G.; Liparulo, A.; Roviezzo, F.; Nabavi, S.M.; Sureda, A.; Filosa, R.; D’Agostino, B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur. J. Med. Chem., 2018, 153, 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.020] [PMID: 29133059]
[113]
Schaible, A.M.; Filosa, R.; Krauth, V.; Temml, V.; Pace, S.; Garscha, U.; Liening, S.; Weinigel, C.; Rummler, S.; Schieferdecker, S.; Nett, M.; Peduto, A.; Collarile, S.; Scuotto, M.; Roviezzo, F.; Spaziano, G.; de Rosa, M.; Stuppner, H.; Schuster, D.; D’Agostino, B.; Werz, O. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo. Biochem. Pharmacol., 2016, 112, 60-71.
[http://dx.doi.org/10.1016/j.bcp.2016.04.019] [PMID: 27157409]
[114]
Rossi, A.; Caiazzo, E.; Bilancia, R.; Riemma, M.A.; Pagano, E.; Cicala, C.; Ialenti, A.; Zjawiony, J.K.; Izzo, A.A.; Capasso, R.; Roviezzo, F.; Salvinorin, A.; Salvinorin, A. Inhibits airway hyperreactivity induced by ovalbumin sensitization. Front. Pharmacol., 2017, 7(525), 525.
[http://dx.doi.org/10.3389/fphar.2016.00525] [PMID: 28133450]
[115]
Roviezzo, F.; Rossi, A.; Caiazzo, E.; Orlando, P.; Riemma, M.A.; Iacono, V.M.; Guarino, A.; Ialenti, A.; Cicala, C.; Peritore, A.; Capasso, R.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide supplementation during sensitization prevents airway allergic symptoms in the mouse. Front. Pharmacol., 2017, 8(857), 857.
[http://dx.doi.org/10.3389/fphar.2017.00857] [PMID: 29311913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy