Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Rational Identification of Hsp90 Inhibitors as Anticancer Lead Molecules by Structure Based Drug Designing Approach

Author(s): Sayan D. Gupta*, Pappu S. Swapanthi, Deshetti Bhagya, Fernando Federicci, Gisela I. Mazaira, Mario D. Galigniana, Chavali V.S. Subrahmanyam, Naryanasamy L. Gowrishankar and Nulgumnalli M. Raghavendra

Volume 20, Issue 3, 2020

Page: [369 - 385] Pages: 17

DOI: 10.2174/1871520619666191111152050

Price: $65

Abstract

Background: Heat shock protein 90 (Hsp90) is an encouraging anticancer target for the development of clinically significant molecules. Schiff bases play a crucial role in anticancer research because of their ease of synthesis and excellent antiproliferative effect against multiple cancer cell lines. Therefore, we started our research work with the discovery of resorcinol/4-chloro resorcinol derived Schiff bases as Hsp90 inhibitors, which resulted in the discovery of a viable anticancer lead molecule.

Objective: The objective of the study is to discover more promising lead molecules using our previously established drug discovery program, wherein the rational drug design is achieved by molecular docking studies.

Methods: The docking studies were carried out by using Surflex Geom X programme of Sybyl X-1.2 version software. The molecules with good docking scores were synthesized and their structures were confirmed by IR, 1H NMR and mass spectral analysis. Subsequently, the molecules were evaluated for their potential to attenuate Hsp90 ATPase activity by Malachite green assay. The anticancer effect of the molecules was examined on PC3 prostate cancer cell lines by utilizing 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology.

Results: Schiff bases 11, 12, 20, 23 and 27 exhibiting IC50 value below 1μM and 15μM, in malachite green assay and MTT assay, respectively, emerged as viable lead molecules for future optimization.

Conclusion: The research work will pave the way for the rational development of cost-effective Schiff bases as Hsp90 inhibitors as the method employed for the synthesis of the molecules is simple, economic and facile.

Keywords: Hsp90, cancer, molecular docking, malachite green, MTT, schiff bases.

Graphical Abstract
[1]
Taipale, M.; Jarosz, D.F.; Lindquist, S. HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat. Rev. Mol. Cell Biol., 2010, 11(7), 515-528.
[http://dx.doi.org/10.1038/nrm2918] [PMID: 20531426]
[2]
Karkoulis, P.K.; Stravopodis, D.J.; Konstantakou, E.G.; Voutsinas, G.E. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder cancer cell lines. Cancer Cell Int., 2013, 13(1), 11.
[http://dx.doi.org/10.1186/1475-2867-13-11] [PMID: 23394616]
[3]
Gupta, S.D. Hsp90 flexibility and development of its inhibitors for the treatment of cancer. Curr. Chem. Biol., 2018, 12, 53-64.
[http://dx.doi.org/10.2174/2212796812666180405144003]
[4]
Bagatell, R.; Whitesell, L. Altered Hsp90 function in cancer: A unique therapeutic opportunity. Mol. Cancer Ther., 2004, 3(8), 1021-1030.
[PMID: 15299085]
[5]
Sreedhar, A.S.; Kalmár, E.; Csermely, P.; Shen, Y-F. Hsp90 isoforms: Functions, expression and clinical importance. FEBS Lett., 2004, 562(1-3), 11-15.
[http://dx.doi.org/10.1016/S0014-5793(04)00229-7] [PMID: 15069952]
[6]
Wang, Y.; Koay, Y.C.; McAlpine, S.R. How Selective are Hsp90 inhibitors for cancer cells over normal cells? ChemMedChem, 2017, 12(5), 353-357.
[http://dx.doi.org/10.1002/cmdc.201600595] [PMID: 28139075]
[7]
Kadasi, S.; Costa, T.E.M.M.; Arukala, N.; Toshakani, M.; Duggineti, C.; Thota, S.; Gupta, S.D.; Raj, S.; Penido, C.; Henriques, M.G.; Raghavendra, N.M. Drug design, synthesis and in vitro evaluation of substituted benzofurans as Hsp90 inhibitors. Med. Chem., 2018, 14(1), 44-52.
[http://dx.doi.org/10.2174/1573406413666170623085534] [PMID: 28641528]
[8]
Ren, J.; Li, J.; Wang, Y.; Chen, W.; Shen, A.; Liu, H.; Chen, D.; Cao, D.; Li, Y.; Zhang, N.; Xu, Y.; Geng, M.; He, J.; Xiong, B.; Shen, J. Identification of a new series of potent diphenol HSP90 inhibitors by fragment merging and structure-based optimization. Bioorg. Med. Chem. Lett., 2014, 24(11), 2525-2529.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.100] [PMID: 24751441]
[9]
Gupta, S.D.; Bommaka, M.K.; Mazaira, G.I.; Galigniana, M.D.; Subrahmanyam, C.V.S.; Gowrishankar, N.L.; Raghavendra, N.M. Molecular docking study, synthesis and biological evaluation of Mannich bases as Hsp90 inhibitors. Int. J. Biol. Macromol., 2015, 80, 253-259.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.039] [PMID: 26116388]
[10]
Misini Ignjatović, M.; Caldararu, O.; Dong, G.; Muñoz-Gutierrez, C.; Adasme-Carreño, F.; Ryde, U. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. J. Comput. Aided Mol. Des., 2016, 30(9), 707-730.
[http://dx.doi.org/10.1007/s10822-016-9942-z] [PMID: 27565797]
[11]
Gopalsamy, A.; Shi, M.; Golas, J.; Vogan, E.; Jacob, J.; Johnson, M.; Lee, F.; Nilakantan, R.; Petersen, R.; Svenson, K.; Chopra, R.; Tam, M.S.; Wen, Y.; Ellingboe, J.; Arndt, K.; Boschelli, F. Discovery of benzisoxazoles as potent inhibitors of chaperone heat shock protein 90. J. Med. Chem., 2008, 51(3), 373-375.
[http://dx.doi.org/10.1021/jm701385c] [PMID: 18197612]
[12]
Park, S.Y.; Oh, Y.J.; Lho, Y.; Jeong, J.H.; Liu, K-H.; Song, J.; Kim, S-H.; Ha, E.; Seo, Y.H. Design, synthesis, and biological evaluation of a series of resorcinol-based N-benzyl benzamide derivatives as potent Hsp90 inhibitors. Eur. J. Med. Chem., 2018, 143, 390-401.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.054] [PMID: 29202402]
[13]
Geng, K.; Liu, H.; Song, Z.; Zhang, C.; Zhang, M.; Yang, H.; Cao, J.; Geng, M.; Shen, A.; Zhang, A. Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs. Eur. J. Med. Chem., 2018, 152, 76-86.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.019] [PMID: 29698859]
[14]
Jhaveri, K.; Wang, R.; Teplinsky, E.; Chandarlapaty, S.; Solit, D.; Cadoo, K.; Speyer, J.; D’Andrea, G.; Adams, S.; Patil, S.; Haque, S.; O’Neill, T.; Friedman, K.; Esteva, F.J.; Hudis, C.; Modi, S. A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res., 2017, 19(1), 89.
[http://dx.doi.org/10.1186/s13058-017-0879-5] [PMID: 28764748]
[15]
Felip, E.; Barlesi, F.; Besse, B.; Chu, Q.; Gandhi, L.; Kim, S-W.; Carcereny, E.; Sequist, L.V.; Brunsvig, P.; Chouaid, C.; Smit, E.F.; Groen, H.J.M.; Kim, D-W.; Park, K.; Avsar, E.; Szpakowski, S.; Akimov, M.; Garon, E.B. Phase 2 study of the HSP-90 inhibitor AUY922 in previously treated and molecularly defined patients with advanced non-small cell lung cancer. J. Thorac. Oncol., 2018, 13(4), 576-584.
[http://dx.doi.org/10.1016/j.jtho.2017.11.131] [PMID: 29247830]
[16]
Yuno, A.; Lee, M-J.; Lee, S.; Tomita, Y.; Rekhtman, D.; Moore, B.; Trepel, J.B. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol. Biol., 2018, 1709, 423-441.
[http://dx.doi.org/10.1007/978-1-4939-7477-1_29] [PMID: 29177675]
[17]
Neckers, L.; Blagg, B.; Haystead, T.; Trepel, J.B.; Whitesell, L.; Picard, D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones, 2018, 23(4), 467-482.
[http://dx.doi.org/10.1007/s12192-018-0877-2] [PMID: 29392504]
[18]
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem., 2013, 21(13), 3648-3666.
[http://dx.doi.org/10.1016/j.bmc.2013.04.037] [PMID: 23673213]
[19]
Murtaza, G.; Mumtaz, A.; Khan, F.A.; Ahmad, S.; Azhar, S.; Khan, S.A.; Najam-Ul-Haq, M.; Atif, M.; Khan, S.A.; Maalik, A.; Azhar, S.; Murtaza, G. Recent pharmacological advancements in schiff bases: a review. Acta Pol. Pharm., 2014, 71(4), 531-535.
[PMID: 25272879]
[20]
Ganguly, A.; Chakraborty, P.; Banerjee, K.; Choudhuri, S.K. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug resistance in cancer. Eur. J. Pharm. Sci., 2014, 51, 96-109.
[http://dx.doi.org/10.1016/j.ejps.2013.09.003] [PMID: 24044945]
[21]
O’Boyle, N.M.; Knox, A.J.S.; Price, T.T.; Williams, D.C.; Zisterer, D.M.; Lloyd, D.G.; Meegan, M.J. Lead identification of β-lactam and related imine inhibitors of the molecular chaperone heat shock protein 90. Bioorg. Med. Chem., 2011, 19(20), 6055-6068.
[http://dx.doi.org/10.1016/j.bmc.2011.08.048] [PMID: 21920765]
[22]
Dutta Gupta, S.; Snigdha, D.; Mazaira, G.I.; Galigniana, M.D.; Subrahmanyam, C.V.S.; Gowrishankar, N.L.; Raghavendra, N.M. Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors. Biomed. Pharmacother., 2014, 68(3), 369-376.
[http://dx.doi.org/10.1016/j.biopha.2014.01.003] [PMID: 24486109]
[23]
Dutta Gupta, S.; Revathi, B.; Mazaira, G.I.; Galigniana, M.D.; Subrahmanyam, C.V.S.; Gowrishankar, N.L.; Raghavendra, N.M. 2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: Rational identification of a new anticancer lead. Bioorg. Chem., 2015, 59, 97-105.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.003] [PMID: 25727264]
[24]
Kung, P-P.; Funk, L.; Meng, J.; Collins, M.; Zhou, J.Z.; Johnson, M.C.; Ekker, A.; Wang, J.; Mehta, P.; Yin, M-J.; Rodgers, C.; Davies, J.F., II; Bayman, E.; Smeal, T.; Maegley, K.A.; Gehring, M.R. Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone. Bioorg. Med. Chem. Lett., 2008, 18(23), 6273-6278.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.081] [PMID: 18929486]
[25]
Maestro Docking Suite; Schrodinger, LLC: New York, NY, 2010.
[26]
Jain, A.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des., 2007, 21(5), 281-306.
[http://dx.doi.org/10.1007/s10822-007-9114-2] [PMID: 17387436]
[27]
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking. J. Med. Chem., 2003, 46(12), 2287-2303.
[http://dx.doi.org/10.1021/jm0203783] [PMID: 12773034]
[28]
Mendelson, W.L.; Hayden, S. Preparation of 2,4-Dihydroxybenzaldehyde by the Vilsmeier-Haack Reaction. Synth. Commun., 1996, 26, 603-610.
[http://dx.doi.org/10.1080/00397919608003654]
[29]
Hopkins, C.Y.; Chisholm, M.J. Chlorination by aqueous sodium hypochlorite. Can. J. Res., 1946, 24(Sect B 5), 208- 210.
[http://dx.doi.org/10.1139/cjr46b-027] [PMID: 20998047]
[30]
Ren, S.; Wang, R.; Komatsu, K.; Bonaz-Krause, P.; Zyrianov, Y.; McKenna, C.E.; Csipke, C.; Tokes, Z.A.; Lien, E.J. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J. Med. Chem., 2002, 45(2), 410-419.
[http://dx.doi.org/10.1021/jm010252q] [PMID: 11784145]
[31]
Di Bernardo, P.; Zanonato, P.L.; Tamburini, S.; Tomasin, P.; Vigato, P.A. Complexation behaviour and stability of Schiff bases in aqueous solution. The case of an acyclic diimino(amino) diphenol and its reduced triamine derivative. Dalton Trans., 2006, 39, 4711-4721.
[http://dx.doi.org/10.1039/b604211b] [PMID: 17028680]
[32]
Dubey, R.; Hari Narayana Moorthy, N.S. Comparative studies on conventional and microwave assisted synthesis of benzimidazole and their 2-substituted derivative with the effect of salt form of reactant. Chem. Pharm. Bull. (Tokyo), 2007, 55(1), 115-117.
[http://dx.doi.org/10.1248/cpb.55.115] [PMID: 17202713]
[33]
Gupta, S.D.; Singh, H.P.; Moorthy, N.S.H.N. Iodine‐catalyzed, one‐pot, solid‐phase synthesis of benzothiazole derivatives. Synth. Commun., 2007, 37, 4327-4329.
[http://dx.doi.org/10.1080/00397910701575657]
[34]
Hein, D.W.; Alheim, R.J.; Leavitt, J.J. The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles1. J. Am. Chem. Soc., 1957, 79, 427-429.
[http://dx.doi.org/10.1021/ja01559a053]
[35]
Upadhyay, K.K.; Kumar, A.; Upadhyay, S.; Mishra, P.C. Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some schiff bases. J. Mol. Struct., 2008, 873, 5-16.
[http://dx.doi.org/10.1016/j.molstruc.2007.02.031]
[36]
Vaughan, C.K.; Piper, P.W.; Pearl, L.H.; Prodromou, C. A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s. FEBS J., 2009, 276(1), 199-209.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06773.x] [PMID: 19032597]
[37]
Harder, K.W.; Owen, P.; Wong, L.K.; Aebersold, R.; Clark-Lewis, I.; Jirik, F.R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP Beta) using synthetic phosphopeptides. Biochem. J., 1994, 298(Pt 2), 395.
[38]
Avila, C.; Kornilayev, B.A.; Blagg, B.S.J. Development and optimization of a useful assay for determining Hsp90's inherent ATPase activity. Bioorg. Med. Chem., 2006, 14(4), 1134-1142.
[http://dx.doi.org/10.1016/j.bmc.2005.09.027] [PMID: 16213144]
[39]
Baykov, A.A.; Evtushenko, O.A.; Avaeva, S.M. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem., 1988, 171(2), 266-270.
[http://dx.doi.org/10.1016/0003-2697(88)90484-8] [PMID: 3044186]
[40]
Sylvester, P.W. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol. Biol., 2011, 716, 157-168.
[http://dx.doi.org/10.1007/978-1-61779-012-6_9] [PMID: 21318905]
[41]
Gupta, S.D.; Hari Narayana Moorthy, N.S.; Sanyal, U. Synthesis, cytotoxic evaluation, in silico pharmacokinetic and QSAR study of some benzothiazole derivatives. Int. J. Pharm. Pharm. Sci., 2010, 2(3), 57-62.
[42]
Dutta Gupta, S.; Rao, G.B.; Bommaka, M.K.; Raghavendra, N.M.; Aleti, S. Eco-sustainable synthesis and biological evaluation of 2-phenyl 1,3-benzodioxole derivatives as anticancer, DNA binding and antibacterial agents. Arab. J. Chem., 2016, 9, S1875-S1883.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.004]
[43]
Shukla, S.; Kumar, P.; Das, N.; Moorthy, N.S.H.N.; Shrivastava, S.K.; Trivedi, P.; Srivastava, R.S. Synthesis, characterization, biological evaluation and docking of coumarin coupled thiazolidinedione derivatives and its bioisosteres as PPARγ agonists. Med. Chem., 2012, 8(5), 834-845.
[http://dx.doi.org/10.2174/157340612802084388] [PMID: 22741802]
[44]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2, 353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[45]
van Brussel, J.P.; van Steenbrugge, G.J.; Romijn, J.C.; Schröder, F.H.; Mickisch, G.H. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur. J. Cancer, 1999, 35(4), 664-671.
[http://dx.doi.org/10.1016/S0959-8049(98)00435-3] [PMID: 10492644]
[46]
David-Beabes, G.L.; Overman, M.J.; Petrofski, J.A.; Campbell, P.A.; de Marzo, A.M.; Nelson, W.G. Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: Characterization of biochemical determinants of antineoplastic drug sensitivity. Int. J. Oncol., 2000, 17(6), 1077-1086.
[http://dx.doi.org/10.3892/ijo.17.6.1077] [PMID: 11078791]
[47]
Rossi, M.L.; Rehman, A.A.; Gondi, C.S. Therapeutic options for the management of pancreatic cancer. World J. Gastroenterol., 2014, 20(32), 11142-11159.
[http://dx.doi.org/10.3748/wjg.v20.i32.11142] [PMID: 25170201]
[48]
Samarasinghe, B.; Wales, C.T.K.; Taylor, F.R.; Jacobs, A.T. Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. Biochem. Pharmacol., 2014, 87(3), 445-455.
[http://dx.doi.org/10.1016/j.bcp.2013.11.014] [PMID: 24291777]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy