Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Oleaster (Elaeagnus angustifolia): A Comprehensive Review on Its Composition, Ethnobotanical and Prebiotic Values

Author(s): Sima Sabouri, Aziz H. Rad, Seyed H. Peighambardoust, Raana B. Fathipour, Javad Feshangchi, Fereshteh Ansari and Hadi Pourjafar*

Volume 22, Issue 3, 2021

Published on: 07 November, 2019

Page: [367 - 379] Pages: 13

DOI: 10.2174/1389201020666191107112243

Price: $65

Abstract

Background: Oleaster or Elaeagnus angustifolia is a deciduous plant from Elaegnacea family and is well-known for its remedial applications.

Objective: This paper presents a comprehensive review of the potential application of Oleaster's flour incorporated in some food products. Emphasis is given to the physicochemical, biochemical, and functional properties of Oleaster's flour.

Methods: A comprehensive search was carried out to find publications on Oleaster’s flour and its application as a prebiotic. The results of the related studies were extracted and summarized in this paper.

Results: Oleaster's flour as a prebiotic ingredient enhances antioxidants, polyphenols, fiber, flavonoids, Sterols, carbohydrates, and protein content of food products.

Conclusion: Further advanced investigations on Oleaster and its functional ingredients revealed that these are efficacious and can be applied as a substitute source in pharmacological industries for medical applications.

Keywords: Oleaster, Elaeagnus angustifolia, prebiotic, traditional remedy, flavonoid, polyphenols, sterols, antioxidant property.

Graphical Abstract
[1]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M.; Sohraby, M.; Shahlari, N.; Hamidpour, R. Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J. Tradit. Complement. Med., 2016, 7(1), 24-29.
[http://dx.doi.org/10.1016/j.jtcme.2015.09.004] [PMID: 28053884]
[2]
Katz, G.L.; Shafroth, P.B. Biology, ecology and management of Elaeagnus angustifolia L. (Russian olive) in western North America. Wetlands, 2003, 763-777.
[http://dx.doi.org/10.1672/0277-5212(2003)023[0763:BEAMOE2.0.CO;2]
[3]
Shafroth, P.B.; Auble, G.T.; Scott, M.L. Germination and establishment of the native plains cottonwood (Populus deltoides Marshall subsp. monilifera) and the Exotic Russian‐olive (Elaeagnus angustifolia L.). Conserv. Biol., 1995, 9, 1169-1175.
[http://dx.doi.org/10.1046/j.1523-1739.1995.9051159.x-i1]
[4]
Kiseleva, T.I.; Chindyaeva, L.N. Biology of oleaster (Elaeagnus angustifolia L.) at the northeastern limit of its range. Contemp. Probl. Ecol., 2011, 4, 218-222.
[http://dx.doi.org/10.1134/S1995425511020147]
[5]
Akbolat, D.; Ertekin, C.; Menges, H.; Guzel, E.; Ekinci, K. Physical and nutritional properties of oleaster (Elaeagnus angustifolia L.) growing in Turkey. Asian J. Chem., 2008, 20, 2358.
[6]
Abizov, E.; Tolkachev, O.; Mal’Tsev, S.; Abizova, E. Composition of biologically active substances isolated from the fruits of Russian olive (Elaeagnus angustifolia) introduced in the European part of Russia. Pharm. Chem. J., 2008, 2008(42), 696-698.
[http://dx.doi.org/10.1007/s11094-009-0203-5]
[7]
Ayaz, F.A.; Bertoft, E. Sugar and phenolic acid composition of stored commercial oleaster fruits. J. Food Compos. Anal., 2001, 14, 505-511.
[http://dx.doi.org/10.1006/jfca.2001.1004]
[8]
Faramarz, S.; Dehghan, G.; Jahanban-Esfahlan, A. Antioxidants in different parts of oleaster as a function of genotype. Bioimpacts, 2015, 5(2), 79-85.
[http://dx.doi.org/10.15171/bi.2015.09] [PMID: 26191501]
[9]
Ahmadiani, A.; Hosseiny, J.; Semnanian, S.; Javan, M.; Saeedi, F.; Kamalinejad, M.; Saremi, S. Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol., 2000, 72(1-2), 287-292.
[http://dx.doi.org/10.1016/S0378-8741(00)00222-1] [PMID: 10967484]
[10]
Lev, E.; Amar, Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J. Ethnopharmacol., 2002, 82(2-3), 131-145.
[http://dx.doi.org/10.1016/S0378-8741(02)00182-4] [PMID: 12241988]
[11]
Boudraa, S.; Hambaba, L.; Zidani, S.; Boudraa, H.J.F. Mineral and vitamin composition of fruits of five underexploited species in Algeria: Celtis australis L., Crataegus azarolus L., Crataegus monogyna Jacq., Elaeagnus angustifolia L. and Zizyphus lotus L Fruits -Paris 2010, 65, 75-84.https://www.tib.eu/en/search/id/BLSE%3ARN269793604/Mineral-and-vitamin-composition-of fruits-of-five/
[12]
Wang, Y.; Guo, T.; Li, J.Y.; Zhou, S.Z.; Zhao, P.; Fan, M.T. Four flavonoid glycosides from the pulps of Elaeagnus angustifolia and their antioxidant activities. In: Advanced Materials Research; Trans. Tech. Publ., 2013; pp. 16-20.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.756-759.16]
[13]
Mehrabani Natanzi, M.; Pasalar, P.; Kamalinejad, M.; Dehpour, A.R.; Tavangar, S.M.; Sharifi, R.; Ghanadian, N.; Rahimi-Balaei, M.; Gerayesh-Nejad, S. Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats. Acta Med. Iran., 2012, 50(9), 589-596.
[PMID: 23165807]
[14]
Amiri Tehranizadeh, Z.; Baratian, A.; Hosseinzadeh, H. Russian olive (Elaeagnus angustifolia) as a herbal healer. Bioimpacts, 2016, 6(3), 155-167.
[http://dx.doi.org/10.15171/bi.2016.22] [PMID: 27853679]
[15]
Sahan, Y.; Dundar, A.N.; Aydin, E.; Kilci, A.; Dulger, D.; Kaplan, F.B.; Gocmen, D.; Celik, G.J. Characteristics of cookies supplemented with Oleaster (Elaeagnus angustifolia L.) Flour. I physicochemical, sensorial and textural properties. J. Agric. Sci., 2013, 5, 160-168.
[16]
Fonia, A.; White, I.R.; White, J.M. Allergic contact dermatitis to Elaeagnus plant (Oleaster). Contact Dermat., 2009, 60(3), 178-179.
[http://dx.doi.org/10.1111/j.1600-0536.2008.01485.x] [PMID: 19260921]
[17]
Homayouni, A.; Javadi, M.; Ansari, F.; Pourjafar, H.; Jafarzadeh, M.; Barzegar, A. Advanced methods in ice cream analysis: A review. Food Anal. Methods, 2018, 11, 3224-3234.
[http://dx.doi.org/10.1007/s12161-018-1292-0]
[18]
Okmen, G.; Turkcan, O. A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. Afr. J. Tradit. Complement. Altern. Med., 2013, 11(1), 116-120.
[http://dx.doi.org/10.4314/ajtcam.v11i1.17] [PMID: 24653563]
[19]
Attia, Y.; Bakhashwain, A.; Bertu, N. Utilisation of thyme powder (Thyme vulgaris L.) as a growth promoter alternative to antibiotics for broiler chickens raised in a hot climate. Arch. Geflugelkd., 2018, 82.
[20]
Attia, Y.A.; Bakhashwain, A.A.; Bertu, N.K. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Ital. J. Anim. Sci., 2017, 16(2), 275-282.
[http://dx.doi.org/10.1080/1828051X.2016.1245594]
[21]
Attia, Y.A.; Al-Harthi, M.A.; Hassan, S.S. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Rev. Mex. Cienc. Pecu., 2017, 8(1), 11-21.
[http://dx.doi.org/10.22319/rmcp.v8i1.4309]
[22]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[23]
Yıldırım, I.; Gökçe, Z.; Yılmaz, Ö. The investigation of biochemical content of Elaeagnus angustifolia. J. Turkish Chem. Soc. Section A. Chem., 2015, 2, 34-41.
[24]
Sahan, Y.; Gocmen, D.; Cansev, A.; Celik, G.; Aydin, E.; Dundar, A.N.; Dulger, D.; Kaplan, F.B.; Kilci, A.; Gucer, S.J.J.A.B.; Quality, F. Chemical and techno-functional properties of flours from peeled and unpeeled oleaster (Elaeagnus angustifolia L.). J. Appl. Bot. Food Qual., 2015, 88, 34-41.
[25]
Bekker, N.; Glushenkova, A. Components of certain species of the Elaeagnaceae family. Chem. Nat. Compd., 2001, 37, 97-116.
[http://dx.doi.org/10.1023/A:1012395332284]
[26]
Zhang, N.; Bao, D.; Yang, C.; Huang, X.; Association, O. Ultrasound-assisted extraction of Elaeagnus angustifolia seeds oil and its physical-chemical properties. J. Chin Cereals Oils Assoc., 2013, 28, 82-85.
[27]
Goncharova, N.; Glushenkova, A. Lipids of elaeagnus fruit. Chem. Nat. Compd., 1990, 26, 12-15.
[http://dx.doi.org/10.1007/BF00605188]
[28]
Ayaz, F.A.; Kadioglu, A.; Doğru, A. Soluble Sugar Composition of Elaeagnus angustifolia L. var. orientalis (L.) Kuntze (Russian olive). Fruits. Tr. J. Botany., 1999, 23, 349-354.
[29]
Ancolio, C.; Azas, N.; Mahiou, V.; Ollivier, E.; Di Giorgio, C.; Keita, A.; Timon-David, P.; Balansard, G.; Derivatives, T. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother. Res., 2002, 16(7), 646-649.
[http://dx.doi.org/10.1002/ptr.1025] [PMID: 12410545]
[30]
Zeng, F.; Wang, W.; Zhan, Y.; Xin, Y. Establishment of the callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. Afr. J. Biotechnol., 2009, 8(19), 5005-5010.
[31]
Beigom Taheri, J.; Anbari, F.; Maleki, Z.; Boostani, S.; Zarghi, A.; Pouralibaba, F. Efficacy of Elaeagnus angustifolia topical gel in the treatment of symptomatic oral lichen planus. J. Dent. Res. Dent. Clin. Dent. Prospect., 2010, 4(1), 29-32.
[PMID: 22991592]
[32]
Khan, S.U.; Khan, A.U.; Shah, A.U.; Shah, S.M.; Hussain, S.; Ayaz, M.; Ayaz, S. Heavy metals content, phytochemical composition, antimicrobial and insecticidal evaluation of Elaeagnus angustifolia. Toxicol. Ind. Health, 2016, 32(1), 154-161.
[http://dx.doi.org/10.1177/0748233713498459] [PMID: 24081630]
[33]
Cansev, A.; Sahan, Y.; Celik, G.; Taskesen, S.; Ozbey, H. Chemical properties and antioxidant capacity of Elaeagnus angustifolia L. fruits. Asian J. Chem., 2011, 23, 2661-2665.
[34]
Esmaeili, A.; Niknam, S.J.F. Characterization of nanocapsules containing Elaeagnus angustifolia L. extract prepared using an emulsion-diffusion process. Flavour Fragrance J., 2013, 28, 309-315.
[http://dx.doi.org/10.1002/ffj.3164]
[35]
Qureshi, R.; Ghufran, M.; Sultana, K.; Ashraf, M.; Khan, A. Ethnomedicinal studies of medicinal plants of Gilgit District and surrounding areas. Ethnobot. Res. Appl., 2007, 5, 115-122.
[http://dx.doi.org/10.17348/era.5.0.115-122]
[36]
Asadiar, L.S.; Rahmani, F.; Siami, A. Assessment of genetic diversity in the Russian olive (Elaeagnus angustifolia) based on ISSR genetic markers. Cienc. Agron., 2013, 44, 310-316.
[http://dx.doi.org/10.1590/S1806-66902013000200013]
[37]
Zhou, S.; Salisbury, J.; Preedy, V.R.; Emery, P.W. Increased collagen synthesis rate during wound healing in muscle. PLoS One, 2013, 8(3), e58324.
[http://dx.doi.org/10.1371/journal.pone.0058324] [PMID: 23526975]
[38]
Bigoniya, P.; Agrawal, S.; Verma, N. Potential wound healing activity of Euphorbia hirta Linn total flavonoid fraction. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 149-156.
[39]
Ponrasu, T.; Jamuna, S.; Mathew, A.; Madhukumar, K.N.; Ganeshkumar, M.; Iyappan, K.; Suguna, L. Efficacy of L-proline administration on the early responses during cutaneous wound healing in rats., 2013, 45, 179-189.
[http://dx.doi.org/10.1007/s00726-013-1486-0]
[40]
Mehrabani, N.M.; Nejad, S.G.; Kamalinejad, M.; Dehpour, A.R.; Tavangar, S.M.; Sharify, R.; Ghannadian, N.; Pasalar, P. Histological changes and wound healing response following use of aqueous extract of Elaeagnus angustifolia in albino rats. Clin. Biochem., 2011, 13, S39.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.08.1050]
[41]
Koca, U.; Süntar, I.; Akkol, E.K.; Yilmazer, D.; Alper, M. Wound repair potential of Olea europaea L. leaf extracts revealed by in vivo experimental models and comparative evaluation of the extracts’ antioxidant activity. J. Med. Food, 2011, 14(1-2), 140-146.
[http://dx.doi.org/10.1089/jmf.2010.0039] [PMID: 21128831]
[42]
Gürbüz, I.; Ustün, O.; Yesilada, E.; Sezik, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. J. Ethnopharmacol., 2003, 88(1), 93-97.
[http://dx.doi.org/10.1016/S0378-8741(03)00174-0] [PMID: 12902057]
[43]
Karimi, G.; Hosseinzadeh, H.; Rassoulzadeh, M.; Razavi, B.M.; Taghiabadi, E. Antinociceptive effect of Elaeagnus angustifolia fruits on sciatic nerve ligated mice. Iran. J. Basic Med. Sci., 2010, 13, 97-101.
[44]
Ramezani, M.; Hosseinzadeh, H.; Daneshmand, N. Antinociceptive effect of Elaeagnus angustifolia fruit seeds in mice. Fitoterapia, 2001, 72(3), 255-262.
[http://dx.doi.org/10.1016/S0367-326X(00)00290-2] [PMID: 11295301]
[45]
Farahbakhsh, S.; Arbabian, S.; Emami, F.; Rastegar Moghadam, B.; Ghoshooni, H.; Noroozzadeh, A.; Sahraei, H.; Golmanesh, L.; Jalili, C.; Zrdooz, H.J.B.; Neuroscience, C. Inhibition of cyclooxygenase type 1 and 2 enzyme by aqueous extract of Elaeagnus angustifolia in mice. Basic Clin. Neurosci., 2011, 2, 31-37.
[46]
Hosseinzadeh, H.; Ramezani, M.; Namjo, N. Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice. J. Ethnopharmacol., 2003, 84(2-3), 275-278.
[http://dx.doi.org/10.1016/S0378-8741(02)00331-8] [PMID: 12648826]
[47]
Ziaee, M.; Samini, M.; Bolourtchian, M.; Ghaffarzadeh, M.; Ahmadi, M.; Egbal, M.A.; Khorrami, A.; Andalib, S.; Maleki-Dizaji, N.; Garjani, A. Synthesis of a novel siliconized analog of clofibrate (silafibrate) and comparison of their anti-inflammatory activities. Iran. J. Pharm. Res., 2012, 11(1), 91-95.
[PMID: 25317189]
[48]
Hosseinzadeh, H.; Rahimi, R. Anti-inflammatory effects of Elaeagnus angustifolia L. fruits in mice and rats. Iran. J. Bas. Med. Sci., 1999, 5(3), 145-153.
[49]
Rang, H.; Dale, M.; Ritter, J.; Moor, P.J.R. Dale’s pharmacology. In: 7th ed, C. L., Elsevier, Philadelphia Bone metabolism, 432-441; , 2012.
[50]
Nikniaz, Z.; Ostadrahimi, A.; Mahdavi, R.; Ebrahimi, A.A.; Nikniaz, L. Effects of Elaeagnus angustifolia L. supplementation on serum levels of inflammatory cytokines and matrix metalloproteinases in females with knee osteoarthritis. Complement. Ther. Med., 2014, 22(5), 864-869.
[http://dx.doi.org/10.1016/j.ctim.2014.07.004] [PMID: 25440377]
[51]
Ebrahimi, A.; Ebrahimi, F.; Nikniaz, Z.; Mahdavi, R.; Ostadrahimi, A.; Nikniaz, L. Effect of Elaeagnus angustifolia l. medulla fruit powder on pain of females with knee osteoarthritis. Int. J. Rheum. Dis., 2015, 18, 79-80.
[52]
Panahi, Y.; Alishiri, G.H.; Bayat, N.; Hosseini, S.M.; Sahebkar, A. Efficacy of Elaeagnus angustifolia extract in the treatment of knee osteoarthritis: A randomized controlled trial. EXCLI J., 2016, 15, 203-210.
[PMID: 27330526]
[53]
Al-Attar, A.M.; Alrobai, A.A.; Almalki, D.A. Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice. Saudi J. Biol Sci, 2016, 1; 23(3), 363-371.
[http://dx.doi.org/10.1016/j.sjbs.2015.08.011]
[54]
Eliassi, A.; Mandipour, M.; Kamalinejad, M. Intragastric effect of Elaeagnus angustifolia L. fruit on gastric acid secretion in a rat pylorus-Ligated model. J. Med. Plant., 2008, 3, 82-91.
[55]
Wang, Y.; Guo, T.; Zhao, C.; Zhao, P.; Fan, M. Changes in total phenolic and flavonoid contents and antioxidant activities of the fruit from Elaeagnus angustifolia during an 80-day study period. Agro Food Ind. Hi-Tech, 2014, 25, 7-10.
[56]
Dhalla, N.S.; Elmoselhi, A.B.; Hata, T.; Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res., 2000, 47(3), 446-456.
[http://dx.doi.org/10.1016/S0008-6363(00)00078-X] [PMID: 10963718]
[57]
Ghosh, P.K.; Gaba, A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci., 2013, 16(5), 760-820.
[http://dx.doi.org/10.18433/J3831V] [PMID: 24393557]
[58]
Burgess, C. Topical vitamins. J. Drugs Dermatol., 2008, 7(7)(Suppl.), s2-s6.
[PMID: 18681152]
[59]
Wang, Y.; Fan, M.; Li, J.; Guo, T. Antitumor effect of edible part of Elaeagnus angustifolia L. in vivo and in vitro. J. Chin. Ins. Food Sci. Technol., 2013, 13, 26-31.
[60]
Bucur, L.; Ţarǎlungǎ, G.; Istudor, V.; Badea, V. Pharmacological studies on Elaeagnus angustifolia L. tinctures and extracts. Note 2. Experimental research about the flowers tincture antitumoral activity; Arch. Balk. Med. Union, 2008.
[61]
Dehghan, M.H.; Soltani, J.; Farnad, M.; Kalantar, E.; Kamalinejad, M.; Khodaii, Z.; Hatami, S.; Natanzi, M.M. Characterization of an antimicrobial extract from Elaeagnus angustifolia. Int. J. Enter. Pathog., 2014, 2014(2), 1-4.
[http://dx.doi.org/10.17795/ijep20157]
[62]
Çoban, E.P.; Biyik, H. Antimicrobial activity of the ethanol extracts of some plants natural growing in Aydin, Turkey. Afr. J. Microbiol. Res., 2010, 4(21), 2318-2323.
[63]
Sharma, N.; Maiti, S.; Koley, K. Studies on the incidence of sub clinical mastitis in buffaloes of Rajnandgaon district of Chhattisgarh state. Vet. Pract., 2004, 5, 123-124.
[64]
Bucur, L.; Badea, V.; Istudor, V. Antibacterial activity for two soft extracts of Elaeagnus angustifolia L. Arch. Balk. Med. Union., 2006, 41, 127-131.
[65]
Okmen, G.; Turkcan, O. The antibacterial activity of Elaeagnus angustifolia L. against mastitis pathogens and antioxidant capacity of the leaf methanolic extracts. J. Anim. Vet. Adv., 2013, 12, 491-496.
[66]
Ge, Y.; Liu, J.; Su, D. In vivo evaluation of the anti-asthmatic, antitussive and expectorant activities of extract and fractions from Elaeagnus pungens leaf. J. Ethnopharmacol., 2009, 126(3), 538-542.
[http://dx.doi.org/10.1016/j.jep.2009.08.042] [PMID: 19735714]
[67]
Momtaz, S.; Hassani, S.; Khan, F.; Ziaee, M.; Abdollahi, M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol. Res., 2018, 130, 241-258.
[http://dx.doi.org/10.1016/j.phrs.2017.12.011] [PMID: 29258915]
[68]
Tabrizi, A.; Khalili, L.; Homayouni-Rad, A.; Pourjafar, H.; Dehghan, P.; Ansari, F. Prebiotics, as promising functional food to patients with psychological disorders: A review on mood disorders, sleep, and cognition. Neuroquantology, 2019, 17(6), 1-9.
[http://dx.doi.org/10.14704/nq.2019.17.6.2189]
[69]
Tamtaji, O.; Taghizadeh, M.; Takhtfiroozeh, S.; Talaei, S. The effect of Elaeagnus angustifolia water extract on scopolamine-induced memory impairment in rats. J. Zanjan Uni. Med. Sci. Health Ser., 2014, 22, 11-21.
[70]
Saboonchian, F.; Jamei, R.; Hosseini Sarghein, S. Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J. Phytomed., 2014, 4(4), 231-238.
[PMID: 25068137]
[71]
Bajkacz, S.; Baranowska, I.; Buszewski, B.; Kowalski, B.; Ligor, M. Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS method. Food Anal. Methods, 2018, 11(12), 3563-3575.
[http://dx.doi.org/10.1007/s12161-018-1332-9]
[72]
Bucur, L.; Negreanu-Pîrjol, T.; Giurginca, M.; Istudor, V. Some new Elaeagnus angustifolia L. extracts and the pharmaceutical products’ antioxidant activities determined by the chemiluminiscence method. Rev. Roum. Chim., 2008, 53, 961-964.
[73]
Giardi, M.T.; Rea, G.; Berra, B. Bio-farms for nutraceuticals: functional food and safety control by biosensors; Springer Science & Business Media, 2011, Vol. 698, .
[74]
Yalcin, G.; Sogut, O. Antioxidant capacity of Elaeagnus angustifolia L. and investigation of eosin y as the fluorescent probe in ORAC method. J. Food Agric. Environ., 2014, 12, 51-54.
[75]
Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal., 2004, 35(2), 289-301.
[http://dx.doi.org/10.1016/S0731-7085(03)00645-9] [PMID: 15063463]
[76]
Caliskan, E.; Elmastas, M.; Gokce, I. Evaluation of antioxidant properties of Elaeagnus angustifolia flowers. Asian J. Chem., 2010, 22, 2840-2848.
[77]
Ya, W.; Shang-Zhen, Z.; Chun-Meng, Z.; Tao, G.; Jian-Ping, M.; Ping, Z.; Qiu-xiu, R. Antioxidant and antitumor effect of different fractions of ethyl acetate part from Elaeagnus angustifolia L. Adv. J. Food Sci. Technol., 2014, 6, 707-710.
[http://dx.doi.org/10.19026/ajfst.6.98]
[78]
Schweingruber, F.H.; Börner, A.; Schulze, E.D. Atlas of stem anatomy in herbs, shrubs and trees; Springer Science & Business Media, 2011.
[http://dx.doi.org/10.1007/978-3-642-11638-4]
[79]
Shahidi, F. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol., 2009, 20, 376-387.
[http://dx.doi.org/10.1016/j.tifs.2008.08.004]
[80]
Pourjafar, H.; Noori, N.; Gandomi, H.; Basti, A.; Ansari, F. Stability and efficiency of double-coated beads containing Lactobacillus acidophilus obtained from the calcium alginate-chitosan and Eudragit S100 nanoparticles microencapsulation. Int. J. Probiotics Prebiotics, 2018, 13(2/3), 77-84.
[81]
Shi, C.; Sun, Z.; Me, B. Extraction, purification and antioxidation of proanthocyanidins of Elaeagnus angustifolia L. Jujubes Trans. Chin. Soc. Agri. Eng, 2006, 22(3)http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU200603034.htm
[82]
Grajek, W.; Olejnik, A.; Sip, A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim. Pol., 2005, 52(3), 665-671.
[PMID: 16086074]
[83]
Shahidi, F. Functional foods: Their role in health promotion and disease prevention. J. Food Sci., 2004, 69, R146-R149.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb10727.x]
[84]
Homayouni, A.; Akbarzadeh, F. Mehrabany. Which are more important: Prebiotics or probiotics? Nutrition, 2012, 28, 1196.
[http://dx.doi.org/10.1016/j.nut.2012.03.017]
[85]
Homayouni Rad, A.; Torab, R.; Ghalibaf, M.; Norouzi, S.; Mehrabany, E.V. Might patients with immune-related diseases benefit from probiotics? Nutrition, 2013, 29(3), 583-586.
[http://dx.doi.org/10.1016/j.nut.2012.10.008] [PMID: 23398922]
[86]
Amini, A.; Khalili, L.; Keshtiban, A.K.; Homayouni, A. Resistant starch as a bioactive compound in colorectal cancer prevention. Bioactive Foods in Health Promotion; Watson, R.R; Preedy, V.R., Ed.; Academic: Cambridge, UK, 2016, pp. 773-780.
[87]
Gulewicz, P.; Ciesiołka, D.; Frias, J.; Vidal-Valverde, C.; Frejnagel, S.; Trojanowska, K.; Gulewicz, K. Simple method of isolation and purification of α-galactosides from legumes. J. Agric. Food Chem., 2000, 48(8), 3120-3123.
[http://dx.doi.org/10.1021/jf000210v] [PMID: 10956079]
[88]
Capela, P.; Hay, T.; Shah, N. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int., 2006, 39, 203-211.
[http://dx.doi.org/10.1016/j.foodres.2005.07.007]
[89]
Ansari, F.; Pourjafar, H. Comments on evaluation of Chios mastic gum as antimicrobial agent and matrix forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT-Food Sci Technol., 2019, 109, 366.
[http://dx.doi.org/10.1016/j.lwt.2019.04.036]
[90]
Abdolhosseinzadeh, E.; Dehnad, A.R.; Pourjafar, H.; Homayouni, A.; Ansari, F. The production of probiotic Scallion Yogurt: Viability of Lactobacillus acidophilus freely and microencapsulated in the product. Carpath. J. Food Sci. Technol., 2018, 10(3), 72-80.
[91]
Martínez-Villaluenga, C.; Frías, J.; Vidal-Valverde, C.; Gómez, R. Raffinose family of oligosaccharides from lupin seeds as prebiotics: Application in dairy products. J. Food Prot., 2005, 68(6), 1246-1252.
[http://dx.doi.org/10.4315/0362-028X-68.6.1246] [PMID: 15954717]
[92]
Pérez‐Conesa, D.; López, G.; Rosau, G. Fermentation capabilities of bifidobacteria using nondigestible oligosaccharides, and their viability as probiotics in commercial powder infant formula. J. Food Sci., 2005, 70, m279-m285.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb11447.x]
[93]
Kourkoutas, Y.; Bosnea, L.; Taboukos, S.; Baras, C.; Lambrou, D.; Kanellaki, M. Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces. J. Dairy Sci., 2006, 89(5), 1439-1451.
[http://dx.doi.org/10.3168/jds.S0022-0302(06)72212-3] [PMID: 16606715]
[94]
Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M. Viability and activity of bifidobacteria during refrigerated storage of yoghurt containing Mangifera pajang fibrous polysaccharides. J. Food Sci., 2012, 77(11), M624-M630.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02955.x] [PMID: 23106104]
[95]
Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F. Fermentation and non-digestibility of Mangifera pajang fibrous pulp and its polysaccharides. J. Funct. Foods, 2012, 4, 933-940.
[http://dx.doi.org/10.1016/j.jff.2012.07.001]
[96]
Gibson, G.R.; Rastall, R.A. Prebiotics: development & application; John Wiley & Sons: Chichester, 2006, pp. 101-110.
[http://dx.doi.org/10.1002/9780470023150]
[97]
Roberfroid, M.B. Introducing inulin-type fructans. Br. J. Nutr., 2005, 93(Suppl. 1), S13-S25.
[http://dx.doi.org/10.1079/BJN20041350] [PMID: 15877886]
[98]
Napolitano, A.; Costabile, A.; Martin-Pelaez, S.; Vitaglione, P.; Klinder, A.; Gibson, G.R.; Fogliano, V. Potential prebiotic activity of oligosaccharides obtained by enzymatic conversion of durum wheat insoluble dietary fibre into soluble dietary fibre. Nutr. Metab. Cardiovasc. Dis., 2009, 19(4), 283-290.
[http://dx.doi.org/10.1016/j.numecd.2008.07.005] [PMID: 18805682]
[99]
Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci., 2008, 48, 243-257.
[http://dx.doi.org/10.1016/j.jcs.2008.01.003]
[100]
Bautista-Castaño, I.; Serra-Majem, L. Relationship between bread consumption, body weight, and abdominal fat distribution: Evidence from epidemiological studies. Nutr. Rev., 2012, 70(4), 218-233.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00454.x] [PMID: 22458695]
[101]
Capriles, V.D.; Arêas, J.A. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct., 2013, 4(1), 104-110.
[http://dx.doi.org/10.1039/C2FO10283H] [PMID: 23032642]
[102]
Mohebbi, Z.; Homayouni, A.; Azizi, M.H.; Hosseini, S.J. Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties. J. Food Sci. Technol., 2018, 55(1), 101-110.
[http://dx.doi.org/10.1007/s13197-017-2836-9] [PMID: 29358800]
[103]
Morreale, F.; Benavent-Gil, Y.; Rosell, C.M. Inulin enrichment of gluten free breads: Interaction between inulin and yeast. Food Chem., 2019, 278, 545-551.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.066] [PMID: 30583409]
[104]
Saa, D.T.; Di Silvestro, R.; Nissen, L.; Dinelli, G.; Gianotti, A. Effect of sourdough fermentation and baking process severity on bioactive fiber compounds in immature and ripe wheat flour bread. Lebensm. Wiss. Technol., 2018, 89, 322-328.
[http://dx.doi.org/10.1016/j.lwt.2017.10.046]
[105]
Marques, C.; D’auria, L.; Cani, P.D.; Baccelli, C.; Rozenberg, R.; Ruibal-Mendieta, N.L.; Petitjean, G.; Delacroix, D.L.; Quetin-Leclercq, J.; Habib-Jiwan, J.L. Comparison of glycemic index of spelt and wheat bread in human volunteers. Food Chem., 2007, 100, 1265-1271.
[http://dx.doi.org/10.1016/j.foodchem.2005.10.003]
[106]
Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. Funct. Foods, 2010, 7, 1-19.
[http://dx.doi.org/10.1616/1476-2137.15880]
[107]
Ghasemnezhad, R.; Razavilar, V.; Pourjafar, H.; Khosravi-Darani, K.; Ala, K. The viability of free and encapsulated Lactobacillus casei and Bifidobacterium animalis in chocolate milk, and evaluation of its pH changes and sensory properties during storage. Annu. Res. Rev. Biol., 2017, 21(3), 1-8.
[http://dx.doi.org/10.9734/ARRB/2017/37885]
[108]
Ansari, F.; Pourjafar, H. Comment on Traditional fermented fish harbors bacteria with potent probiotic and anticancer properties. Biocatal. Agric. Biotechnol., 2019, 17, 269-270.
[http://dx.doi.org/10.1016/j.bcab.2018.12.002]
[109]
Mirzaei, H.; Pourjafar, H.; Homayouni, A. The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. J. Vet. Res. (Pulawy), 2011, 66, 337-377.
[110]
Pourjafar, H.; Noori, N.; Gandomi, H.; Akhondzadeh Basti, A. Study of protective role of double coated beads of calcium alginate-chitosan-eudragit S100 nanoparticles achieved from microencapsulation of Lactobacillus acidophilus as a predominant flora of human and animals gut. J. Vet. Res. (Pulawy), 2016, 71(3), 311-320.
[111]
Manning, T.S.; Gibson, G.R. Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol., 2004, 18(2), 287-298.
[http://dx.doi.org/10.1016/j.bpg.2003.10.008] [PMID: 15123070]
[112]
Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. Lebensm. Wiss. Technol., 2009, 42, 137-143.
[http://dx.doi.org/10.1016/j.lwt.2008.06.009]
[113]
Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.; Perera, C.O. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. J. Food Sci., 2010, 75(8), R163-R174.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01815.x] [PMID: 21535512]
[114]
Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyż, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem., 2013, 138(2-3), 1621-1628.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.151] [PMID: 23411290]
[115]
Sabouri, S. Investigatinh quality, antioxidant and rheological properties of bread enriched with Elaeagnus angustifolia pulp and whole bean powder; Saba College of Higher Education, Department of Food Science & Technology: Urmia, Iran, 2016, p. 68.
[116]
Sahan, Y.; Aydin, E.; Dundar, A.I.; Altiner, D.D.; Celik, G.; Gocmen, D. Effects of oleaster flour supplementation in total phenolic contents, antioxidant capacities and their bioaccessibilities of cookies. Food Sci. Biotechnol., 2019, 28, 1401-1408.
[http://dx.doi.org/10.1007/s10068-019-00589-6]
[117]
Turgut, T.; Cakmakci, S. Investigation of the possible use of probiotics in ice cream manufacture. Int. J. Dairy Technol., 2009, 62, 444-451.
[http://dx.doi.org/10.1111/j.1471-0307.2009.00494.x]
[118]
Balthazar, C.F.; Silva, H.L.A.; Esmerino, E.A.; Rocha, R.S.; Moraes, J.; Carmo, M.A.V.; Azevedo, L.; Camps, I.; K D, Abud Y.; Sant’Anna, C.; Franco, R.M.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.L.; Escher, G.B.; Granato, D.; Senaka, R.C.; Nazarro, F.; Cruz, A.G. The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chem., 2018, 246, 464-472.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.002] [PMID: 29291874]
[119]
Sagdic, O.; Ozturk, I.; Cankurt, H.; Tornuk, F. Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food Bioprocess Technol., 2012, 5, 2964-2971.
[http://dx.doi.org/10.1007/s11947-011-0611-x]
[120]
Çakmakçı, S.; Topdaş, E.F.; Kalın, P.; Han, H.; Şekerci, P.; Köse, P.L.; Gülçin, İ. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int. J. Food Sci. Technol., 2015, 50, 472-481.
[http://dx.doi.org/10.1111/ijfs.12637]
[121]
Laiho, S.; Williams, R.P.; Poelman, A.; Appelqvist, I.; Logan, A. Effect of whey protein phase volume on the tribology, rheology and sensory properties of fat-free stirred yoghurts. Food Hydrocoll., 2017, 67, 166-177.
[http://dx.doi.org/10.1016/j.foodhyd.2017.01.017]
[122]
Mudgil, D.; Barak, S.; Khatkar, B. Development of functional yoghurt via soluble fiber fortification utilizing enzymatically hydrolyzed guar gum. Food Biosci., 2016, 14, 28-33.
[http://dx.doi.org/10.1016/j.fbio.2016.02.003]
[123]
do Espírito Santo, A.P.; Cartolano, N.S.; Silva, T.F.; Soares, F.A.; Gioielli, L.A.; Perego, P.; Converti, A.; Oliveira, M.N. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts. Int. J. Food Microbiol., 2012, 154(3), 135-144.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.025] [PMID: 22264421]
[124]
Zhang, L.; Folkenberg, D.M.; Qvist, K.B.; Ipsen, R. Further development of a method for visualisation of exopolysaccharides in yoghurt using fluorescent conjugates. Int. Dairy J., 2015, 46, 88-95.
[http://dx.doi.org/10.1016/j.idairyj.2014.08.018]
[125]
Öztürk, H.İ.; Aydın, S.; Sözeri, D.; Demirci, T.; Sert, D.; Akın, N. Fortification of set-type yoghurts with Elaeagnus angustifolia L. flours: Effects on physicochemical, textural, and microstructural characteristics. Lebensm. Wiss. Technol., 2018, 90, 620-626.
[http://dx.doi.org/10.1016/j.lwt.2018.01.012]
[126]
Güven, M.; Karaca, O. The effects of varying sugar content and fruit concentration on the physical properties of vanilla and fruit ice‐cream‐type frozen yogurts. Int. J. Dairy Technol., 2002, 55, 27-31.
[http://dx.doi.org/10.1046/j.1471-0307.2002.00034.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy