Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

New Folate-Modified Human Serum Albumin Conjugated to Cationic Lipid Carriers for Dual Targeting of Mitoxantrone against Breast Cancer

Author(s): Abbas A. Ridha, Soheila Kashanian*, Abbas H. Azandaryani, Ronak Rafipour and Elahe Mahdavian

Volume 21, Issue 4, 2020

Page: [305 - 315] Pages: 11

DOI: 10.2174/1389201020666191114113022

Price: $65

Abstract

Aims: In the present work, folic acid-modified human serum albumin conjugated to cationic solid lipid nanoparticles were synthesized as nanocarriers of mitoxantrone for the treatment of breast cancer.

Background: Dual-targeted drug delivery is a new drug dosing strategy that is frequently used to enhance the therapeutic efficacy of anticancer drugs.

Objective: Dual targeting of the cancer cells was achieved by dual tagging of human serum albumin and folic acid on the surface of the lipid nanoparticles.

Methods: The targeted drug-loaded nanocomplexes were synthesized and characterized using transmission electron microscopy along with photon-correlation and Fourier-transform infrared spectroscopic techniques. The anti-cancer activity of the nanocomplexes was screened against an in-vitro model of MCF-7 and MDA-MB-231 breast cancer cell lines to examine drug efficacy.

Results: The entrapment efficiency and drug loading values for mitoxantrone were calculated to be 97 and 8.84%, respectively. The data from the drug release studies for the system indicated the release profile did not significantly change within a pH range of 5.5-7.4. The hemolysis ratio of the hybrid carrier was less than 5% even at the upper doses of 3 mg/mL, demonstrating its safety for intravenous injection with limited hemolysis and a long blood circulation time.

Conclusion: The cell cytotoxicity results confirmed that the drug hybrid nanocomplex was more toxic to breast cancer cells compared with the free drug. Furthermore, the weakly cationic and small size particles prevented opsonin binding of nanocomplexes, improving blood circulation time and cancer tissue uptake.

Keywords: Mitoxantrone, cationic solid lipid nanoparticle, human serum albumin, folic acid, dual drug targeting, TPLNs.

Graphical Abstract
[1]
Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release, 2009, 133(3), 238-244.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[2]
Akanda, M.H.; Rai, R.; Slipper, I.J.; Chowdhry, B.Z.; Lamprou, D.; Getti, G.; Douroumis, D. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int. J. Pharm., 2015, 493(1-2), 161-171.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.042] [PMID: 26200751]
[3]
Battaglia, L.; Gallarate, M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 497-508.
[http://dx.doi.org/10.1517/17425247.2012.673278] [PMID: 22439808]
[4]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[5]
Gaber, M.; Medhat, W.; Hany, M.; Saher, N.; Fang, J-Y.; Elzoghby, A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. J. Control. Release, 2017, 254, 75-91.
[6]
Muntoni, E.; Martina, K.; Marini, E.; Giorgis, M.; Lazzarato, L.; Salaroglio, I.C.; Riganti, C.; Lanotte, M.; Battaglia, L. Methotrexate-loaded solid lipid nanoparticles: Protein functionalization to improve brain biodistribution. Pharmaceutics, 2019, 11(2), 65.
[http://dx.doi.org/10.3390/pharmaceutics11020065] [PMID: 30717376]
[7]
Doktorovová, S.; Santos, D.L.; Costa, I.; Andreani, T.; Souto, E.B.; Silva, A.M. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int. J. Pharm., 2014, 471(1-2), 18-27.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.011] [PMID: 24836663]
[8]
Li, R.; Eun, J.S.; Lee, M-K. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res., 2011, 34(2), 331-337.
[http://dx.doi.org/10.1007/s12272-011-0220-2] [PMID: 21380818]
[9]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm., 2010, 398(1-2), 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]
[10]
Muzammil Afzal, S.; Naidu, V.G.; Harishankar, N.; Kishan, V. Albumin anchored docetaxel lipid nanoemulsion for improved targeting efficiency - preparation, characterization, cytotoxic, antitumor and in vivo imaging studies. Drug Deliv., 2016, 23(4), 1355-1363.
[PMID: 25987186]
[11]
Neves, A.R.; Queiroz, J.F.; Lima, S.A.C.; Reis, S. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: Uptake mechanism and transport pathways. Bioconjug. Chem., 2017, 28(4), 995-1004.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00705] [PMID: 28355061]
[12]
Arkan, E.; Azandaryani, A.H.; Moradipour, P.; Behbood, L. Biomacromolecular based fibers in nanomedicine: A combination of drug delivery and tissue engineering. Curr. Pharm. Biotechnol., 2017, 18(11), 909-924.
[http://dx.doi.org/10.2174/1389201019666180112144759] [PMID: 29332574]
[13]
Zhakenovich, A.Y.; Valentina, Y.; Tatyana, S.; Narymzhan, N.; Nessipbay, T.; Bakhyt, A.; Maxat, B.; Binara, D.; Evgeniy, B. Infrared spectra and X-ray examination of the complex albumin human with UO22. J. Chem., 2015, 9, 324-328.
[14]
Ma, N.; Liu, J.; He, W.; Li, Z.; Luan, Y.; Song, Y.; Garg, S. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy. J. Colloid Interface Sci., 2017, 490, 598-607.
[15]
Xu, Y.; Jin, X.; Ping, Q.; Cheng, J.; Sun, M.; Cao, F.; You, W.; Yuan, D. A novel lipoprotein-mimic nanocarrier composed of the modified protein and lipid for tumor cell targeting delivery. J. Control. Release, 2010, 146(3), 299-308.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.022] [PMID: 20580913]
[16]
Agarwal, A.; Majumder, S.; Agrawal, H.; Majumdar, S.P.; Agrawal, G. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug. Curr. Nanosci., 2011, 7(1), 71-80.
[http://dx.doi.org/10.2174/157341311794480291]
[17]
Merlot, A.M.; Kalinowski, D.S.; Richardson, D.R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol., 2014, 5, 299.
[18]
Minshall, R.D.; Tiruppathi, C.; Vogel, S.M.; Niles, W.D.; Gilchrist, A.; Hamm, H.E.; Malik, A.B. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J. Cell Biol., 2000, 150(5), 1057-1070.
[http://dx.doi.org/10.1083/jcb.150.5.1057] [PMID: 10973995]
[19]
Chen, C.; Hu, H.; Qiao, M.; Zhao, X.; Wang, Y.; Chen, K.; Chen, D. Anti-tumor activity of paclitaxel through dual-targeting lipoprotein-mimicking nanocarrier. J. Drug Target., 2015, 23(4), 311-322.
[http://dx.doi.org/10.3109/1061186X.2014.994182] [PMID: 25539074]
[20]
Arzeni, C.; Pérez, O.E.; LeBlanc, J.G.; Pilosof, A.M. Egg albumin–folic acid nanocomplexes: Performance as a functional ingredient and biological activity. J. Functional. Foods, 2015, 18, 379-386.
[21]
Hemati Azandaryani, A.; Kashanian, S.; Derakhshandeh, K. Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm. Res., 2017, 34(12), 2798-2808.
[http://dx.doi.org/10.1007/s11095-017-2260-x] [PMID: 29110284]
[22]
Liu, Y.; Sun, J.; Cao, W.; Yang, J.; Lian, H.; Li, X.; Sun, Y.; Wang, Y.; Wang, S.; He, Z. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int. J. Pharm., 2011, 421(1), 160-169.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.006] [PMID: 21945183]
[23]
Rostami, E.; Kashanian, S.; Azandaryani, A.H. Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol. Biol. Rep., 2014, 41(5), 3521-3527.
[http://dx.doi.org/10.1007/s11033-014-3216-4] [PMID: 24515386]
[24]
Venkateswarlu, V.; Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release, 2004, 95(3), 627-638.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.005] [PMID: 15023472]
[25]
Kashanian, S.; Azandaryani, A.H.; Derakhshandeh, K. New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int. J. Nanomedicine, 2011, 6, 2393.
[26]
Motiei, M.; Kashanian, S.; Taherpour, A.A. Hydrophobic amino acids grafted onto chitosan: A novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev. Ind. Pharm., 2017, 43(1), 1-11.
[http://dx.doi.org/10.1080/03639045.2016.1254240] [PMID: 27802776]
[27]
Azandaryani, A.H.; Kashanian, S.; Jamshidnejad-Tosaramandani, T. Recent insights into effective nanomaterials and biomacromolecules conjugation in advanced drug targeting. Curr. Pharm. Biotechnol., 2019, 20(7), 526-541.
[http://dx.doi.org/10.2174/1389201020666190417125101] [PMID: 31038063]
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Jose, S.; Anju, S.S.; Cinu, T.A.; Aleykutty, N.A.; Thomas, S.; Souto, E.B. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm., 2014, 474(1-2), 6-13.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.003] [PMID: 25102112]
[30]
Doktorovová, S.; Kovačević, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2016, 108, 235-252.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.001]
[31]
Rafienia, M.; Nasirian, V.; Mansouri, K.; Vaisi-Raygani, A. Methotrexate-conjugated to polymer quantum dot for cytotoxicity effect improved against MCF-7 and Hela cells. Med. Chem. Res., 2018, 1-11.
[http://dx.doi.org/10.1007/s00044-018-2173-1]
[32]
Lu, B.; Xiong, S-B.; Yang, H.; Yin, X-D.; Chao, R-B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur. J. Pharm. Sci., 2006, 28(1-2), 86-95.
[http://dx.doi.org/10.1016/j.ejps.2006.01.001] [PMID: 16472996]
[33]
Subedi, R.K.; Kang, K.W.; Choi, H-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci., 2009, 37(3-4), 508-513.
[http://dx.doi.org/10.1016/j.ejps.2009.04.008] [PMID: 19406231]
[34]
Ma, P.; Dong, X.; Swadley, C.L.; Gupte, A.; Leggas, M.; Ledebur, H.C.; Mumper, R.J. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J. Biomed. Nanotechnol., 2009, 5(2), 151-161.
[http://dx.doi.org/10.1166/jbn.2009.1021] [PMID: 20055093]
[35]
Enache, M.; Toader, A.M.; Enache, M.I. Mitoxantrone-surfactant interactions: A physicochemical overview. Molecules, 2016, 21(10), 1356.
[http://dx.doi.org/10.3390/molecules21101356] [PMID: 27754390]
[36]
Gomhor, J.; Alqaraghuli, H.; Kashanian, S.; Rafipour, R. Mahdavia n, E.; Mansouri, K. Development and characterization of folic acid-functionalized apoferritin as a delivery vehicle for epirubicin against MCF-7 breast cancer cells; Artif. Cells Nanomed. B., 2018, pp. 1-8.
[37]
Guan, J.; Yan, X.; Zhao, Y.; Sun, Y.; Peng, X. Binding studies of triclocarban with bovine serum albumin: Insights from multi-spectroscopy and molecular modeling methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202, 1-12.
[http://dx.doi.org/10.1016/j.saa.2018.04.070] [PMID: 29777928]
[38]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res., 2013, 12(2), 265-273.
[39]
Shannahan, J.H.; Podila, R.; Aldossari, A.A.; Emerson, H.; Powell, B.A.; Ke, P.C.; Rao, A.M.; Brown, J.M. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol. Sci., 2015, 143(1), 136-146.
[http://dx.doi.org/10.1093/toxsci/kfu217] [PMID: 25326241]
[40]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi, H.; Shakery, M. Folate targeted solid lipid nanoparticles of simvastatin for enhanced cytotoxic effects of doxorubicin in chronic myeloid leukemia. Curr. Nanosci., 2012, 8(2), 249-258.
[http://dx.doi.org/10.2174/157341312800167542]
[41]
Singh, H.; Jindal, S.; Singh, M.; Sharma, G.; Kaur, I.P. Nano-formulation of rifampicin with enhanced bioavailability: Development, characterization and in-vivo safety. Int. J. Pharm., 2015, 485(1-2), 138-151.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.050] [PMID: 25769294]
[42]
Gupta, Y.; Jain, A.; Jain, S.K. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J. Pharm. Pharmacol., 2007, 59(7), 935-940.
[http://dx.doi.org/10.1211/jpp.59.7.0004] [PMID: 17637187]
[43]
Jain, S.K.; Chaurasiya, A.; Gupta, Y.; Jain, A.; Dagur, P.; Joshi, B.; Katoch, V.M. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J. Microencapsul., 2008, 25(5), 289-297.
[http://dx.doi.org/10.1080/02652040701799598] [PMID: 18608808]
[44]
Lakkadwala, S.; Nguyen, S.; Lawrence, J.; Nauli, S.M.; Nesamony, J. Physico-chemical characterisation, cytotoxic activity, and biocompatibility studies of tamoxifen-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification method. J. Microencapsul., 2014, 31(6), 590-599.
[http://dx.doi.org/10.3109/02652048.2014.898707] [PMID: 24697190]
[45]
Hoang, B.; Ernsting, M.J.; Roy, A.; Murakami, M.; Undzys, E.; Li, S-D. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials, 2015, 59, 66-76.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.032] [PMID: 25956852]
[46]
Murawala, P.; Tirmale, A.; Shiras, A.; Prasad, B.L. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells. Mater. Sci. Eng. C, 2014, 34, 158-167.
[http://dx.doi.org/10.1016/j.msec.2013.09.004] [PMID: 24268245]
[47]
Lv, L.; Zhuang, Y.X.; Zhang, H.W.; Tian, N.N.; Dang, W.Z.; Wu, S.Y. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed. Pharmacother., 2017, 91, 999-1005.
[http://dx.doi.org/10.1016/j.biopha.2017.04.097] [PMID: 28525949]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy