Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

FAT10: Function and Relationship with Cancer

Author(s): Senfeng Xiang, Xuejing Shao, Ji Cao, Bo Yang, Qiaojun He* and Meidan Ying*

Volume 13, Issue 3, 2020

Page: [182 - 191] Pages: 10

DOI: 10.2174/1874467212666191113130312

Price: $65

Abstract

Posttranslational protein modifications are known to be extensively involved in cancer, and a growing number of studies have revealed that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 was found to be highly upregulated in various cancer types, such as glioma, hepatocellular carcinoma, breast cancer and gastrointestinal cancer. Protein FAT10ylation and interactions with FAT10 lead to the functional change of proteins, including proteasomal degradation, subcellular delocalization and stabilization, eventually having significant effects on cancer cell proliferation, invasion, metastasis and even tumorigenesis. In this review, we summarized the current knowledge on FAT10 and discussed its biological functions in cancer, as well as potential therapeutic strategies based on the FAT10 pathway.

Keywords: FAT10, FAT10ylation, cancer, substrate, ubiquitin-like, post-translational modification

Graphical Abstract
[1]
Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J., 1998, 17(24), 7151-7160.
[http://dx.doi.org/10.1093/emboj/17.24.7151] [PMID: 9857172]
[2]
Haglund, K.; Dikic, I. Ubiquitylation and cell signaling. EMBO J., 2005, 24(19), 3353-3359.
[http://dx.doi.org/10.1038/sj.emboj.7600808] [PMID: 16148945]
[3]
Ciechanover, A.; Heller, H.; Katz-Etzion, R.; Hershko, A. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc. Natl. Acad. Sci. USA, 1981, 78(2), 761-765.
[http://dx.doi.org/10.1073/pnas.78.2.761] [PMID: 6262770]
[4]
Jin, J.; Li, X.; Gygi, S.P.; Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature, 2007, 447(7148), 1135-1138.
[http://dx.doi.org/10.1038/nature05902] [PMID: 17597759]
[5]
Matyskiela, M.E.; Martin, A. Design principles of a universal protein degradation machine. J. Mol. Biol., 2013, 425(2), 199-213.
[http://dx.doi.org/10.1016/j.jmb.2012.11.001] [PMID: 23147216]
[6]
Xu, P.; Duong, D.M.; Seyfried, N.T.; Cheng, D.; Xie, Y.; Robert, J.; Rush, J.; Hochstrasser, M.; Finley, D.; Peng, J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009, 137(1), 133-145.
[http://dx.doi.org/10.1016/j.cell.2009.01.041] [PMID: 19345192]
[7]
Gareau, J.R.; Lima, C.D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 861-871.
[http://dx.doi.org/10.1038/nrm3011] [PMID: 21102611]
[8]
Welchman, R.L.; Gordon, C.; Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol., 2005, 6(8), 599-609.
[http://dx.doi.org/10.1038/nrm1700] [PMID: 16064136]
[9]
Schreiber, A.; Peter, M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim. Biophys. Acta, 2014, 1843(1), 163-181.
[http://dx.doi.org/10.1016/j.bbamcr.2013.03.019] [PMID: 23545414]
[10]
Lukasiak, S.; Schiller, C.; Oehlschlaeger, P.; Schmidtke, G.; Krause, P.; Legler, D.F.; Autschbach, F.; Schirmacher, P.; Breuhahn, K.; Groettrup, M. Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene, 2008, 27(46), 6068-6074.
[http://dx.doi.org/10.1038/onc.2008.201] [PMID: 18574467]
[11]
Ebstein, F.; Lange, N.; Urban, S.; Seifert, U.; Krüger, E.; Kloetzel, P.M. Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int. J. Biochem. Cell Biol., 2009, 41(5), 1205-1215.
[http://dx.doi.org/10.1016/j.biocel.2008.10.023] [PMID: 19028597]
[12]
Ji, F.; Jin, X.; Jiao, C.H.; Xu, Q.W.; Wang, Z.W.; Chen, Y.L. FAT10 level in human gastric cancer and its relation with mutant p53 level, lymph node metastasis and TNM staging. World J. Gastroenterol., 2009, 15(18), 2228-2233.
[http://dx.doi.org/10.3748/wjg.15.2228] [PMID: 19437562]
[13]
Yuan, J.; Tu, Y.; Mao, X.; He, S.; Wang, L.; Fu, G.; Zong, J.; Zhang, Y. Increased expression of FAT10 is correlated with progression and prognosis of human glioma. Pathol. Oncol. Res., 2012, 18(4), 833-839.
[http://dx.doi.org/10.1007/s12253-012-9511-2] [PMID: 22402871]
[14]
Sun, G.H.; Liu, Y.D.; Yu, G.; Li, N.; Sun, X.; Yang, J. Increased FAT10 expression is related to poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol., 2014, 35(6), 5167-5171.
[http://dx.doi.org/10.1007/s13277-014-1670-1] [PMID: 24492942]
[15]
Han, T.; Liu, Z.; Li, H.; Xie, W.; Zhang, R.; Zhu, L.; Guo, F.; Han, Y.; Sheng, Y.; Xie, X. High expression of UBD correlates with epirubicin resistance and indicates poor prognosis in triple-negative breast cancer. OncoTargets Ther., 2015, 8, 1643-1649.
[PMID: 26185453]
[16]
Liu, Y.C.; Pan, J.; Zhang, C.; Fan, W.; Collinge, M.; Bender, J.R.; Weissman, S.M. A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4313-4318.
[http://dx.doi.org/10.1073/pnas.96.8.4313] [PMID: 10200259]
[17]
Li, T.; Santockyte, R.; Yu, S.; Shen, R.F.; Tekle, E.; Lee, C.G.; Yang, D.C.; Chock, P.B. FAT10 modifies p53 and upregulates its transcriptional activity. Arch. Biochem. Biophys., 2011, 509(2), 164-169.
[http://dx.doi.org/10.1016/j.abb.2011.02.017] [PMID: 21396347]
[18]
Yuan, R.; Wang, K.; Hu, J.; Yan, C.; Li, M.; Yu, X.; Liu, X.; Lei, J.; Guo, W.; Wu, L.; Hong, K.; Shao, J. Ubiquitin-like protein FAT10 promotes the invasion and metastasis of hepatocellular carcinoma by modifying β-catenin degradation. Cancer Res., 2014, 74(18), 5287-5300.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0284] [PMID: 25056121]
[19]
Liu, X.; Chen, L.; Ge, J.; Yan, C.; Huang, Z.; Hu, J.; Wen, C.; Li, M.; Huang, D.; Qiu, Y.; Hao, H.; Yuan, R.; Lei, J.; Yu, X.; Shao, J. The Ubiquitin-like Protein FAT10 Stabilizes eEF1A1 Expression to Promote Tumor Proliferation in a Complex Manner. Cancer Res., 2016, 76(16), 4897-4907.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3118] [PMID: 27312528]
[20]
Fan, W.; Cai, W.; Parimoo, S.; Schwarz, D.C.; Lennon, G.G.; Weissman, S.M. Identification of seven new human MHC class I region genes around the HLA-F locus. Immunogenetics, 1996, 44(2), 97-103.
[http://dx.doi.org/10.1007/BF02660056] [PMID: 8662070]
[21]
Groettrup, M.; Pelzer, C.; Schmidtke, G.; Hofmann, K. Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem. Sci., 2008, 33(5), 230-237.
[http://dx.doi.org/10.1016/j.tibs.2008.01.005] [PMID: 18353650]
[22]
Raasi, S.; Schmidtke, G.; Groettrup, M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J. Biol. Chem., 2001, 276(38), 35334-35343.
[http://dx.doi.org/10.1074/jbc.M105139200] [PMID: 11445583]
[23]
Kerscher, O.; Felberbaum, R.; Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol., 2006, 22, 159-180.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010605.093503] [PMID: 16753028]
[24]
Aichem, A.; Kalveram, B.; Spinnenhirn, V.; Kluge, K.; Catone, N.; Johansen, T.; Groettrup, M. The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation. J. Cell Sci., 2012, 125(Pt 19), 4576-4585.
[http://dx.doi.org/10.1242/jcs.107789] [PMID: 22797925]
[25]
Leng, L.; Xu, C.; Wei, C.; Zhang, J.; Liu, B.; Ma, J.; Li, N.; Qin, W.; Zhang, W.; Zhang, C.; Xing, X.; Zhai, L.; Yang, F.; Li, M.; Jin, C.; Yuan, Y.; Xu, P.; Qin, J.; Xie, H.; He, F.; Wang, J. A proteomics strategy for the identification of FAT10-modified sites by mass spectrometry. J. Proteome Res., 2014, 13(1), 268-276.
[http://dx.doi.org/10.1021/pr400395k] [PMID: 23862649]
[26]
Chiu, Y.H.; Sun, Q.; Chen, Z.J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell, 2007, 27(6), 1014-1023.
[http://dx.doi.org/10.1016/j.molcel.2007.08.020] [PMID: 17889673]
[27]
Aichem, A.; Catone, N.; Groettrup, M. Investigations into the auto-FAT10ylation of the bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1. FEBS J., 2014, 281(7), 1848-1859.
[http://dx.doi.org/10.1111/febs.12745] [PMID: 24528925]
[28]
Pelzer, C.; Kassner, I.; Matentzoglu, K.; Singh, R.K.; Wollscheid, H.P.; Scheffner, M.; Schmidtke, G.; Groettrup, M. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem., 2007, 282(32), 23010-23014.
[http://dx.doi.org/10.1074/jbc.C700111200] [PMID: 17580310]
[29]
Gu, X.; Zhao, F.; Zheng, M.; Fei, X.; Chen, X.; Huang, S.; Xie, Y.; Mao, Y. Cloning and characterization of a gene encoding the human putative ubiquitin conjugating enzyme E2Z (UBE2Z). Mol. Biol. Rep., 2007, 34(3), 183-188.
[http://dx.doi.org/10.1007/s11033-006-9033-7] [PMID: 17160626]
[30]
Kito, K.; Yeh, E.T.; Kamitani, T. NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression. J. Biol. Chem., 2001, 276(23), 20603-20609.
[http://dx.doi.org/10.1074/jbc.M100920200] [PMID: 11259415]
[31]
Aichem, A.; Anders, S.; Catone, N.; Rößler, P.; Stotz, S.; Berg, A.; Schwab, R.; Scheuermann, S.; Bialas, J.; Schütz-Stoffregen, M.C.; Schmidtke, G.; Peter, C.; Groettrup, M.; Wiesner, S. The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Nat. Commun., 2018, 9(1), 3321.
[http://dx.doi.org/10.1038/s41467-018-05776-3] [PMID: 30127417]
[32]
Canaan, A.; Yu, X.; Booth, C.J.; Lian, J.; Lazar, I.; Gamfi, S.L.; Castille, K.; Kohya, N.; Nakayama, Y.; Liu, Y.C.; Eynon, E.; Flavell, R.; Weissman, S.M. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences. Mol. Cell. Biol., 2006, 26(13), 5180-5189.
[http://dx.doi.org/10.1128/MCB.00966-05] [PMID: 16782901]
[33]
Raasi, S.; Schmidtke, G.; de Giuli, R.; Groettrup, M. A ubiquitin-like protein which is synergistically inducible by interferon-gamma and tumor necrosis factor-alpha. Eur. J. Immunol.,, 1999, 29(12), 4030-4036.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199912)29:12<4030:: AID-IMMU4030>3.0.CO;2-Y] [PMID: 10602013]
[34]
Zamarron, B.F.; Chen, W. Dual roles of immune cells and their factors in cancer development and progression. Int. J. Biol. Sci., 2011, 7(5), 651-658.
[http://dx.doi.org/10.7150/ijbs.7.651] [PMID: 21647333]
[35]
Liu, L.; Dong, Z.; Liang, J.; Cao, C.; Sun, J.; Ding, Y.; Wu, D. As an independent prognostic factor, FAT10 promotes hepatitis B virus-related hepatocellular carcinoma progression via Akt/GSK3β pathway. Oncogene, 2014, 33(7), 909-920.
[http://dx.doi.org/10.1038/onc.2013.236] [PMID: 23812429]
[36]
Liu, S.; Jin, Y.; Zhang, D.; Wang, J.; Wang, G.; Lee, C.G.L. Investigating the Promoter of FAT10 Gene in HCC Patients. Genes (Basel), 2018, 9(7)E319
[http://dx.doi.org/10.3390/genes9070319] [PMID: 29949944]
[37]
Xue, F.; Zhu, L.; Meng, Q.W.; Wang, L.; Chen, X.S.; Zhao, Y.B.; Xing, Y.; Wang, X.Y.; Cai, L. FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer. OncoTargets Ther., 2016, 9, 4397-4409.
[http://dx.doi.org/10.2147/OTT.S98410] [PMID: 27499634]
[38]
Zhao, S.; Jiang, T.; Tang, H.; Cui, F.; Liu, C.; Guo, F.; Lu, H.; Xue, Y.; Jiang, W.; Peng, Z.; Yan, D. Ubiquitin D is an independent prognostic marker for survival in stage IIB-IIC colon cancer patients treated with 5-fluoruracil-based adjuvant chemotherapy. J. Gastroenterol. Hepatol., 2015, 30(4), 680-688.
[http://dx.doi.org/10.1111/jgh.12784] [PMID: 25238407]
[39]
Choi, Y.; Kim, J.K.; Yoo, J.Y. NFκB and STAT3 synergistically activate the expression of FAT10, a gene counteracting the tumor suppressor p53. Mol. Oncol., 2014, 8(3), 642-655.
[http://dx.doi.org/10.1016/j.molonc.2014.01.007] [PMID: 24518302]
[40]
Katsuragi, Y.; Ichimura, Y.; Komatsu, M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J., 2015, 282(24), 4672-4678.
[http://dx.doi.org/10.1111/febs.13540] [PMID: 26432171]
[41]
Duran, A.; Amanchy, R.; Linares, J.F.; Joshi, J.; Abu-Baker, S.; Porollo, A.; Hansen, M.; Moscat, J.; Diaz-Meco, M.T. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell, 2011, 44(1), 134-146.
[http://dx.doi.org/10.1016/j.molcel.2011.06.038] [PMID: 21981924]
[42]
Xi, G.; Shen, X.; Wai, C.; Vilas, C.K.; Clemmons, D.R. Hyperglycemia stimulates p62/PKCζ interaction, which mediates NF-κB activation, increased Nox4 expression, and inflammatory cytokine activation in vascular smooth muscle. FASEB J., 2015, 29(12), 4772-4782.
[http://dx.doi.org/10.1096/fj.15-275453] [PMID: 26231202]
[43]
Bae, S.H.; Sung, S.H.; Oh, S.Y.; Lim, J.M.; Lee, S.K.; Park, Y.N.; Lee, H.E.; Kang, D.; Rhee, S.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab., 2013, 17(1), 73-84.
[http://dx.doi.org/10.1016/j.cmet.2012.12.002] [PMID: 23274085]
[44]
Xu, L.Z.; Li, S.S.; Zhou, W.; Kang, Z.J.; Zhang, Q.X.; Kamran, M.; Xu, J.; Liang, D.P.; Wang, C.L.; Hou, Z.J.; Wan, X.B.; Wang, H.J.; Lam, E.W.; Zhao, Z.W.; Liu, Q. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene, 2016.
[PMID: 27345399]
[45]
Umemura, A.; He, F.; Taniguchi, K.; Nakagawa, H.; Yamachika, S.; Font-Burgada, J.; Zhong, Z.; Subramaniam, S.; Raghunandan, S.; Duran, A.; Linares, J.F.; Reina-Campos, M.; Umemura, S.; Valasek, M.A.; Seki, E.; Yamaguchi, K.; Koike, K.; Itoh, Y.; Diaz-Meco, M.T.; Moscat, J.; Karin, M. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell, 2016, 29(6), 935-948.
[http://dx.doi.org/10.1016/j.ccell.2016.04.006] [PMID: 27211490]
[46]
Humpton, T.J.; Vousden, K.H. Regulation of Cellular Metabolism and Hypoxia by p53. Cold Spring Harb. Perspect. Med., 2016, 6(7)a026146
[http://dx.doi.org/10.1101/cshperspect.a026146] [PMID: 27371670]
[47]
Li, Y.; Yang, J.Y.; Xie, X.; Jie, Z.; Zhang, L.; Shi, J.; Lin, D.; Gu, M.; Zhou, X.; Li, H.S.; Watowich, S.S.; Jain, A.; Yun Jung, S.; Qin, J.; Cheng, X.; Sun, S.C. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res., 2019, 29(6), 474-485.
[http://dx.doi.org/10.1038/s41422-019-0174-3] [PMID: 31086255]
[48]
Zhou, X.; Yu, J.; Cheng, X.; Zhao, B.; Manyam, G.C.; Zhang, L.; Schluns, K.; Li, P.; Wang, J.; Sun, S.C. The deubiquitinase Otub1 controls the activation of CD8+ T cells and NK cells by regulating IL-15-mediated priming. Nat. Immunol., 2019, 20(7), 879-889.
[http://dx.doi.org/10.1038/s41590-019-0405-2] [PMID: 31182807]
[49]
Bialas, J.; Boehm, A.N.; Catone, N.; Aichem, A.; Groettrup, M. The ubiquitin-like modifier FAT10 stimulates the activity of deubiquitylating enzyme OTUB1. J. Biol. Chem., 2019, 294(12), 4315-4330.
[http://dx.doi.org/10.1074/jbc.RA118.005406] [PMID: 30718280]
[50]
Musacchio, A.; Salmon, E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol., 2007, 8(5), 379-393.
[http://dx.doi.org/10.1038/nrm2163] [PMID: 17426725]
[51]
Lara-Gonzalez, P.; Westhorpe, F.G.; Taylor, S.S. The spindle assembly checkpoint. Curr. Biol., 2012, 22(22), R966-R980.
[http://dx.doi.org/10.1016/j.cub.2012.10.006] [PMID: 23174302]
[52]
Ren, J.; Wang, Y.; Gao, Y.; Mehta, S.B.; Lee, C.G. FAT10 mediates the effect of TNF-α in inducing chromosomal instability. J. Cell Sci., 2011, 124(Pt 21), 3665-3675.
[http://dx.doi.org/10.1242/jcs.087403] [PMID: 22025632]
[53]
Theng, S.S.; Wang, W.; Mah, W.C.; Chan, C.; Zhuo, J.; Gao, Y.; Qin, H.; Lim, L.; Chong, S.S.; Song, J.; Lee, C.G. Disruption of FAT10-MAD2 binding inhibits tumor progression. Proc. Natl. Acad. Sci. USA, 2014, 111(49), E5282-E5291.
[http://dx.doi.org/10.1073/pnas.1403383111] [PMID: 25422469]
[54]
Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol., 2012, 4(5)a008052
[http://dx.doi.org/10.1101/cshperspect.a008052] [PMID: 22438566]
[55]
Lai, T.Y.; Su, C.C.; Kuo, W.W.; Yeh, Y.L.; Kuo, W.H.; Tsai, F.J.; Tsai, C.H.; Weng, Y.J.; Huang, C.Y.; Chen, L.M. β-catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol. Rep., 2011, 26(2), 415-422.
[PMID: 21617877]
[56]
Nguyen, D.X.; Chiang, A.C.; Zhang, X.H.; Kim, J.Y.; Kris, M.G.; Ladanyi, M.; Gerald, W.L.; Massagué, J. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 2009, 138(1), 51-62.
[http://dx.doi.org/10.1016/j.cell.2009.04.030] [PMID: 19576624]
[57]
Kapp, L.D.; Lorsch, J.R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem., 2004, 73, 657-704.
[http://dx.doi.org/10.1146/annurev.biochem.73.030403.080419] [PMID: 15189156]
[58]
Schulz, I.; Engel, C.; Niestroj, A.J.; Kehlen, A.; Rahfeld, J.U.; Kleinschmidt, M.; Lehmann, K.; Roßner, S.; Demuth, H.U. A non-canonical function of eukaryotic elongation factor 1A1: regulation of interleukin-6 expression. Biochim. Biophys. Acta, 2014, 1843(5), 965-975.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.022] [PMID: 24487064]
[59]
Grassi, G.; Scaggiante, B.; Farra, R.; Dapas, B.; Agostini, F.; Baiz, D.; Rosso, N.; Tiribelli, C. The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie, 2007, 89(12), 1544-1552.
[http://dx.doi.org/10.1016/j.biochi.2007.07.007] [PMID: 17825975]
[60]
Zhu, G.; Yan, W.; He, H.C.; Bi, X.C.; Han, Z.D.; Dai, Q.S.; Ye, Y.K.; Liang, Y.X.; Wang, J.; Zhong, W. Inhibition of proliferation, invasion, and migration of prostate cancer cells by downregulating elongation factor-1alpha expression. Mol. Med., 2009, 15(11-12), 363-370.
[http://dx.doi.org/10.2119/molmed.2009.00082] [PMID: 19707524]
[61]
Maltseva, D.V.; Khaustova, N.A.; Fedotov, N.N.; Matveeva, E.O.; Lebedev, A.E.; Shkurnikov, M.U.; Galatenko, V.V.; Schumacher, U.; Tonevitsky, A.G. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J. Clin. Bioinforma., 2013, 3(1), 13.
[http://dx.doi.org/10.1186/2043-9113-3-13] [PMID: 23876162]
[62]
Lange, N.; Unger, F.T.; Schöppler, M.; Pursche, K.; Juhl, H.; David, K.A. Identification and Validation of a Potential Marker of Tissue Quality Using Gene Expression Analysis of Human Colorectal Tissue. PLoS One, 2015, 10(7)e0133987
[http://dx.doi.org/10.1371/journal.pone.0133987] [PMID: 26222051]
[63]
Leclercq, T.M.; Moretti, P.A.; Pitson, S.M. Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene, 2011, 30(3), 372-378.
[http://dx.doi.org/10.1038/onc.2010.420] [PMID: 20838377]
[64]
Scaggiante, B.; Dapas, B.; Bonin, S.; Grassi, M.; Zennaro, C.; Farra, R.; Cristiano, L.; Siracusano, S.; Zanconati, F.; Giansante, C.; Grassi, G. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br. J. Cancer, 2012, 106(1), 166-173.
[http://dx.doi.org/10.1038/bjc.2011.500] [PMID: 22095224]
[65]
Yu, X.; Liu, X.; Liu, T.; Hong, K.; Lei, J.; Yuan, R.; Shao, J. Identification of a novel binding protein of FAT10: eukaryotic translation elongation factor 1A1. Dig. Dis. Sci., 2012, 57(9), 2347-2354.
[http://dx.doi.org/10.1007/s10620-012-2189-1] [PMID: 22569823]
[66]
Tamm, I.; Wang, Y.; Sausville, E.; Scudiero, D.A.; Vigna, N.; Oltersdorf, T.; Reed, J.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res., 1998, 58(23), 5315-5320.
[PMID: 9850056]
[67]
Kogo, R.; How, C.; Chaudary, N.; Bruce, J.; Shi, W.; Hill, R.P.; Zahedi, P.; Yip, K.W.; Liu, F.F. The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget, 2015, 6(2), 1090-1100.
[http://dx.doi.org/10.18632/oncotarget.2836] [PMID: 25473903]
[68]
Azuhata, T.; Scott, D.; Takamizawa, S.; Wen, J.; Davidoff, A.; Fukuzawa, M.; Sandler, A. The inhibitor of apoptosis protein survivin is associated with high-risk behavior of neuroblastoma. J. Pediatr. Surg., 2001, 36(12), 1785-1791.
[http://dx.doi.org/10.1053/jpsu.2001.28839] [PMID: 11733907]
[69]
Ferrario, A.; Rucker, N.; Wong, S.; Luna, M.; Gomer, C.J. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res., 2007, 67(10), 4989-4995.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4785] [PMID: 17510430]
[70]
Margulis, V.; Lotan, Y.; Shariat, S.F. Survivin: a promising biomarker for detection and prognosis of bladder cancer. World J. Urol., 2008, 26(1), 59-65.
[http://dx.doi.org/10.1007/s00345-007-0219-y] [PMID: 17962949]
[71]
Dong, D.; Jiang, W.; Lei, J.; Chen, L.; Liu, X.; Ge, J.; Che, B.; Xi, X.; Shao, J. Ubiquitin-like protein FAT10 promotes bladder cancer progression by stabilizing survivin. Oncotarget, 2016, 7(49), 81463-81473.
[http://dx.doi.org/10.18632/oncotarget.12976] [PMID: 27806337]
[72]
Yan, J.; Lei, J.; Chen, L.; Deng, H.; Dong, D.; Jin, T.; Liu, X.; Yuan, R.; Qiu, Y.; Ge, J.; Peng, X.; Shao, J. Human Leukocyte Antigen F Locus Adjacent Transcript 10 Overexpression Disturbs WISP1 Protein and mRNA Expression to Promote Hepatocellular Carcinoma Progression. Hepatology, 2018, 68(6), 2268-2284.
[http://dx.doi.org/10.1002/hep.30105] [PMID: 29790184]
[73]
Luo, Z.; Yu, G.; Lee, H.W.; Li, L.; Wang, L.; Yang, D.; Pan, Y.; Ding, C.; Qian, J.; Wu, L.; Chu, Y.; Yi, J.; Wang, X.; Sun, Y.; Jeong, L.S.; Liu, J.; Jia, L. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res., 2012, 72(13), 3360-3371.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0388] [PMID: 22562464]
[74]
Nawrocki, S.T.; Kelly, K.R.; Smith, P.G.; Espitia, C.M.; Possemato, A.; Beausoleil, S.A.; Milhollen, M.; Blakemore, S.; Thomas, M.; Berger, A.; Carew, J.S. Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin. cancer Res. : an official J. Am. Assoc. Cancer Res., 19(13), 3577-90.2013,
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3212]
[75]
Zhang, Q.; Hou, D.; Luo, Z.; Chen, P.; Lv, B.; Wu, L.; Ma, Y.; Chu, Y.; Liu, H.; Liu, F.; Yu, S.; Zhang, J.; Yang, D.; Liu, J. The novel protective role of P27 in MLN4924-treated gastric cancer cells. Cell Death Dis., 2015, 6e1867
[http://dx.doi.org/10.1038/cddis.2015.215] [PMID: 26313918]
[76]
Sarantopoulos, J.; Shapiro, G.I.; Cohen, R.B.; Clark, J.W.; Kauh, J.S.; Weiss, G.J.; Cleary, J.M.; Mahalingam, D.; Pickard, M.D.; Faessel, H.M.; Berger, A.J.; Burke, K.; Mulligan, G.; Dezube, B.J.; Harvey, R.D.; Phase, I. Study of the Investigational NEDD8-Activating Enzyme Inhibitor Pevonedistat (TAK-924/MLN4924) in Patients with Advanced Solid Tumors. Clin. Cancer Res.: an official J. Am. Assoc. Cancer Res., 22(4), 847-857.2016,
[77]
Soucy, T.A.; Smith, P.G.; Milhollen, M.A.; Berger, A.J.; Gavin, J.M.; Adhikari, S.; Brownell, J.E.; Burke, K.E.; Cardin, D.P.; Critchley, S.; Cullis, C.A.; Doucette, A.; Garnsey, J.J.; Gaulin, J.L.; Gershman, R.E.; Lublinsky, A.R.; McDonald, A.; Mizutani, H.; Narayanan, U.; Olhava, E.J.; Peluso, S.; Rezaei, M.; Sintchak, M.D.; Talreja, T.; Thomas, M.P.; Traore, T.; Vyskocil, S.; Weatherhead, G.S.; Yu, J.; Zhang, J.; Dick, L.R.; Claiborne, C.F.; Rolfe, M.; Bolen, J.B.; Langston, S.P. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009, 458(7239), 732-736.
[http://dx.doi.org/10.1038/nature07884] [PMID: 19360080]
[78]
Hyer, M.L.; Milhollen, M.A.; Ciavarri, J.; Fleming, P.; Traore, T.; Sappal, D.; Huck, J.; Shi, J.; Gavin, J.; Brownell, J.; Yang, Y.; Stringer, B.; Griffin, R.; Bruzzese, F.; Soucy, T.; Duffy, J.; Rabino, C.; Riceberg, J.; Hoar, K.; Lublinsky, A.; Menon, S.; Sintchak, M.; Bump, N.; Pulukuri, S.M.; Langston, S.; Tirrell, S.; Kuranda, M.; Veiby, P.; Newcomb, J.; Li, P.; Wu, J.T.; Powe, J.; Dick, L.R.; Greenspan, P.; Galvin, K.; Manfredi, M.; Claiborne, C.; Amidon, B.S.; Bence, N.F. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat. Med., 2018, 24(2), 186-193.
[http://dx.doi.org/10.1038/nm.4474] [PMID: 29334375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy