Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Classical and New Pharmaceutical Uses of Bacterial Penicillin G Acylase

Author(s): Luis Cobos-Puc, Raúl Rodríguez-Herrera*, Juan C. Cano-Cabrera, Hilda Aguayo-Morales, Sonia Y. Silva-Belmares, Adriana C.F. Gallegos and José L.M. Hernández

Volume 21, Issue 4, 2020

Page: [287 - 297] Pages: 11

DOI: 10.2174/1389201020666191111151642

Price: $65

Abstract

Background: β-lactam antibiotics are the most used worldwide for the treatment of bacterial infections. The consumption of these classes of drugs is high, and it is increasing around the world. To date, the best way to produce them is using penicillin G Acylase (PGA) as a biocatalyst.

Objective: This manuscript offers an overview of the most recent advances in the current tools to improve the activity of the PGA and its pharmaceutical application.

Results: Several microorganisms produce PGA, but some bacterial strains represent the primary source of this enzyme. The activity of bacterial PGA depends on its adequate expression and carbon or nitrogen source, as well as a specific pH or temperature depending on the nature of the PGA. Additionally, the PGA activity can be enhanced by immobilizing it to a solid support to recycle it for a prolonged time. Likewise, PGAs more stable and with higher activity are obtained from bacterial hosts genetically modified.

Conclusion: PGA is used to produce b-lactam antibiotics. However, this enzyme has pharmaceutical potential to be used to obtain critical molecules for the synthesis of anti-tumor, antiplatelet, antiemetic, antidepressive, anti-retroviral, antioxidant, and antimutagenic drugs.

Keywords: Bacterial strains, β-lactam antibiotics, cephalosporins, penicillin G acylase, penicillins, therapeutic uses.

Graphical Abstract
[1]
Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. APMIS, 2010, 118(1), 1-36.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x] [PMID: 20041868]
[2]
Watkins, R.R.; Bonomo, R.A. 140-β-Lactam antibiotics. Infectious diseases; Cohen, J.; Powderly, W.G; Opal, S.M., Ed.; Elsevier, 2017, pp. 1203-1216.e1202.
[http://dx.doi.org/10.1016/B978-0-7020-6285-8.00140-4]
[3]
Alekseev, V.G. Acid-base properties of penicillins and cephalosporins (a review). Pharm. Chem. J., 2010, 44(1), 14-24.
[http://dx.doi.org/10.1007/s11094-010-0389-6]
[4]
MacDougall, C. Penicillins, cephalosporins, and other β-lactam antibiotics. Goodman & Gilman’s: The pharmacological basis of therapeutics; Brunton, L.L.; Hilal-Dandan, R; Knolmann, B.C., Ed.; Mc Graw Hill Education: New York, 2018, pp. 1023-1038.
[5]
Rodriguez-Herrera, R.; Puc, L.E.C.; Sobrevilla, J.M.V.; Luque, D.; Cardona-Felix, C.S.; Aguilar-González, C.N.; Flores-Gallegos, A.C. Enzymes in the pharmaceutical industry for β-lactam antibiotic production.Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press, 2019, pp. 627-643.
[http://dx.doi.org/10.1016/B978-0-12-813280-7.00036-0]
[6]
Bozcal, E.; Dagdeviren, M. Toxicity of β-bactam antibiotics: Pathophysiology, molecular biology and possible recovery strategies.Poisoning: From specific toxic agents to novel rapid and simplified techniques for analysis; Malangu, N., Ed.; IntechOpen, 2017, pp. 87-105.
[http://dx.doi.org/10.5772/intechopen.70199]
[7]
Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[8]
Hughes, D.L. Patent review of manufacturing routes to fifth-generation cephalosporin drugs. Part 1, ceftolozane. Org. Process Res. Dev., 2017, 21(3), 430-443.
[http://dx.doi.org/10.1021/acs.oprd.7b00033]
[9]
Dobias, J.; Dénervaud-Tendon, V.; Poirel, L.; Nordmann, P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur. J. Clin. Microbiol. Infect. Dis., 2017, 36(12), 2319-2327.
[http://dx.doi.org/10.1007/s10096-017-3063-z] [PMID: 28748397]
[10]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[11]
Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis., 2016, 3(1), 15-21.
[http://dx.doi.org/10.1177/2049936115621709] [PMID: 26862399]
[12]
Sauberan, J.B.; Bradley, J.S. 292-Antimicrobial agents. Principles and practice of pediatric infectious diseases; Long, S.S.; Prober, C.G; Fischer, M., Ed.; Elsevier, 2018, pp. 1499-1531.e1493.
[http://dx.doi.org/10.1016/B978-0-323-40181-4.00292-9]
[13]
Srirangan, K.; Orr, V.; Akawi, L.; Westbrook, A.; Moo-Young, M.; Chou, C.P. Biotechnological advances on penicillin G acylase: Pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol. Adv., 2013, 31(8), 1319-1332.
[http://dx.doi.org/10.1016/j.biotechadv.2013.05.006] [PMID: 23721991]
[14]
Ling, X.M.; Wang, X.Y.; Ma, P.; Yang, Y.; Qin, J.M.; Zhang, X.J.; Zhang, Y.W. Covalent immobilization of penicillin G acylase onto Fe3O4@chitosan magnetic nanoparticles. J. Microbiol. Biotechnol., 2016, 26(5), 829-836.
[http://dx.doi.org/10.4014/jmb.1511.11052] [PMID: 26869599]
[15]
Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet, 2016, 387(10014), 168-175.
[http://dx.doi.org/10.1016/S0140-6736(15)00474-2] [PMID: 26603918]
[16]
Nandi, A.; Pan, S.; Potumarthi, R.; Danquah, M.K.; Sarethy, I.P. A proposal for six sigma integration for large-scale production of penicillin G and subsequent conversion to 6-APA. J. Anal. Methods Chem., 2014., 2014413616
[http://dx.doi.org/10.1155/2014/413616] [PMID: 25057428]
[17]
Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3463-E3470.
[http://dx.doi.org/10.1073/pnas.1717295115] [PMID: 29581252]
[18]
Avinash, V.S.; Pundle, A.V.; Ramasamy, S.; Suresh, C.G. Penicillin acylases revisited: Importance beyond their industrial utility. Crit. Rev. Biotechnol., 2016, 36(2), 303-316.
[http://dx.doi.org/10.3109/07388551.2014.960359] [PMID: 25430891]
[19]
Vélez, A.M.; da Silva, A.J.; Luperni Horta, A.C.; Sargo, C.R.; Campani, G.; Gonçalves Silva, G.; de Lima Camargo Giordano, R.; Zangirolami, T.C. High-throughput strategies for penicillin G acylase production in E. coli fed-batch cultivations. BMC Biotechnol., 2014, 14, 6.
[http://dx.doi.org/10.1186/1472-6750-14-6] [PMID: 24444109]
[20]
Grulich, M.; Štěpánek, V.; Kyslík, P. Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol. Adv., 2013, 31(8), 1458-1472.
[http://dx.doi.org/10.1016/j.biotechadv.2013.07.005] [PMID: 23863475]
[21]
Mayer, J.; Pippel, J.; Günther, G.; Müller, C.; Lauermann, A.; Knuuti, T.; Blankenfeldt, W.; Jahn, D.; Biedendieck, R. Crystal structures and protein engineering of three different penicillin G acylases from Gram-positive bacteria with different thermostability. Appl. Microbiol. Biotechnol., 2019, 103(18), 7537-7552.
[http://dx.doi.org/10.1007/s00253-019-09977-8] [PMID: 31227867]
[22]
Torres-Bacete, J.; Hormigo, D.; Torres-Gúzman, R.; Arroyo, M.; Castillón, M.P.; García, L.; Acebal, C.; de la Mata, I. Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues. Appl. Environ. Microbiol., 2015, 81(4), 1225-1233.
[http://dx.doi.org/10.1128/AEM.02352-14] [PMID: 25501472]
[23]
Zhang, Q.; Xu, H.; Zhao, J.; Zeng, R. Expression and characterization of a thermostable penicillin G acylase from an environmental metagenomic library. Biotechnol. Lett., 2014, 36(3), 617-625.
[http://dx.doi.org/10.1007/s10529-013-1403-3] [PMID: 24338159]
[24]
Basso, A.; Serban, S. Industrial applications of immobilized enzymes- A review. Mol. Catal., 2019, 479110607.
[http://dx.doi.org/10.1016/j.mcat.2019.110607]
[25]
McVey, C.E.; Walsh, M.A.; Dodson, G.G.; Wilson, K.S.; Brannigan, J.A. Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism. J. Mol. Biol., 2001, 313(1), 139-150.
[http://dx.doi.org/10.1006/jmbi.2001.5043] [PMID: 11601852]
[26]
Tishkov, V.I.; Savin, S.S.; Yasnaya, A.S. Protein engineering of penicillin acylase. Acta Naturae, 2010, 2(3), 47-61.
[http://dx.doi.org/10.32607/20758251-2010-2-3-47-61] [PMID: 22649651]
[27]
Masárová, J.; Mislovicová, D.; Gemeiner, P.; Michalková, E. Stability enhancement of Escherichia coli penicillin G acylase by glycosylation with yeast mannan. Biotechnol. Appl. Biochem., 2001, 34(2), 127-133.
[http://dx.doi.org/10.1042/BA20010037] [PMID: 11592919]
[28]
Bečka, S.; Štěpánek, V.; Vyasarayani, R.W.; Grulich, M.; Maršálek, J.; Plháčková, K.; Dobišová, M.; Marešová, H.; Plačková, M.; Valešová, R.; Palyzová, A.; Datla, A.; Ashar, T.K.; Kyslík, P. Penicillin G acylase from Achromobacter sp. CCM 4824: an efficient biocatalyst for syntheses of beta-lactam antibiotics under conditions employed in large-scale processes. Appl. Microbiol. Biotechnol., 2014, 98(3), 1195-1203.
[http://dx.doi.org/10.1007/s00253-013-4945-3] [PMID: 23674150]
[29]
Skrob, F.; Becka, S.; Plhackova, K.; Fotopulosova, V.; Kyslik, P. Novel penicillin G acylase from Achromobacter sp. CCM 4824. Enzyme Microb. Technol., 2003, 32(6), 738-744.
[http://dx.doi.org/10.1016/S0141-0229(03)00036-X]
[30]
Cai, G.; Zhu, S.; Yang, S.; Zhao, G.; Jiang, W. Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans: Probing the molecular basis for its high thermostability. Appl. Environ. Microbiol., 2004, 70(5), 2764-2770.
[http://dx.doi.org/10.1128/AEM.70.5.2764-2770.2004] [PMID: 15128530]
[31]
Deng, S.; Ma, X.; Su, E.; Wei, D. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis. J. Biotechnol., 2016, 219, 142-148.
[http://dx.doi.org/10.1016/j.jbiotec.2015.12.034] [PMID: 26732414]
[32]
Verhaert, R.M.; Riemens, A.M.; van der Laan, J.M.; van Duin, J.; Quax, W.J. Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. Appl. Environ. Microbiol., 1997, 63(9), 3412-3418.
[PMID: 9292993]
[33]
Zhou, Z.; Zhou, L.P.; Chen, M.J.; Zhang, Y.L.; Li, R.B.; Yang, S.; Yuan, Z.Y. Purification and characterization of Alcaligenes faecalis penicillin G acylase expressed in Bacillus subtilis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 2003, 35(5), 416-422.
[PMID: 12766801]
[34]
Marešová, H.; Plačková, M.; Grulich, M.; Kyslík, P. Current state and perspectives of penicillin G acylase-based biocatalyses. Appl. Microbiol. Biotechnol., 2014, 98(7), 2867-2879.
[http://dx.doi.org/10.1007/s00253-013-5492-7] [PMID: 24445920]
[35]
Mukherji, R.; Varshney, N.K.; Panigrahi, P.; Suresh, C.G.; Prabhune, A. A new role for penicillin acylases: Degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzyme Microb. Technol., 2014, 56, 1-7.
[http://dx.doi.org/10.1016/j.enzmictec.2013.12.010] [PMID: 24564895]
[36]
Wen, Y.; Feng, M.Q.; Yuan, Z.Y.; Zhou, P. Expression and overproduction of recombinant penicillin G acylase from Kluyvera citrophila in Escherichia coli. Enzyme Microb. Technol., 2005, 37(2), 233-237.
[http://dx.doi.org/10.1016/j.enzmictec.2005.03.005]
[37]
Wen, Y.; Shi, X.; Yuan, Z.; Zhou, P. Expression, purification, and characterization of His-tagged penicillin G acylase from Kluyvera citrophila in Escherichia coli. Protein Expr. Purif., 2004, 38(1), 24-28.
[http://dx.doi.org/10.1016/j.pep.2004.05.015] [PMID: 15477078]
[38]
Panigrahi, P.; Chand, D.; Mukherji, R.; Ramasamy, S.; Suresh, C.G. Sequence and structure-based comparative analysis to assess, identify and improve the thermostability of penicillin G acylases. J. Ind. Microbiol. Biotechnol., 2015, 42(11), 1493-1506.
[http://dx.doi.org/10.1007/s10295-015-1690-x] [PMID: 26419382]
[39]
Pan, X.; Yu, Q.; Chu, J.; Jiang, T.; He, B. Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli. Appl. Microbiol. Biotechnol., 2018, 102(17), 7455-7464.
[http://dx.doi.org/10.1007/s00253-018-9163-6] [PMID: 29968036]
[40]
Cheng, T.; Chen, M.; Zheng, H.; Wang, J.; Yang, S.; Jiang, W. Expression and purification of penicillin G acylase enzymes from four different micro-organisms, and a comparative evaluation of their synthesis/hydrolysis ratios for cephalexin. Protein Expr. Purif., 2006, 46(1), 107-113.
[http://dx.doi.org/10.1016/j.pep.2005.07.016] [PMID: 16139515]
[41]
Torres, L.L.; Ferreras, E.R.; Cantero, A.; Hidalgo, A.; Berenguer, J. Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli. Microb. Cell Fact., 2012, 11, 105.
[http://dx.doi.org/10.1186/1475-2859-11-105] [PMID: 22876915]
[42]
Konstantinović, M.; Marjanović, N.; Ljubijankić, G.; Glisin, V. The penicillin amidase of Arthrobacter viscosus (ATCC 15294). Gene, 1994, 143(1), 79-83.
[http://dx.doi.org/10.1016/0378-1119(94)90608-4] [PMID: 8200542]
[43]
Ohashi, H.; Katsuta, Y.; Hashizume, T.; Abe, S.N.; Kajiura, H.; Hattori, H.; Kamei, T.; Yano, M. Molecular cloning of the penicillin G acylase gene from Arthrobacter viscosus. Appl. Environ. Microbiol., 1988, 54(11), 2603-2607.
[PMID: 3214149]
[44]
Rajendran, K.; Mahadevan, S.; Jeyaprakash, R.; Paramasamy, G.; Mandal, A.B. Strategies for enhancing the production of penicillin G acylase from Bacillus badius: Influence of phenyl acetic acid dosage. Appl. Biochem. Biotechnol., 2013, 171(6), 1328-1338.
[http://dx.doi.org/10.1007/s12010-013-0425-6] [PMID: 23949729]
[45]
Rajendran, K.; Sekar, S.; Mahadevan, S.; Kumar Shanmugam, B.; Jeyaprakash, R.; Paramasamy, G.; Mandal, A.B. Biological real-time reaction calorimeter studies for the production of penicillin G acylase from Bacillus badius. Appl. Biochem. Biotechnol., 2014, 172(8), 3736-3747.
[http://dx.doi.org/10.1007/s12010-014-0800-y] [PMID: 24566926]
[46]
Rajendhran, J.; Gunasekaran, P. Application of cross-linked enzyme aggregates of Bacillus badius penicillin G acylase for the production of 6-aminopenicillanic acid. Lett. Appl. Microbiol., 2007, 44(1), 43-49.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02043.x] [PMID: 17209813]
[47]
Lin, C-P.; Tang, X.L.; Zheng, R.C.; Zheng, Y.G. Efficient chemoenzymatic synthesis of (S)-α-amino-4-fluorobenzeneacetic acid using immobilized penicillin amidase. Bioorg. Chem., 2018, 80, 174-179.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.020] [PMID: 29929078]
[48]
de Souza, V.R.; Silva, A.C.G.; Pinotti, L.M.; Araujo, H.S.S.; Giordano, R.D.C. Characterization of the penicillin G acylase from Bacillus megaterium ATCC 14945. Braz. Arch. Biol. Technol., 2005, 48, 105-111.
[http://dx.doi.org/10.1590/S1516-89132005000400013]
[49]
Supartono; Ratnaningsih, E.; Achmad, S.; Liang, O. B. Characterization of extracellular penicilin G acylase produced by a new local strain of Bacillus subtilis BAC4. Hayati J. Biosci., 2008, 15(2), 71-76.
[http://dx.doi.org/10.4308/hjb.15.2.71]
[50]
Chandel, A.K.; Rao, L.V.; Narasu, M.L.; Singh, O.V. The realm of penicillin G acylase in β-lactam antibiotics. Enzyme Microb. Technol., 2008, 42(3), 199-207.
[http://dx.doi.org/10.1016/j.enzmictec.2007.11.013]
[51]
Grulich, M.; Brezovsky, J.; Stepanek, V.; Palyzova, A.; Kyslikova, E.; Kyslikova, E.; Kyslik, P. Resolution of alpha/beta-amino acids by enantioselective penicillin G acylase from Achromobacter sp. J. Mol. Catal., B Enzym., 2015, 122, 240-247.
[http://dx.doi.org/10.1016/j.molcatb.2015.09.008]
[52]
Seo, S.O.; Schmidt-Dannert, C. Development of a synthetic cumate-inducible gene expression system for Bacillus. Appl. Microbiol. Biotechnol., 2019, 103(1), 303-313.
[http://dx.doi.org/10.1007/s00253-018-9485-4] [PMID: 30392122]
[53]
Rajendhran, J.; Krishnakumar, V.; Gunasekaran, P. Optimization of a fermentation medium for the production of Penicillin G acylase from Bacillus sp. Lett. Appl. Microbiol., 2002, 35(6), 523-527.
[http://dx.doi.org/10.1046/j.1472-765X.2002.01234.x] [PMID: 12460437]
[54]
Marešová, H.; Palyzová, A.; Plačková, M.; Grulich, M.; Rajasekar, V.W.; Štěpánek, V.; Kyslíková, E.; Kyslík, P. Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiol. (Praha), 2017, 62(5), 417-424.
[http://dx.doi.org/10.1007/s12223-017-0512-0] [PMID: 28281229]
[55]
Lakowitz, A.; Godard, T.; Biedendieck, R.; Krull, R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur. J. Pharm. Biopharm., 2018, 126, 27-39.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.008] [PMID: 28606596]
[56]
Dai, M.; Zhu, Y.; Yang, Y.; Wang, E.; Xie, Y.; Zhao, G.; Jiang, W. Expression of penicillin G acylase from the cloned pac gene of Escherichia coli ATCC11105. Effects of pacR and temperature. Eur. J. Biochem., 2001, 268(5), 1298-1303.
[http://dx.doi.org/10.1046/j.1432-1327.2001.01994.x] [PMID: 11231281]
[57]
Kim, H.S.; Kang, T.S.; Hyun, J.S.; Kang, H.S. Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP-cAMP receptor protein complex. J. Biol. Chem., 2004, 279(32), 33253-33262.
[http://dx.doi.org/10.1074/jbc.M404348200] [PMID: 15159386]
[58]
Galán, B.; García, J.L.; Prieto, M.A. The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W. J. Bacteriol., 2004, 186(7), 2215-2220.
[http://dx.doi.org/10.1128/JB.186.7.2215-2220.2004] [PMID: 15028709]
[59]
Méndez-Sánchez, D.; López-Iglesias, M.; Gotor-Fernández, V. Hydrolases in organic chemistry. Recent achievements in the synthesis of pharmaceuticals. Curr. Org. Chem., 2016, 20(11), 1186-1203.
[http://dx.doi.org/10.2174/1385272819666150819190956]
[60]
Pan, X.; Wang, L.; Ye, J.; Qin, S.; He, B. Efficient synthesis of β-lactam antibiotics with very low product hydrolysis by a mutant Providencia rettgeri penicillin G acylase. Appl. Microbiol. Biotechnol., 2018, 102(4), 1749-1758.
[http://dx.doi.org/10.1007/s00253-017-8692-8] [PMID: 29306966]
[61]
Bagherinejad, M.R.; Sadeghi, H.M-M.; Abedi, D.; Chou, C.P.; Moazen, F.; Rabbani, M. Twin arginine translocation system in secretory expression of recombinant human growth hormone. Res. Pharm. Sci., 2016, 11(6), 461-469.
[http://dx.doi.org/10.4103/1735-5362.194871] [PMID: 28003839]
[62]
Illanes, A.; Valencia, P. Industrial and therapeutic enzymes: Penicillin acylase. Current developments in biotechnology and bioengineering: production, isolation, and purification of industrial products; Pandey, A.; Negi, S; Soccol, C.R., Ed.; Elsevier: Oxford, 2017, pp. 267-306.
[http://dx.doi.org/10.1016/B978-0-444-63662-1.00013-0]
[63]
Mas, G.; Hiller, S. Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding. FEMS Microbiol. Lett., 2018, 365(13)
[http://dx.doi.org/10.1093/femsle/fny121] [PMID: 29893830]
[64]
Dorr, B.M.; Fuerst, D.E. Enzymatic amidation for industrial applications. Curr. Opin. Chem. Biol., 2018, 43, 127-133.
[http://dx.doi.org/10.1016/j.cbpa.2018.01.008] [PMID: 29414531]
[65]
Garske, A.L.; Kapp, G.; McAuliffe, J.C. Industrial enzymes and biocatalysis. Handbook of industrial chemistry and biotechnology; Kent, J.A.; Bommaraju, T.V; Barnicki, S.D., Ed.; Springer International Publishing: Cham, 2017, pp. 1571-1638.
[http://dx.doi.org/10.1007/978-3-319-52287-6_28]
[66]
Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 2018, 8(6), 238.
[http://dx.doi.org/10.3390/catal8060238]
[67]
da Silva, R.R. Bacterial and fungal proteolytic enzymes: Production, catalysis and potential applications. Appl. Biochem. Biotechnol., 2017, 183(1), 1-19.
[http://dx.doi.org/10.1007/s12010-017-2427-2] [PMID: 28160134]
[68]
Arroyo, M.; de la Mata, I.; García, J-L.; Barredo, J-L. Biocatalysis for industrial production of active pharmaceutical ingredients (APIs).Biotechnology of microbial enzymes; Brahmachari, G., Ed.; Academic Press, 2017, pp. 451-473.
[http://dx.doi.org/10.1016/B978-0-12-803725-6.00017-0]
[69]
Eş, I.; Vieira, J.D.; Amaral, A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol., 2015, 99(5), 2065-2082.
[http://dx.doi.org/10.1007/s00253-015-6390-y] [PMID: 25616529]
[70]
Punekar, N.S. Exploiting enzymes: Technology and applications.Enzymes: Catalysis, kinetics and mechanisms; Punekar, N.S., Ed.; Springer: Singapore, 2018, pp. 15-31.
[http://dx.doi.org/10.1007/978-981-13-0785-0_3]
[71]
Li, K.; Chen, Z.B.; Liu, D.L.; Zhang, L.; Tang, Z.H.; Wang, Z.; Zhao, Y.; Liu, Z. Design and synthesis study of the thermo-sensitive copolymer carrier of penicillin G acylase. Polym. Adv. Technol., 2018, 29(7), 1902-1912.
[http://dx.doi.org/10.1002/pat.4299]
[72]
Liu, D.; Chen, Z.; Long, J.; Zhao, Y.; Du, X. Immobilization of penicillin acylase on macroporous adsorption resin CLX1180 carrier. Adv. Polym. Technol., 2018, 37(3), 753-760.
[http://dx.doi.org/10.1002/adv.21717]
[73]
Sirisha, V.L.; Jain, A.; Jain, A. Chapter nine-enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Advances in food and nutrition research; Kim, S.K; Toldrá, F., Ed.; Academic Press, 2016, Vol. 79, pp. 179-211.
[74]
Zhang, B.; Wang, J.; Chen, J.; Zhang, H.; Yin, D.; Zhang, Q. Magnetic mesoporous microspheres modified with hyperbranched amine for the immobilization of penicillin G acylase. Biochem. Eng. J., 2017, 127, 43-52.
[http://dx.doi.org/10.1016/j.bej.2017.07.011]
[75]
Demirçelik, A.H.; Perçin, I.; Denizli, A. Supermacroporous hydrophobic affinity sorbents for penicillin acylase purification. J. Macromol. Sci. A, 2017, 54(2), 71-79.
[http://dx.doi.org/10.1080/10601325.2017.1261618]
[76]
Knežević-Jugović, Z.D.; Žuža, M.G.; Jakovetić, S.M.; Stefanović, A.B.; Džunuzović, E.S.; Jeremić, K.B.; Jovanović, S.M. An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst. Biotechnol. Prog., 2016, 32(1), 43-53.
[http://dx.doi.org/10.1002/btpr.2181] [PMID: 26439442]
[77]
Rajendhran, J.; Krishnakumar, V.; Gunasekaran, P. Production of penicillin G acylase from Bacillus sp.: Effect of medium components. World J. Microbiol. Biotechnol., 2003, 19(1), 107-110.
[http://dx.doi.org/10.1023/A:1022512217095]
[78]
Gentina, J.C.; Acevedo, F.; Villagra, M.P. Effect of complex nitrogen sources on the production of penicillin acylase by Bacillus megaterium. World J. Microbiol. Biotechnol., 1997, 13(1), 127-128.
[http://dx.doi.org/10.1007/BF02770818]
[79]
Pinotti, L.M.; Ribeiro de Souza, V.; de Campos Giordano, R.; de Lima Camargo Giordano, R. The penicillin G acylase production by B. megaterium is amino acid consumption dependent. Biotechnol. Bioeng., 2007, 97(2), 346-353.
[http://dx.doi.org/10.1002/bit.21236] [PMID: 17058278]
[80]
De León-Rodríguez, A.; Rivera-Pastrana, D.; Medina-Rivero, E.; Flores-Flores, J.L.; Estrada-Baltazar, A.; Ordóñez-Acevedo, L.G.; de la Rosa, A.P.B. Production of penicillin acylase by a recombinant Escherichia coli using cheese whey as substrate and inducer. Biomol. Eng., 2006, 23(6), 299-305.
[http://dx.doi.org/10.1016/j.bioeng.2006.09.003] [PMID: 17097344]
[81]
Mislovicova, D.; Masarova, J.; Bucko, M.; Gemeiner, P. Stability of penicillin G acylase modified with various polysaccharides. Enzyme Microb. Technol., 2006, 39(4), 579-585.
[http://dx.doi.org/10.1016/j.enzmictec.2005.11.012]
[82]
Lin, W.J.; Huang, S.W.; Chou, C.P. High-level extracellular production of penicillin acylase by genetic engineering of Escherichia coli. J. Chem. Technol. Biotechnol., 2001, 76(10), 1030-1037.
[http://dx.doi.org/10.1002/jctb.475]
[83]
Yang, Y.; Biedendieck, R.; Wang, W.; Gamer, M.; Malten, M.; Jahn, D.; Deckwer, W.D. High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium. Microb. Cell Fact., 2006, 5, 36.
[http://dx.doi.org/10.1186/1475-2859-5-36] [PMID: 17132166]
[84]
Balci, H.; Ozturk, M.T.; Pijning, T.; Ozturk, S.I.; Gumusel, F. Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR. Appl. Microbiol. Biotechnol., 2014, 98(10), 4467-4477.
[http://dx.doi.org/10.1007/s00253-013-5476-7] [PMID: 24389703]
[85]
Chou, C.P.; Lin, W.; Kuo, B.; Yu, C. Genetic strategies to enhance penicillin acylase production in Escherichia coli. Enzyme Microb. Technol., 2000, 27(10), 766-773.
[http://dx.doi.org/10.1016/S0141-0229(00)00298-2] [PMID: 11118584]
[86]
Chou, C.P.; Yu, C.C.; Tseng, J.H.; Lin, M.I.; Lin, H.K. Genetic manipulation to identify limiting steps and develop strategies for high-level expression of penicillin acylase in Escherichia coli. Biotechnol. Bioeng., 1999, 63(3), 263-272.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19990505)63:3<263: AID-BIT2>3.0.CO;2-T] [PMID: 10099605]
[87]
Arroyo, M.; de la Mata, I.; Acebal, C.; Castillón, M.P. Biotechnological applications of penicillin acylases: State-of-the-art. Appl. Microbiol. Biotechnol., 2003, 60(5), 507-514.
[http://dx.doi.org/10.1007/s00253-002-1113-6] [PMID: 12536249]
[88]
Liu, W.M.; Luo, J.X.; Zhuang, X.J.; Shen, W.H.; Zhang, Y.; Li, S.; Hu, Y.; Huang, H. Efficient preparation of enantiopure L-tert-leucine through immobilized penicillin G acylase catalyzed kinetic resolution in aqueous medium. Biochem. Eng. J., 2014, 83, 116-120.
[http://dx.doi.org/10.1016/j.bej.2013.12.016]
[89]
Calleri, E.; Temporini, C.; Massolini, G.; Caccialanza, G. Penicillin G acylase-based stationary phases: Analytical applications. J. Pharm. Biomed. Anal., 2004, 35(2), 243-258.
[http://dx.doi.org/10.1016/S0731-7085(03)00587-9] [PMID: 15063459]
[90]
Deaguero, A.L.; Blum, J.K.; Bommarius, A.S. Improving the diastereoselectivity of penicillin G acylase for ampicillin synthesis from racemic substrates. Protein Eng. Des. Sel., 2012, 25(3), 135-144.
[http://dx.doi.org/10.1093/protein/gzr065] [PMID: 22271751]
[91]
Xue, Y.P.; Jiang, T.; Liu, X.; Zheng, Y.G. Efficient production of S-(+)-2-chlorophenylglycine by immobilized penicillin G acylase in a recirculating packed bed reactor. Biochem. Eng. J., 2013, 74, 88-94.
[http://dx.doi.org/10.1016/j.bej.2013.03.005]
[92]
Lin, C.P.; Wu, Z.M.; Tang, X.L.; Hao, C.L.; Zheng, R.C.; Zheng, Y.G. Continuous production of aprepitant chiral intermediate by immobilized amidase in a packed bed bioreactor. Bioresour. Technol., 2019, 274, 371-378.
[http://dx.doi.org/10.1016/j.biortech.2018.12.006] [PMID: 30544042]
[93]
Fadnavis, N.W.; Radhika, K.R.; Devi, A.V. Preparation of enantiomerically pure (R)- and (S)-3-amino-3-phenyl-1-propanol via resolution with immobilized penicillin G acylase. Tetrahedron Asymmetry, 2006, 17(2), 240-244.
[http://dx.doi.org/10.1016/j.tetasy.2005.12.022]
[94]
Xue, Y.P.; Zheng, Y.G.; Liu, Z.Q.; Liu, X.; Huang, J.F.; Shen, Y.C. Efficient synthesis of non-natural L-2-aryl-amino acids by a chemoenzymatic route. ACS Catal., 2014, 4(9), 3051-3058.
[http://dx.doi.org/10.1021/cs500535d]
[95]
Kumaraguru, T.; Fadnavis, N.W. Resolution of racemic 4-hydroxy-2-cyclopentenone with immobilized penicillin G acylase. Tetrahedron Asymmetry, 2012, 23(10), 775-779.
[http://dx.doi.org/10.1016/j.tetasy.2012.05.018]
[96]
Ulbrich, K.; Kreitmeier, P.; Vilaivan, T.; Reiser, O. Enantioselective synthesis of 4-heterosubstituted cyclopentenones. J. Org. Chem., 2013, 78(8), 4202-4206.
[http://dx.doi.org/10.1021/jo400409f] [PMID: 23544701]
[97]
Yang, Y-h.; Aloysius, H.; Inoyama, D.; Chen, Y.; Hu, L-q. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm. Sin. B, 2011, 1(3), 143-159.
[http://dx.doi.org/10.1016/j.apsb.2011.08.001]
[98]
Mishra, A.P.; Chandra, S.; Tiwari, R.; Srivastava, A.; Tiwari, G. Therapeutic potential of prodrugs towards targeted drug delivery. Open Med. Chem. J., 2018, 12, 111-123.
[http://dx.doi.org/10.2174/1874104501812010111] [PMID: 30505359]
[99]
Krizková, L.; Zitnanová, I.; Mislovicová, D.; Masárová, J.; Sasinková, V.; Duracková, Z.; Krajcovic, J. Antioxidant and antimutagenic activity of mannan neoglycoconjugates: Mannan-human serum albumin and mannan-penicillin G acylase. Mutat. Res., 2006, 606(1-2), 72-79.
[http://dx.doi.org/10.1016/j.mrgentox.2006.03.003] [PMID: 16677851]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy