Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

An Expeditious One-Pot Three-Component Synthesis of 4-Aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under Green Conditions

Author(s): Saiedeh Kamalifar and Hamzeh Kiyani*

Volume 23, Issue 23, 2019

Page: [2626 - 2634] Pages: 9

DOI: 10.2174/1385272823666191108123330

Price: $65

Abstract

An efficient and facial one-pot synthesis of 4-aryl-3,4-dihydrobenzo[g]quinoline- 2,5,10(1H)-triones was developed for the first time. The process proceeded via the three-component cyclocondensation of 2-amino-1,4-naphthoquinone with Meldrum’s acid and substituted benzaldehydes under green conditions. The fused 3,4-dihydropyridin-2(1H)- one-ring naphthoquinones have been synthesized with good to high yields in refluxing ethanol as a green reaction medium. This protocol is simple and effective as well as does not involve the assistance of the catalyst, additive, or hazardous solvents.

Keywords: 2-Amino-1, 4-naphthoquinone, 4-Aryl-3, 4-dihydrobenzo[g]quinoline-2, 5, 10(1H)-triones, green synthesis, Meldrum’s acid, substituted benzaldehydes, three-component.

« Previous
Graphical Abstract
[1]
(a) Kiyani, H. Recent advances in three-component cyclocondensation of dimedone with aldehydes and malononitrile for construction of tetrahydrobenzo[b]pyrans using organocatalysts. Curr. Org. Synth., 2018, 15, 1043-1072.
[http://dx.doi.org/10.2174/1570179415666181031124459]
(b) Kiyani, H.; Mosallanezhad, A. Sulfanilic acid-catalyzed synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Curr. Org. Synth., 2018, 15, 715-722.
[http://dx.doi.org/10.2174/1570179415666180423150259]
(c) Brauch, S.; van Berkel, S.S.; Westermann, B.; Westermann, B. Higher-order multicomponent reactions: beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
(d) Garbarino, S.; Ravelli, D.; Protti, S.; Basso, A. Photoinduced multicomponent reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(50), 15476-15484.
[http://dx.doi.org/10.1002/anie.201605288] [PMID: 27487327]
(e) Brahmachari, G. Design of organic transformations at ambient conditions: our sincere efforts to the cause of green chemistry practice. Chem. Rec., 2016, 16(1), 98-123.
[http://dx.doi.org/10.1002/tcr.201500229] [PMID: 26572548]
(f) Kiyani, H.; Ghorbani, F. Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Res. Chem. Intermed., 2016, 42, 6831-6844.
[http://dx.doi.org/10.1007/s11164-016-2498-7]
(g) Kiyani, H.; Bamdad, M. One-pot and efficient synthesis of 5- aminopyrazole-4-carbonitriles catalyzed by potassium phthalimide. Heterocycles., 2017, 94, 276-285.
[http://dx.doi.org/10.3987/COM-16-13623]
(h) Kiyani, H.; Ghorbani, F. Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium. J. Saudi Chem. Soc., 2017, 21, S112-S119.
[http://dx.doi.org/10.1016/j.jscs.2013.11.002]
(i) Kiyani, H.; Bamdad, M. One-pot four-component synthesis of 1,4- dihydropyrano[2,3-C]pyrazole-5-carbonitriles catalyzed by potassium phthalaimide. Rev. Roum. Chim., 2017, 62, 221-226.
(j) Kiyani, H.; Bamdad, M. Sodium ascorbate as an expedient catalyst for green synthesis of polysubstituted 5-aminopyrazole-4-carbonitriles and 6- amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Res. Chem. Intermed., 2018, 44, 2761-2778.
[http://dx.doi.org/10.1007/s11164-018-3260-0]
(k) Mosallanezhed, A.; Kiyani, H. KI-Mediated three-component reaction of hydroxylamine hydrochloride with aryl/heteroaryl aldehydes and two β- oxoesters. Orbital: Electron. J. Chem., 2018, 10, 133-139.
[http://dx.doi.org/10.17807/orbital.v10i2.1134]
(l) Tazari, M.; Kiyani, H. Expeditious synthesis of 2-amino-4H-chromenes and 2-amino-4H-pyran-3-carboxylates promoted by sodium malonate. Curr. Org. Synth., 2019, 16, 793-800.
[http://dx.doi.org/10.2174/1570179416666190415105818]
(m) Kiyani, H.; Darbandi, H. An expeditious and green synthesis of 3,3′- (arylmethylene)-bis-(4-hydroxycoumarins) catalyzed by 5-sulfosalicylic acid. Chiang Mai J. Sci., 2017, 44, 1002-1010.
[2]
Ameta, K.L.; Dandia, A. Multicomponent reactions: synthesis of bioactive heteroccles; CRC Press: Boca Raton, 2017.
[http://dx.doi.org/10.1201/9781315369754]
[3]
(a) Yuan, F.; Duan, W.; Li, Z.; Luo, X.; Zhang, M.; Deng, H.; Song, L. One-pot synthesis of trifluoromethylated pyrazol-4-yl-pyrrole-2,5-dione derivatives. Synthesis, 2019, 51(17), 3345-3355.
[http://dx.doi.org/10.1055/s-0037-1611837]
(b) da Silveira Pinto, L.S.; Couri, M.R.C.; de Souza, M.V.N. Multicomponent reactions in the synthesis of complex fused coumarin derivatives. Curr. Org. Synth., 2018, 15, 21-37.
[http://dx.doi.org/10.2174/1570179414666170614124053]
(c) Castrejon-Flores, J.L.; Guevara-Moreno, O.E.; Díaz-Contreras, R.R.; Gutiérrez-Carrillo, A.; Franco-Pérez, M.; Suárez-Moreno, G.V.; Zamudio-Medina, A. Multicomponent one-pot synthesis of (dihydro-1H-benzo[d]imidazole) phosphonate. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(11), 1062-1066.
[http://dx.doi.org/10.1080/10426507.2019.1602834]
(d) Palermo, V.; Sosa, A.A.; Rivera, T.S.; Pizzio, L.R.; Romanelli, G.P. Unexpected result in the catalytic solvent-free multicomponent synthesis of 2-amino-3-cyano-4H-chromene. Org. Prep. Proced. Int., 2019, 51(5), 443-455.
[http://dx.doi.org/10.1080/00304948.2018.1549903]
(e) Krishnammagari, S.K.; Lee, S.M.; Jeong, Y.T. Solvent-free synthesis of 4H-pyranonaphthoquinones using highly active and stable polymer-grafted layered double hydroxides (LDHs-g-POEGMA) as an efficient and reusable heterogeneous catalyst. Res. Chem. Intermed., 2018, 44, 517-533.
[4]
Herrera, R.P.; Marques-Lopez, E. Multicomponent reactions: concepts and applications for design and synthesis; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2015.
[5]
Akwu, N.A.; Naidoo, Y.; Singh, M.; Nundkumar, N.; Lin, J. Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. ex Harv. S. Afr. J. Bot., 2019, 123, 180-192.
[http://dx.doi.org/10.1016/j.sajb.2019.03.004]
[6]
Mbala, B.M.; Jacobs, J.; Claes, P.; Mudogo, V.; De Kimpe, N. Investigation towards an efficient synthesis of benzo[g]isoquinoline1,5,10(2H)-triones. Tetrahedron, 2011, 67, 8747-8756.
[http://dx.doi.org/10.1016/j.tet.2011.09.021]
[7]
Abdelfattah, M.S.; Toume, K.; Arai, M.A.; Masu, H.; Ishibashi, M. Katorazone, a new yellow pigment with a 2-azaquinone-phenylhydrazone structure produced by Streptomyces sp. IFM 11299. Tetrahedron Lett., 2012, 53, 3346-3348.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.073]
[8]
Kolodina, E.A.; Lebedeva, N.I.; Shvartsberg, M.S. One-pot synthesis of 4-alkynyl-1-aza-9,10-anthraquinones from 2-acylethynyl-3-amino-1,4-naphthoquinones. Mendeleev Commun., 2012, 22, 332-333.
[http://dx.doi.org/10.1016/j.mencom.2012.11.019]
[9]
Wang, J.; Li, W.; Qin, J.; Wang, L.; Wei, S.; Tang, H. Assessment of novel azaanthraquinone derivatives as potent multi-target inhibitors of inflammation and amyloid-β aggregation in Alzheimer’s disease. Bioorg. Chem., 2019, 83, 477-486.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.073] [PMID: 30448726]
[10]
Yang, R.; Chen, Y.; Pan, L.; Yang, Y.; Zheng, Q.; Hu, Y.; Wang, Y.; Zhang, L.; Sun, Y.; Li, Z.; Meng, X. Design, synthesis and structure-activity relationship study of novel naphthoindolizine and indolizinoquinoline-5,12-dione derivatives as IDO1 inhibitors. Bioorg. Med. Chem., 2018, 26(17), 4886-4897.
[http://dx.doi.org/10.1016/j.bmc.2018.08.028] [PMID: 30170925]
[11]
(a) Nishiyama, T.; Hatae, N.; Chikaraishi, K.; Uchida, K.; Yokoyama, C.; Hibino, S.; Choshi, T. Concise synthesis of kalasinamide, marcanine A, and geovanine, and antiproliferative activity evaluation of their azaanthracenones. Heterocycles, 2019, 99, 415-424.
[http://dx.doi.org/10.3987/COM-18-S(F)36]
(b) Jacobs, N.; Lang, S.; Panisch, R.; Wittstock, G.; Groth, U.; Nasiri, H.R. Investigation on the electrochemistry and cytotoxicity of the natural product marcanine A and its synthetic derivatives. Rsc Adv., 2015, 5, 58561-58565.
[http://dx.doi.org/10.1039/C5RA11078E]
(c) Lang, S.; Groth, U. Total syntheses of cytotoxic, naturally occurring kalasinamide, geovanine, and marcanine A. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 911-913.
[http://dx.doi.org/10.1002/anie.200804388] [PMID: 19115341]
[12]
Thanuphol, P.; Asami, Y.; Shiomi, K.; Wongnoppavich, A.; Tuchinda, P.; Soonthornchareonnon, N. Marcanine G, a new cytotoxic 1-azaanthraquinone from the stem bark of Goniothalamus marcanii Craib. Nat. Prod. Res., 2018, 32(14), 1682-1689.
[http://dx.doi.org/10.1080/14786419.2017.1396588] [PMID: 29098873]
[13]
Espinosa-Bustos, C.; Canales, C. RamIrez, G.; Jaque, P.; Salas, C.O. Unveiling interactions between DNA and cytotoxic 2-arylpiperidinyl-1,4-Naphthoquinone derivatives: A combined electrochemical and computational study. Arab. J. Chem., 2020, 13(1), 2233-2244.
[http://dx.doi.org/10.1016/j.arabjc.2018.04.008]
[14]
(a) Jin, J.H.; Wang, H.; Yang, Z.T.; Yang, W.L.; Tang, W.; Deng, W.P. Asymmetric synthesis of 3,4-dihydroquinolin-2-ones via a stereoselective alladium-catalyzed decarboxylative [4 + 2] cycloaddition. Org. Lett., 2018, 20(1), 104-107.
[http://dx.doi.org/10.1021/acs.orglett.7b03467] [PMID: 29227662]
(b) Mieriņa, I.; Jure, M.; Stikute, A. Synthetic approaches to 4-(het)aryl-3,4-dihydroquinolin-2(1H)-ones. Chem. Heterocycl. Compd., 2016, 52, 509-523.
[http://dx.doi.org/10.1007/s10593-016-1920-9]
(c) Azarifar, D.; Sheikh, D. Ultrasound-promoted one-pot synthesis of 8-aryl-7,8-dihydro-[1,3]-dioxolo[4,5-g]quinolin-6(5H)-one derivatives under catalyst-free and solvent-free conditions. Acta Chim. Slov., 2012, 59(3), 664-669.
[PMID: 24061324]
(d) Nikoofar, K.; Yielzoleh, F.M. Novel nano-titania embedded on graphite (nano-TiO2@Cg) as an efficient, eco-friendly, and recyclable catalyst for one-pot, solvent-free synthesis of 4-aryl-3,4-dihydroquinolin-2(1H)-ones, 3-methyl-4-aryl/alkyl-2,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-ones, and coumarin-3-carboxylic esters. Res. Chem. Intermed., 2018, 44, 7353-7367.
[http://dx.doi.org/10.1007/s11164-018-3560-4]
(e) Azarifar, D.; Sheikh, D. ZrOCl2•8H2O: An efficient, ecofriendly, and recyclable catalyst for ultrasound-accelerated, one-pot, solvent-free synthesis of 8-aryl-7,8-dihydro-[1,3]dioxolo[4,5-g]quinolin-6-(5H)-one and 4-aryl-3,4-dihydroquinolin-2(1H)-one derivatives. Synth. Commun., 2013, 43, 2517-2526.
[http://dx.doi.org/10.1080/00397911.2012.718026]
[15]
(a) Chen, X.L.; Dong, Y.; He, S.; Zhang, R.; Zhang, H.; Tang, L.; Zhang, K.M.; Wang, J.U. A one-pot approach to 2-(N-substituted amino)-1,4-naphthoquinones with use of nitro compounds and 1,4-naphthoquinones in water. Synlett, 2019, 30, 615-619.
[http://dx.doi.org/10.1055/s-0037-1610689]
(b) Gholampour, M.; Ranjbar, S.; Edraki, N.; Mohabbati, M.; Firuzi, O.; Khoshneviszadeh, M. Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg. Chem., 2019, 88102967
[http://dx.doi.org/10.1016/j.bioorg.2019.102967] [PMID: 31078767]
(c) Kacmaz, A.; Hamurcu, Z. New NH-substituted 1,4-naphtho and 1,4-benzo-quinones: Synthesis, characterization and potential antiproliferative effect against MDA-MB-231 cells. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193, 831-839.
[http://dx.doi.org/10.1080/10426507.2018.1514503]
(d) Sharma, A.; Santos, I.O.; Gaur, P.; Ferreira, V.F.; Garcia, C.R.; da Rocha, D.R. Addition of thiols to o-quinone methide: new 2-hydroxy-3-phenylsulfanyl-methyl[1,4]naphthoquinones and their activity against the human malaria parasite Plasmodium falciparum (3D7). Eur. J. Med. Chem., 2013, 59, 48-53.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.052] [PMID: 23202850]
(e) Ullah, S.; Akter, J.; Kim, S.J.; Yang, J.; Park, Y.; Chun, P.; Moon, H.R. The tyrosinase-inhibitory effects of 2-phenyl-1,4-naphthoquinone analogs: importance of the (E)-β-phenyl-α,β-unsaturated carbonyl scaffold of an endomethylene type. Med. Chem. Res., 2019, 28, 95-103.
[http://dx.doi.org/10.1007/s00044-018-2267-9]
(f) Josey, B.J.; Inks, E.S.; Wen, X.; Chou, C.J. Structure-activity relationship study of vitamin k derivatives yields highly potent neuroprotective agents. J. Med. Chem., 2013, 56(3), 1007-1022.
[http://dx.doi.org/10.1021/jm301485d] [PMID: 23327468]
(g) Guo, J.; Kiran, I.N.C.; Reddy, R.S.; Gao, J.; Tang, M.; Liu, Y.; He, Y. Synthesis of carbazolequinones by formal [3 + 2] cycloaddition of arynes and 2-aminoquinones. Org. Lett., 2016, 18(10), 2499-2502.
[http://dx.doi.org/10.1021/acs.orglett.6b01090] [PMID: 27149368]
(h) Kosiha, A.; Parthiban, C.; Elango, K.P. Synthesis, characterization and DNA binding/cleavage, protein binding and cytotoxicity studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of aminonaphthoquinone. J. Photochem. Photobiol. B, 2017, 168, 165-174.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.010] [PMID: 28231533]
(i)Sayil, C.; Kurban, S.; Ibis, C. Synthesis and characterization of nitrogen and sulfur containing 1,4-naphthoquinones. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188, 1855-1867.
[http://dx.doi.org/10.1080/10426507.2013.796475]
(j)Aly, A.A.; Ishak, E.A.; Alsharari, M.A.; Al-Muaikel, N.S.; Bedair, T.M.I. Aminonaphthoquinones in heterocyclization. J. Heterocycl. Chem., 2012, 49, 9-20.
[http://dx.doi.org/10.1002/jhet.639]
(k)Valenc, W.O.; Baiju, T.V.; Brito, F.G.; Araujo, M.H.; Pessoa, C.; Cavalcanti, B.C.; de Simone, C.A.; Jacob, C.; Namboothiri, I.N.N.; da Silva, E.N. Junior Synthesis of quinone-based N-sulfonyl-1,2,3-triazoles: chemical reactivity of Rh(II) azavinyl carbenes and antitumor activity. Chem. Select, 2017, 2, 4301-4308.
(l)Osowole, A.A.; Ekennia, A.C.; Olubiyi, O.O.; Olagunju, M. Synthesis, spectral, thermal, antibacterial and molecular docking studies of some metal(II) complexes of 2-(1,3-benzothiazol-2-ylamino)naphthalene-1,4-dione. Res. Chem. Intermed., 2017, 43, 2565-2585.
[http://dx.doi.org/10.1007/s11164-016-2780-8]
(m)Kuttruff, C.A.; Geiger, S.; Cakmak, M.; Mayer, P.; Trauner, D. An approach to aminonaphthoquinone ansamycins using a modified Danishefsky diene. Org. Lett., 2012, 14(4), 1070-1073.
[http://dx.doi.org/10.1021/ol203437a] [PMID: 22296114]
(n)Yuk, D.Y.; Ryu, C.K.; Hong, J.T.; Chung, K.H.; Kang, W.S.; Kim, Y.; Yoo, H.S.; Lee, M.K.; Lee, C.K.; Yun, Y.P. Antithrombotic and antiplatelet activities of 2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoqui-none (NQ12), a newly synthesized 1,4-naphthoquinone derivative. Biochem. Pharmacol., 2000, 60(7), 1001-1008.
[http://dx.doi.org/10.1016/S0006-2952(00)00411-1] [PMID: 10974210]
(o)Hsu, Y.L.; Chuang, C.P. Manganese(III) acetate mediated oxidative free-radical reactions of 2-(alkenylamino)-1,4-naphthoquinones with 1,3-dicarbonyl compounds. Synthesis, 2014, 46, 3374-3382.
[http://dx.doi.org/10.1055/s-0034-1379110]
(p)Festus, C.; Ekennia, A.C.; Osowole, A.A.; Olasunkanmi, L.O.; Onwudiwe, D.C.; Ujam, O.T. Synthesis, experimental and theoretical characterization, and antimicrobial studies of some Fe(II), Co(II), and Ni(II) complexes of 2-(4,6-dihydroxypyrimidin-2- ylamino)naphthalene-1,4-dione. Res. Chem. Intermed., 2018, 44, 5857-5877.
[http://dx.doi.org/10.1007/s11164-018-3460-7]
[16]
(a) López-López, L.I.; Nery-Flores, S.D.; Sáenz-Galindo, A.; de Loera, D. Facile synthesis of aminonaphthoquinones Mannich bases by non-catalytic multicomponent reaction. Synth. Commun., 2017, 47, 2247-2253.
[http://dx.doi.org/10.1080/00397911.2017.1371760]
(b) Kosiha, A.; Lo, K.M.; Parthiban, C.; Elango, K.P. Studies on the interaction of mononuclear metal(II) complexes of amino naphthoquinone with bio-macromolecules. Mater. Sci. Eng. C, 2019, 94, 778-787.
[http://dx.doi.org/10.1016/j.msec.2018.10.021] [PMID: 30423764]
(c) Festus, C.; Ekennia, A.C.; Ibeji, C.U.; Okafor, S.N.; Onwudiwe, D.C.; Osowole, A.A.; Ujam, O.T. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes. J. Mol. Struct., 2018, 1163, 455-464.
(d) Ibis, C.; Ozsoy-Gunes, Z.; Tuyun, A.F.; Ala, S.S.; Bahar, H.; Stasevych, M.V.; Musyanovych, R.Y.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis, antibacterial and antifungal evaluation of thio- or piperazinyl-substituted 1,4-naphthoquinone derivatives. J. Sulfur Chem., 2016, 37, 477-487.
[http://dx.doi.org/10.1080/17415993.2016.1187734]
(e) Li, J.; Zhang, X.; Xiang, H.; Tong, L.; Feng, F.; Xie, H.; Ding, J.; Yang, C. C-H Trifluoromethylation of 2-substituted/unsubstituted aminonaphthoquinones at room temperature with Bench-Stable (CF3SO2)2Zn: synthesis and antiproliferative evaluation. J. Org. Chem., 2017, 82(13), 6795-6800.
[http://dx.doi.org/10.1021/acs.joc.7b00940] [PMID: 28589724]
(f) Phutdhawong, W.; Eksinitkun, G.; Ruensumran, W.; Taechowisan, T.; Phutdhawong, W.S. Synthesis and anticancer activity of 5,6,8,13-tetrahydro-7H-naphtho[2,3-a][3]-benzazepine-8,13-diones. Arch. Pharm. Res., 2012, 35(5), 769-777.
[http://dx.doi.org/10.1007/s12272-012-0502-3] [PMID: 22644844]
(g) Manickam, M.; Boggu, P.R.; Cho, J.; Nam, Y.J.; Lee, S.J.; Jung, S.H. Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity. Bioorg. Med. Chem. Lett., 2018, 28(11), 2023-2028.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.060] [PMID: 29735338]
(h) Olawode, E.O.; Tandlich, R.; Prinsloo, E.; Isaacs, M.; Hoppe, H.; Seldon, R.; Warner, D.F.; Steenkamp, V.; Kaye, P.T. Synthesis and biological evaluation of 2-chloro-3-[(thiazol-2-yl)amino]-1,4-naphthoquinones. Bioorg. Med. Chem. Lett., 2019, 29(13), 1572-1575.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.001] [PMID: 31080006]
(i)Troshkova, N.M.; Goryunov, L.I.; Shteingarts, V.D.; Zakharova, O.D.; Ovchinnikova, L.P.; Nevinsky, G.A. Synthesis and cytotoxicity evaluation of polyfluorinated 1,4-naphthoquinones containing amino acid substituents. J. Fluor. Chem., 2014, 164, 18-26.
[http://dx.doi.org/10.1016/j.jfluchem.2014.04.014]
(j)Leyva, E.; Lopez, L.I.; de la Cruz, R.F.G.; Espinosa-Gonzalez, C.G. Synthesis and studies of the antifungal activity of 2- anilino-/2,3-dianilino-/2-phenoxy- and 2,3-diphenoxy-1,4-naphthoquinones. Res. Chem. Intermed., 2017, 43, 1813-1827.
[http://dx.doi.org/10.1007/s11164-016-2732-3]
(k)Sharma, U.; Katoch, D.; Sood, S.; Kumar, N.; Singh, B.; Thakur, A.; Gulati, A. Synthesis, antibacterial and antifungal activity of 2-amino-1,4-naphthoquinones using silica-supported perchloric acid (HClO4-SiO2) as a mild, recyclable and highly efficient heterogeneous catalyst. Indian J. Chem., 2013, 52B, 1431-1440.
(l)Ravichandiran, P.; Subramaniyan, S.A.; Kim, S.Y.; Kim, J.S.; Park, B.H.; Shim, K.S.; Yoo, D.J. Synthesis and anticancer evaluation of 1,4-naphthoquinone derivatives containing phenylaminosulfanyl moiety. ChemMedChem, 2019, 14(5), 532-544.
[http://dx.doi.org/10.1002/cmdc.201800749] [PMID: 30600915]
(m)Mathew, N.; Karunan, T.; Srinivasan, L.; Muthuswamy, K. Synthesis and screening of substituted 1,4-naphthoquinones (NPQs) as antifilarial agents. Drug Dev. Res., 2010, 71, 188-196.
[17]
Cardoso, S.H.; de Oliveira, C.R.; Guimarães, A.S.; Nascimento, J.; de Oliveira Dos Santos Carmo, J.; de Souza Ferro, J.N.; de Carvalho Correia, A.C.; Barreto, E. Synthesis of newly functionalized 1,4-naphthoquinone derivatives and their effects on wound healing in alloxan-induced diabetic mice. Chem. Biol. Interact., 2018, 291, 55-64.
[http://dx.doi.org/10.1016/j.cbi.2018.06.007] [PMID: 29902415]
[18]
(a) Kumar, N.P.; Thatikonda, S.; Tokala, R.; Kumari, S.S.; Lakshmi, U.J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg. Med. Chem., 2018, 26(8), 1996-2008.
[http://dx.doi.org/10.1016/j.bmc.2018.02.050] [PMID: 29525336]
(b) Zou, B.; Chen, C.; She, Y.L.; Ding, M.; Smith, P.W. An efficient synthesis of 4,6-dihydrospiro[azepino[4,3,2-cd]indole-3,3′-indoline]2′,5(1H)diones via multi-component reaction. Tetrahedron, 2014, 70, 578-582.
[http://dx.doi.org/10.1016/j.tet.2013.12.010]
(c) Adib, M.; Fatemi, S.; Nosrati, M.; Bijanzadeh, H.R. One-pot three-component reaction between 2-aminopyridines, aldehydes and Meldrum’s acid in water: an efficient synthesis of β-amino acids. Synlett, 2008, 2008, 3177-3179.
[http://dx.doi.org/10.1055/s-0028-1087279]
(d) Wang, X.M.; Ye, H.L.; Qaun, Z.J.; Wang, X.C. One-pot synthesis of benzoquinoline and coumarin derivatives using Meldrum’s acid in three-component reactions. Res. Chem. Intermed., 2013, 39, 2357-2367.
[http://dx.doi.org/10.1007/s11164-012-0762-z]
(e) Zeng, L.Y.; Liu, T.; Yang, J.; Yang, Y.; Cai, C.; Liu, S. Yang, Y.; Cai, C.; Liu, S. On-water” facile synthesis of novel pyrazolo-[3,4-b]pyridinones possessing anti-influenza virus activity. ACS Comb. Sci., 2017, 19(7), 437-446.
[http://dx.doi.org/10.1021/acscombsci.7b00016] [PMID: 28581706]
(f) Kozlov, N.G.; Basalayeva, L.I.; Tychinskaya, L.Y. Synthesis of 1-aryl-3-oxo-1,2,3,4-tetrahydrobenzo[f]quinolones. Russ. J. Org. Chem., 2002, 38, 1166-1170.
[http://dx.doi.org/10.1023/A:1020953510529]
(g) Hu, B.; Zhou, Y.Y.; Du, W.; Xu, X.; Li, Z.; Deng, W.P. Facile synthesis of tetrahydroimidazol-pyridinones via an MCR involving 6-ClPMNI, aldehydes, and Meldrum’s acid. Synth. Commun., 2011, 41, 1112-1118.
[http://dx.doi.org/10.1080/00397911003797791]
(h) Veisi, H.; Maleki, A.; Jahangard, S. Electrogenerated base promoted synthesis of 3-methyl-4-aryl-2,4,5,7-tetrahydropyrazolo[3,4-b]pyridine-6-ones via multicomponent reactions of 5-methylpyrazol-3-amine, aldehydes, and Meldrum’s acid. Tetrahedron Lett., 2015, 56, 1882-1886.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.098]
(i)Xu, J.; Xie, X.; Ye, N.; Zou, J.; Chen, H.; White, M.A.; Shi, P.Y.; Zhou, J. Design, synthesis, and biological evaluation of substituted 4,6- dihydrospiro[1,2,3]triazolo[4,5 b]pyridine-7,3′-indoline]-2′,5(3H) dione analogues as potent NS4B inhibitors for the treatment of dengue virus infection. J. Med. Chem., 2019, 62, 7941-7960.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00698] [PMID: 31403780]
[19]
(a) Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
(b) Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Kleine, H.P.; Knight, C.; Nagy, M.A.; Perry, D.A.; Stefaniak, M. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem., 2008, 10, 31-36.
[http://dx.doi.org/10.1039/B711717E]
(c) Batista, V.F.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of quinolines: a green perspective. ACS Sustain. Chem.& Eng., 2016, 4, 4064-4078.
[http://dx.doi.org/10.1021/acssuschemeng.6b01010]
(d) Bryan, M.C.; Dillon, B.; Hamann, L.G.; Hughes, G.J.; Kopach, M.E.; Peterson, E.A.; Pourashraf, M.; Raheem, I.; Richardson, P.; Richter, D.; Sneddon, H.F. Sustainable practices in medicinal chemistry: current state and future directions. J. Med. Chem., 2013, 56(15), 6007-6021.
[http://dx.doi.org/10.1021/jm400250p] [PMID: 23586692]
[20]
(a) Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
(b) Landstrom, E.B.; Nichol, M.; Lipshutz, B.H.; Gainer, M.J. Discovery-based SNAr experiment in water using micellar catalysis. J. Chem. Educ., 2019.
[http://dx.doi.org/10.1021/acs.jchemed.9b00310]
(c) Babij, N.R.; McCusker, E.O.; Whiteker, G.T.; Canturk, B.; Choy, N.; Creemer, L.C.; De Amicis, C.V.; Hewlett, N.M.; Johnson, P.L.; Knobelsdorf, J.A.; Li, F.; Lorsbach, B.A.; Nugent, B.M.; Ryan, S.J.; Smith, M.R.; Yang, Q. NMR Chemical shifts of trace impurities: industrially preferred solvents used in rocess and green chemistry. Org. Process Res. Dev., 2016, 20, 661-667. http://
[http://dx.doi.org/10.1021/acs.oprd.5b00417]
(d) Rogers, L.; Jensen, K.F. Continuous manufacturing - the green chemistry promise? Green Chem., 2019, 21, 3481-3498.
[http://dx.doi.org/10.1039/C9GC00773C]
(e) Erythropel, H.C.; Zimmerman, J.B.; de Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; Pincus, L.N.; Falinski, M.M.; Shi, W.; Coish, P.; Plata, D.L.; Anastas, P.T. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem., 2018, 20, 1929-1961.
[http://dx.doi.org/10.1039/C8GC00482J]
[21]
(a) Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehadad, S.; Dunn, P.J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem., 2016, 18, 288-296.
[http://dx.doi.org/10.1039/C5GC01008J]
(b) Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Measurement and correlation of solubility of olmesartan medoxomil in six green solvents at 295.15-330.15 K. Ind. Eng. Chem. Res., 2014, 53, 2846-2849.
[http://dx.doi.org/10.1021/ie404373n]
(c) Shakeel, F.; Shazly, G.A.; Haq, N. Solubility of metoclopramide hydrochloride in six green solvents at (298.15 to 338.15). K. J. Chem. Eng. Data, 2014, 59, 1700-1703.
[http://dx.doi.org/10.1021/je500154k]
[22]
Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim., 2018, 21, 572-580.
[http://dx.doi.org/10.1016/j.crci.2018.03.010]
[23]
(a) Jadhav, S.A.; Sarkate, A.P.; Shioorkar, M.G.; Shinde, D.B. Expeditious one-pot multicomponent microwave-assisted green synthesis of substituted 2-phenyl Quinoxaline and 7-bromo-3-(4-ethylphenyl) pyrido[2,3-b]pyrazine in water-PEG and water-ethanol. Synth. Commun., 2017, 47, 1661-1667.
[http://dx.doi.org/10.1080/00397911.2017.1337153]
(b) Saithongdee, A.; Varanusupakul, P.; Imyim, A. Preparation of thermally sensitive poly[N-isopropylacrylamide-co-(maleic acid)] hydrogel membrane by electrospinning using a green solvent. Green Chem. Lett. Rev., 2014, 7, 220-227.
[http://dx.doi.org/10.1080/17518253.2014.923519]
(c) Chen, Z.; Ding, K.; Su, W. Basic ionic liquid as catalyst for the efficient and green synthesis of 2-amino-3-nitrobenzonitriles in ethanol. Synth. Commun., 2011, 41, 1410-1420.
[http://dx.doi.org/10.1080/00397911.2010.486503]
(d) Villemin, D.; Benabdallah, M.; Choukchou-Braham, N.; Mostefa-Kara, B. Polyethylene glycol (PEG 300) and water-ethanol as benign solvent systems for the synthesis of a novel series of 2-hydroxynaphthalen-1(4H)-ones. Synth. Commun., 2010, 40, 3109-3118.
[http://dx.doi.org/10.1080/00397911003797916]
(e) Kumar, D. Suresh, Sandhu, J.S. Aldonitrones as aldehyde equivalents: an efficient, green, and novel protocol for the synthesis of 1,8-dioxo-octahydroxanthenes. Synth. Commun., 2013, 43, 2739-2747.
[http://dx.doi.org/10.1080/00397911.2012.736584]
(f) Wahbi, A.; Mhamdi, A.; Hassen, Z.; Touil, S. Efficient and green syntheses of novel γ-aminophosphonate and phosphine oxide derivatives. Green Chem. Lett. Rev., 2014, 7, 73-78.
[http://dx.doi.org/10.1080/17518253.2014.895863]
(g) Jamale, D.K.; Vibhute, S.S.; Undare, S.S.; Valekar, N.J.; Patil, K.T.; Warekar, P.P.; Patil, P.T.; Kolekar, G.B.; Anbhule, P.V. Unexpected formation of 4,5-dihydro-1H-pyrazolo[3,4-b]pyridine derivatives as a potent antitubercular agent and its evaluation by green chemistry metrics. Synth. Commun., 2018, 48, 2750-2760.
[http://dx.doi.org/10.1080/00397911.2018.1524491]
(h) Zou, Y.; Hu, Y.; Liu, H.; Shi, D. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. ACS Comb. Sci., 2012, 14(1), 38-43.
[http://dx.doi.org/10.1021/co200128k] [PMID: 22141731]
(i)Le, T.T.T.; Vu, T.V.; Kim, H.; Jeong, D.S.; Pejjai, B.; Truong, N.T.N.; Park, C. Green and low-cost synthesis of CIGSe nanoparticles using ethanol as a solvent by a sonochemical method - a new approach. Mater. Chem. Phys., 2018, 207, 522-529.
[http://dx.doi.org/10.1016/j.matchemphys.2017.12.078]
(j)Shabalala, S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Innovative efficient method for the synthesis of 1,4-dihydropyridines using Y2O3 loaded on ZrO2 as catalyst. Ind. Eng. Chem. Res., 2017, 56, 11372-11379.
[http://dx.doi.org/10.1021/acs.iecr.7b02579]
(k)Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. Synthesis, structure, and properties of new Mg(II)-metal−organic framework and its prowess as catalyst in the production of 4H pyrans. Ind. Eng. Chem. Res., 2017, 56, 2917-2924.
[http://dx.doi.org/10.1021/acs.iecr.6b04795]
(l)Bose, D.S.; Fatima, L.; Mereyala, H.B.; Mereyala, H.B. Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction: comparison of ethanol, water, and solvent-free conditions. J. Org. Chem., 2003, 68(2), 587-590.
[http://dx.doi.org/10.1021/jo0205199] [PMID: 12530887]
(m)Reddy, M.V.; Reddy, G.D.; Kim, J.T.; Jeong, Y.T. An efficient and green synthesis of highly functionalized N-methyl-2-nitro-aryl-1H-benzo[f]chromen-3-amine derivatives under catalyst-free conditions. Tetrahedron, 2016, 72, 6484-6491.
[http://dx.doi.org/10.1016/j.tet.2016.08.059]
(n)Yahaya, I.; Seferoglu, N.; Seferoglu, Z. Improved one-pot synthetic conditions for synthesis of functionalized fluorescent coumarin-thiophene hybrids: syntheses, DFT studies, photophysical and thermal properties. Tetrahedron, 2019, 75, 2143-2154.
[http://dx.doi.org/10.1016/j.tet.2019.02.034]
(o)Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Swift and green protocol for one-pot synthesis of pyrano[2,3-c]pyrazole-3-carboxylates with RuCaHAp as catalyst. Curr. Org. Chem., 2016, 20, 2125-2133.
[http://dx.doi.org/10.2174/1385272820666160530104140]
(p)Haddad, R. Keplerate polyoxotungstate nanowheel functionalized magnetic nanoparticles for sustainable biodiesel production by esterification of free fatty acids with ethanol in an ultrasound-assisted. Curr. Catal., 2016, 5, 116-128.
[http://dx.doi.org/10.2174/2211544705666160509163410]
(q)Sahu, A.; Mishra, S.; Sahu, P.; Gajbhiye, A.; Agrawal, R.K. Indium(III) chloride: an efficient catalyst for one-pot multicomponent synthesis of 2,3-dihydroquinazoline-4(1H)-ones. Curr. Organocatal., 2018, 5, 137-144.
[http://dx.doi.org/10.2174/2213337205666180614112318]
(r)Shabalala, S.; Maddila, S.; van-Zyl, W.E.; Jonnalagadda, S.B. Sustainable CeO2/ZrO2 mixed oxide catalyst for the green synthesis of highly functionalized 1,4-dihydropyridine-2,3-dicarboxylate derivatives. Curr. Org. Synth., 2018, 15, 396-403.
[http://dx.doi.org/10.2174/1570179414666170905153052]
(s)Henyecz, R.; Oroszy, R.; Keglevich, G. Microwave-assisted Hirao reaction of heteroaryl bromides and >P(O)H reagents using Pd(OAc)2 as the catalyst precursor in the absence of added P-ligands. Curr. Org. Chem., 2019, 23, 1151-1157.
[http://dx.doi.org/10.2174/1385272823666190621114915]
(t)More, Y.W.; Tekale, S.U.; Kaminwar, N.S.; Kótai, L.; Pasinszki, T.; Kendrekar, P.S.; Pawar, R.P. Synthesis of 3,4-dihydropyrano[c]chromenes using carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin as a catalyst. Curr. Org. Synth., 2019, 16, 288-293.
[http://dx.doi.org/10.2174/1570179415666181116104931]
(u)Farahi, M.; Karami, B.; Behesht Abad, Z.R.; Akrami, S. Nanosilica molybdic acid as a reusable catalyst for chemoselective synthesis of novel 4-dihydropyrano[2,3-c]pyrazoles. Lett. Org. Chem., 2017, 14, 612-618.
[http://dx.doi.org/10.2174/1570178614666170621094607]
(v)Ning, J.J.; Wang, J.F. Ren. Z.G.; Young, D.J.; Lang, J.P. Versatile palladium(II)-catalyzed Suzukie-Miyaura coupling in ethanol with a novel, stabilizing ligand. Tetrahedron, 2015, 71, 4000-4006.
[http://dx.doi.org/10.1016/j.tet.2015.04.052]
(w)Kamal, A.; Mahesh, R.; Nayak, V.L.; Babu, K.S.; Kumar, G.B.; Shaik, A.B.; Kapure, J.S.; Alarifi, A. Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach. Eur. J. Med. Chem., 2016, 108, 476-485.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.046] [PMID: 26708114]
(x)Zlatopolskiy, B.D.; Zischler, J.; Krapf, P.; Richarz, R.; Lauchner, K.; Neumaier, B. Minimalist approach meets green chemistry: Synthesis of 18 F- labeled (hetero)aromatics in pure ethanol. J. Labelled Comp. Radiopharm., 2019, 62(8), 404-410.
[http://dx.doi.org/10.1002/jlcr.3776] [PMID: 31162691]
(y)Reddy, G.M.; Garcia, J.R.; Reddy, N.B.; Zyryanov, G.V.; Yuvaraja, G. An efficient one-pot, multicomponent, and green solvent protocol for the synthesis of dihydropyridine derivatives. J. Heterocycl. Chem., 2019, 56, 845-849.
[http://dx.doi.org/10.1002/jhet.3462]
(z)Ingold, M.; Colella, L.; Hernández, P.; Batthyány, C.; Tejedor, D.; Puerta, A.; García-Tellado, F.; Padrón, J.M.; Porcal, W.; López, G.V. A Focused Library of NO-donor compounds with potent antiproliferative activity based on green multicomponent reactions. ChemMedChem, 2019, 14(18), 1669-1683.
[http://dx.doi.org/10.1002/cmdc.201900385] [PMID: 31356736]
(aa) Jangale, A.D.; Dalal, D.S. Highly efficient, combinatorial and catalyst-free approach for the Synthesis of 2-benzylidenehydrazono-3-phenyl-4-thiazolidinone-5-acetates in ethanol. ChemistrySelect, 2019, 4, 1323-1329.
[http://dx.doi.org/10.1002/slct.201802366]
(ab) Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Rana, S.; Singh, P.; Jonnalagadda, S.B. Synthesis of novel pyrazole-based triazolidin-3-onederivatives by using ZnO/ZrO2 as a reusable catalyst under green conditions. Appl. Organomet. Chem., 2019, 33(5) e4722
[http://dx.doi.org/10.1002/aoc.4722]
(ac) Chehab, S.; Merroun, Y.; Ghailane, T.; Ghailane, R.; Boukhris, S.; Akhazzane, M.; Kerbal, A.; Souizi, A. Synthesis of 9-arylhexahydroacridine-1,8-diones using phosphate fertilizers as heterogeneous catalysts. Russ. J. Org. Chem., 2019, 55, 1380-1386.
[http://dx.doi.org/10.1134/S1070428019090185]
(ad) Bhaskaruni, S.V.H.S.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. A green protocol for the synthesis of new 1,4 dihydropyridine derivatives using Fe2O3/ZrO2 as a reusable catalyst. Res. Chem. Intermed., 2019, 45, 4555-4572.
[http://dx.doi.org/10.1007/s11164-019-03849-6]
(ae) Amrollahi, M.A.; Vahidnia, F. Decoration of β-CD-ZrO on Fe3O4 magnetic nanoparticles as a magnetically, recoverable and reusable catalyst for the synthesis of 2,3-dihydro-1H-perimidines. Res. Chem. Intermed., 2018, 44, 7569-7581.
[http://dx.doi.org/10.1007/s11164-018-3574-y]
(af) Ahankar, H.; Ramazani, A.; Ślepokura, K.; Lis, T.; Kinzhybalo, V. Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one pot three component sonochemical synthesis of substituted. Res. Chem. Intermed., 2019, 45, 5007-5025.
[http://dx.doi.org/10.1007/s11164-019-03878-1]
(ag) Moloi, S.; Maddila, S.; Jonnalagadda, S.B. Microwave-irradiated one-pot synthesis of quinoline derivatives catalyzed by triethylamine. Res. Chem. Intermed., 2017, 43, 6233-6243.
[http://dx.doi.org/10.1007/s11164-017-2986-4]
(ah) Maddila, S.; Gangu, K.K.; Maddila, S.N.; Jonnalagadda, S.B. A viable and efficacious catalyst, CeO2/HAp, for green synthesis of novel pyrido[2,3-d]pyrimidine derivatives. Res. Chem. Intermed., 2018, 44, 1397-1409.
[http://dx.doi.org/10.1007/s11164-017-3174-2]
[24]
(a) Borgati, T.F.; de Souza Filho, J.D.; de Oliveira, A.B. A complete and unambiguous 1H and 13C NMR signals assignment of para naphthoquinones, ortho- and para-furano naphthoquinones. J. Braz. Chem. Soc., 2019, 30, 1138-1149.
(b) Bhand, S.; Patil, R.; Shinde, Y.; Lande, D.N.; Rao, S.S.; Kathawate, L.; Gejji, S.P.; Weyhermüller, T.; Salunke-Gawali, S. Tautomerism in o-hydroxyanilino-1,4-naphthoquinone derivatives: Structure, NMR, HPLC and density functional theoretic investigations. J. Mol. Struct., 2016, 1123, 245-260.
[http://dx.doi.org/10.1016/j.molstruc.2016.06.026]
[25]
Mattay, J.; Griesbeck, A.G. Photochemical key steps in organic synthesis: an experimental course book, 1994.
[http://dx.doi.org/10.1002/9783527615797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy