Review Article

An Overview of Prospective Drugs for Type 1 and Type 2 Diabetes

Author(s): Ping Wu, Zhenyu Liu, Xiaohong Jiang and Hao Fang*

Volume 21, Issue 5, 2020

Page: [445 - 457] Pages: 13

DOI: 10.2174/1389450120666191031104653

Price: $65

Abstract

Aims: The aim of this study is to provide an overview of several emerging anti-diabetic molecules.

Background: Diabetes is a complex metabolic disorder involving the dysregulation of glucose homeostasis at various levels. Insulin, which is produced by β-pancreatic cells, is a chief regulator of glucose metabolism, regulating its consumption within cells, which leads to energy generation or storage as glycogen. Abnormally low insulin secretion from β-cells, insulin insensitivity, and insulin tolerance lead to higher plasma glucose levels, resulting in metabolic complications. The last century has witnessed extraordinary efforts by the scientific community to develop anti-diabetic drugs, and these efforts have resulted in the discovery of exogenous insulin and various classes of oral anti-diabetic drugs.

Objective: Despite these exhaustive anti-diabetic pharmaceutical and therapeutic efforts, long-term glycemic control, hypoglycemic crisis, safety issues, large-scale economic burden and side effects remain the core problems.

Methods: The last decade has witnessed the development of various new classes of anti-diabetic drugs with different pharmacokinetic and pharmacodynamic profiles. Details of their FDA approvals and advantages/disadvantages are summarized in this review.

Results: The salient features of insulin degludec, sodium-glucose co-transporter 2 inhibitors, glucokinase activators, fibroblast growth factor 21 receptor agonists, and GLP-1 agonists are discussed.

Conclusion: In the future, these new anti-diabetic drugs may have broad clinical applicability. Additional multicenter clinical studies on these new drugs should be conducted.

Keywords: Molecule drugs, diabetes therapeutics, insulin degludec, SGLT2 inhibitors, glucokinase activators, FGF21 receptor agonists, GLP agonists.

Graphical Abstract
[1]
Cheng AYY, Patel DK, Reid TS, Wyne K. Differentiating basal insulin preparations: understanding how they work explains why they are different. Adv Ther 2019; 36(5): 1018-30.
[http://dx.doi.org/10.1007/s12325-019-00925-6] [PMID: 30929185]
[2]
Heise T, Mathieu C. Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes Metab 2017; 19(1): 3-12.
[http://dx.doi.org/10.1111/dom.12782] [PMID: 27593206]
[3]
Derewenda U, Derewenda Z, Dodson EJ, et al. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 1989; 338(6216): 594-6.
[http://dx.doi.org/10.1038/338594a0] [PMID: 2648161]
[4]
Krüger P, Gilge G, Cabuk Y, Wollmer A. Cooperativity and intermediate states in the T----R-structural transformation of insulin. Biol Chem Hoppe Seyler 1990; 371(8): 669-73.
[http://dx.doi.org/10.1515/bchm3.1990.371.2.669] [PMID: 2206455]
[5]
Kaarsholm NC, Ko HC, Dunn MF. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry 1989; 28(10): 4427-35.
[http://dx.doi.org/10.1021/bi00436a046] [PMID: 2669954]
[6]
Steensgaard DB, Schluckebier G, Strauss HM, et al. Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 2013; 52(2): 295-309.
[http://dx.doi.org/10.1021/bi3008609] [PMID: 23256685]
[7]
Korsatko S, Deller S, Koehler G, et al. A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin Drug Investig 2013; 33(7): 515-21.
[http://dx.doi.org/10.1007/s40261-013-0096-7] [PMID: 23749405]
[8]
Heise T, Nosek L, Bøttcher SG, Hastrup H, Haahr H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes Metab 2012; 14(10): 944-50.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01638.x] [PMID: 22726241]
[9]
Bailey TS, Pettus J, Roussel R, et al. Morning administration of 0.4U/kg/day insulin glargine 300U/mL provides less fluctuating 24-hour pharmacodynamics and more even pharmacokinetic profiles compared with insulin degludec 100U/mL in type 1 diabetes. Diabetes Metab 2018; 44(1): 15-21.
[http://dx.doi.org/10.1016/j.diabet.2017.10.001] [PMID: 29153485]
[10]
Birkeland KI, Home PD, Wendisch U, et al. Insulin degludec in type 1 diabetes: a randomized controlled trial of a new-generation ultra-long-acting insulin compared with insulin glargine. Diabetes Care 2011; 34(3): 661-5.
[http://dx.doi.org/10.2337/dc10-1925] [PMID: 21270174]
[11]
Heise T, Tack CJ, Cuddihy R, et al. A new-generation ultra-long-acting basal insulin with a bolus boost compared with insulin glargine in insulin-naive people with type 2 diabetes: a randomized, controlled trial. Diabetes Care 2011; 34(3): 669-74.
[http://dx.doi.org/10.2337/dc10-1905] [PMID: 21285389]
[12]
Zinman B, Fulcher G, Rao PV, et al. Insulin degludec, an ultra-long-acting basal insulin, once a day or three times a week versus insulin glargine once a day in patients with type 2 diabetes: a 16-week, randomised, open-label, phase 2 trial. Lancet 2011; 377(9769): 924-31.
[http://dx.doi.org/10.1016/S0140-6736(10)62305-7] [PMID: 21396703]
[13]
Home PD, Meneghini L, Wendisch U, et al. Improved health status with insulin degludec compared with insulin glargine in people with type 1 diabetes. Diabet Med 2012; 29(6): 716-20.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03547.x] [PMID: 22150786]
[14]
Heller S, Buse J, Fisher M, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 2012; 379(9825): 1489-97.
[http://dx.doi.org/10.1016/S0140-6736(12)60204-9] [PMID: 22521071]
[15]
Garber AJ, King AB, Del Prato S, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN Basal-Bolus Type 2): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 2012; 379(9825): 1498-507.
[http://dx.doi.org/10.1016/S0140-6736(12)60205-0] [PMID: 22521072]
[16]
Korsatko S, Deller S, Mader JK, et al. Ultra-long pharmacokinetic properties of insulin degludec are comparable in elderly subjects and younger adults with type 1 diabetes mellitus. Drugs Aging 2014; 31(1): 47-53.
[http://dx.doi.org/10.1007/s40266-013-0138-0] [PMID: 24263619]
[17]
Nakae R, Kusunoki Y, Katsuno T, et al. Medium-term effects of insulin degludec on patients with type 1 diabetes mellitus. Drugs R D 2014; 14(2): 133-8.
[http://dx.doi.org/10.1007/s40268-014-0048-6] [PMID: 24838615]
[18]
Urakami T, Kuwabara R, Aoki M, Okuno M, Suzuki J. Efficacy and safety of switching from insulin glargine to insulin degludec in young people with type 1 diabetes. Endocr J 2016; 63(2): 159-67.
[http://dx.doi.org/10.1507/endocrj.EJ15-0245] [PMID: 26632171]
[19]
Heise T, Bain SC, Bracken RM, et al. Similar risk of exercise-related hypoglycaemia for insulin degludec to that for insulin glargine in patients with type 1 diabetes: a randomized cross-over trial. Diabetes Obes Metab 2016; 18(2): 196-9.
[http://dx.doi.org/10.1111/dom.12588] [PMID: 26450456]
[20]
Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab 2012; 14(9): 859-64.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01627.x] [PMID: 22594461]
[21]
Heise T, Nørskov M, Nosek L, Kaplan K, Famulla S, Haahr HL. Insulin degludec: Lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes. Diabetes Obes Metab 2017; 19(7): 1032-9.
[http://dx.doi.org/10.1111/dom.12938] [PMID: 28295934]
[22]
Hirsch IB, Bode B, Courreges JP, et al. Insulin degludec/insulin aspart administered once daily at any meal, with insulin aspart at other meals versus a standard basal-bolus regimen in patients with type 1 diabetes: a 26-week, phase 3, randomized, open-label, treat-to-target trial. Diabetes Care 2012; 35(11): 2174-81.
[http://dx.doi.org/10.2337/dc11-2503] [PMID: 22933438]
[23]
Mathieu C, Hollander P, Miranda-Palma B, et al. Efficacy and safety of insulin degludec in a flexible dosing regimen vs insulin glargine in patients with type 1 diabetes (BEGIN: Flex T1): a 26-week randomized, treat-to-target trial with a 26-week extension. J Clin Endocrinol Metab 2013; 98(3): 1154-62.
[http://dx.doi.org/10.1210/jc.2012-3249] [PMID: 23393185]
[24]
Bode BW, Buse JB, Fisher M, et al. Insulin degludec improves glycaemic control with lower nocturnal hypoglycaemia risk than insulin glargine in basal-bolus treatment with mealtime insulin aspart in Type 1 diabetes (BEGIN(®) Basal-Bolus Type 1): 2-year results of a randomized clinical trial. Diabet Med 2013; 30(11): 1293-7.
[http://dx.doi.org/10.1111/dme.12243] [PMID: 23710902]
[25]
Koehler G, Heller S, Korsatko S, et al. Insulin degludec is not associated with a delayed or diminished response to hypoglycaemia compared with insulin glargine in type 1 diabetes: a double-blind randomised crossover study. Diabetologia 2014; 57(1): 40-9.
[http://dx.doi.org/10.1007/s00125-013-3056-0] [PMID: 24057153]
[26]
Davies M, Sasaki T, Gross JL, et al. Comparison of insulin degludec with insulin detemir in type 1 diabetes: a 1-year treat-to-target trial. Diabetes Obes Metab 2016; 18(1): 96-9.
[http://dx.doi.org/10.1111/dom.12573] [PMID: 26435472]
[27]
Nakamura T, Sakaguchi K, So A, et al. Effects of insulin degludec and insulin glargine on day-to-day fasting plasma glucose variability in individuals with type 1 diabetes: a multicentre, randomised, crossover study. Diabetologia 2015; 58(9): 2013-9.
[http://dx.doi.org/10.1007/s00125-015-3648-y] [PMID: 26044206]
[28]
Heise T, Nosek L, Klein O, Coester H, Svendsen AL, Haahr H. Insulin degludec/insulin aspart produces a dose-proportional glucose-lowering effect in subjects with type 1 diabetes mellitus. Diabetes Obes Metab 2015; 17(7): 659-64.
[http://dx.doi.org/10.1111/dom.12463] [PMID: 25772444]
[29]
Hirsch IB, Franek E, Mersebach H, Bardtrum L, Hermansen K. Safety and efficacy of insulin degludec/insulin aspart with bolus mealtime insulin aspart compared with standard basal-bolus treatment in people with Type 1 diabetes: 1-year results from a randomized clinical trial (BOOST® T1). Diabet Med 2017; 34(2): 167-73.
[http://dx.doi.org/10.1111/dme.13068] [PMID: 26773446]
[30]
Takahashi H, Nishimura R, Onda Y, Ando K, Tsujino D, Utsunomiya K. Comparison of glycemic variability in Japanese patients with type 1 diabetes receiving insulin degludec versus insulin detemir using continuous glucose monitoring: A randomized, cross-over, pilot study. Expert Opin Pharmacother 2017; 18(4): 335-42.
[http://dx.doi.org/10.1080/14656566.2017.1293652] [PMID: 28234565]
[31]
Onishi Y, Ono Y, Rabøl R, Endahl L, Nakamura S. Superior glycaemic control with once-daily insulin degludec/insulin aspart versus insulin glargine in Japanese adults with type 2 diabetes inadequately controlled with oral drugs: a randomized, controlled phase 3 trial. Diabetes Obes Metab 2013; 15(9): 826-32.
[http://dx.doi.org/10.1111/dom.12097] [PMID: 23557077]
[32]
Philis-Tsimikas A, Astamirova K, Gupta Y, et al. Similar glycaemic control with less nocturnal hypoglycaemia in a 38-week trial comparing the IDegAsp co-formulation with insulin glargine U100 and insulin aspart in basal insulin-treated subjects with type 2 diabetes mellitus. Diabetes Res Clin Pract 2019; 147: 157-65.
[http://dx.doi.org/10.1016/j.diabres.2018.10.024] [PMID: 30448451]
[33]
Evans M, Billings LK, Håkan-Bloch J, et al. An indirect treatment comparison of the efficacy of insulin degludec/liraglutide (IDegLira) and insulin glargine/lixisenatide (iGlarLixi) in patients with type 2 diabetes uncontrolled on basal insulin. J Med Econ 2018; 21(4): 340-7.
[http://dx.doi.org/10.1080/13696998.2017.1409228] [PMID: 29164973]
[34]
Gough SC, Bhargava A, Jain R, Mersebach H, Rasmussen S, Bergenstal RM. Low-volume insulin degludec 200 units/ml once daily improves glycemic control similarly to insulin glargine with a low risk of hypoglycemia in insulin-naive patients with type 2 diabetes: a 26-week, randomized, controlled, multinational, treat-to-target trial: the begin low volume trial. Diabetes Care 2013; 36(9): 2536-42.
[http://dx.doi.org/10.2337/dc12-2329] [PMID: 23715753]
[35]
Mu YM, Guo LX, Li L, et al. The efficacy and safety of insulin degludec versus insulin glargine in insulin-naive subjects with type 2 diabetes: results of a Chinese cohort from a multinational randomized controlled trial. Zhonghua Nei Ke Za Zhi 2017; 56(9): 660-6.
[PMID: 28870034]
[36]
Wysham C, Bhargava A, Chaykin L, et al. Effect of insulin degludec vs insulin glargine u100 on hypoglycemia in patients with type 2 diabetes: the switch 2 randomized clinical trial. JAMA 2017; 318(1): 45-56.
[http://dx.doi.org/10.1001/jama.2017.7117] [PMID: 28672317]
[37]
Aso Y, Suzuki K, Chiba Y, et al. Effect of insulin degludec versus insulin glargine on glycemic control and daily fasting blood glucose variability in insulin-naïve Japanese patients with type 2 diabetes: I’D GOT trial. Diabetes Res Clin Pract 2017; 130: 237-43.
[http://dx.doi.org/10.1016/j.diabres.2017.06.007] [PMID: 28651211]
[38]
Marso SP, McGuire DK, Zinman B, et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N Engl J Med 2017; 377(8): 723-32.
[http://dx.doi.org/10.1056/NEJMoa1615692] [PMID: 28605603]
[39]
Hunt B, Mocarski M, Valentine WJ, Langer J. Evaluation of the long-term cost-effectiveness of IDegLira versus liraglutide added to basal insulin for patients with type 2 diabetes failing to achieve glycemic control on basal insulin in the USA. J Med Econ 2017; 20(7): 663-70.
[http://dx.doi.org/10.1080/13696998.2017.1301943] [PMID: 28294641]
[40]
Kumar A, Franek E, Wise J, Niemeyer M, Mersebach H, Simó R. Efficacy and safety of once-daily insulin degludec/insulin aspart versus insulin glargine (u100) for 52 weeks in insulin-naïve patients with type 2 diabetes: a randomized controlled trial. PLoS One 2016; 11(10)e0163350
[http://dx.doi.org/10.1371/journal.pone.0163350] [PMID: 27760129]
[41]
Franek E, Haluzík M, Canecki Varžić S, et al. Twice-daily insulin degludec/insulin aspart provides superior fasting plasma glucose control and a reduced rate of hypoglycaemia compared with biphasic insulin aspart 30 in insulin-naïve adults with Type 2 diabetes. Diabet Med 2016; 33(4): 497-505.
[http://dx.doi.org/10.1111/dme.12982] [PMID: 26435365]
[42]
American Diabetes Association. Approaches to glycemic treatment. Diabetes Care 2015; 38(Suppl.): S41-8.
[http://dx.doi.org/10.2337/dc15-S010] [PMID: 25537707]
[43]
Philis-Tsimikas A, Del Prato S, Satman I, et al. Effect of insulin degludec versus sitagliptin in patients with type 2 diabetes uncontrolled on oral antidiabetic agents. Diabetes Obes Metab 2013; 15(8): 760-6.
[http://dx.doi.org/10.1111/dom.12115] [PMID: 23577643]
[44]
Harris SB, Kocsis G, Prager R, et al. Safety and efficacy of IDegLira titrated once weekly versus twice weekly in patients with type 2 diabetes uncontrolled on oral antidiabetic drugs: DUAL VI randomized clinical trial. Diabetes Obes Metab 2017; 19(6): 858-65.
[http://dx.doi.org/10.1111/dom.12892] [PMID: 28124817]
[45]
Rodbard HW, Bode BW, Harris SB, et al. Safety and efficacy of insulin degludec/liraglutide (IDegLira) added to sulphonylurea alone or to sulphonylurea and metformin in insulin-naïve people with Type 2 diabetes: the DUAL IV trial. Diabet Med 2017; 34(2): 189-96.
[http://dx.doi.org/10.1111/dme.13256] [PMID: 27589252]
[46]
Haahr H, Fita EG, Heise T. A review of insulin degludec/insulin aspart: Pharmacokinetic and pharmacodynamic properties and their implications in clinical use. Clin Pharmacokinet 2017; 56(4): 339-54.
[http://dx.doi.org/10.1007/s40262-016-0455-7] [PMID: 27696221]
[47]
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91(2): 733-94.
[http://dx.doi.org/10.1152/physrev.00055.2009] [PMID: 21527736]
[48]
Vrhovac I, Balen Eror D, Klessen D, et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 2015; 467(9): 1881-98.
[http://dx.doi.org/10.1007/s00424-014-1619-7] [PMID: 25304002]
[49]
Rieg T, Masuda T, Gerasimova M, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 2014; 306(2): F188-93.
[http://dx.doi.org/10.1152/ajprenal.00518.2013] [PMID: 24226519]
[50]
Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 2017; 60(2): 215-25.
[http://dx.doi.org/10.1007/s00125-016-4157-3] [PMID: 27878313]
[51]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 2011; 22(1): 104-12.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[52]
Baruah MP, Makkar BM, Ghatnatti VB, Mandal K. Sodium glucose co-transporter-2 inhibitor: benefits beyond glycemic control. Indian J Endocrinol Metab 2019; 23(1): 140-9.
[http://dx.doi.org/10.4103/ijem.IJEM_160_17] [PMID: 31016169]
[53]
Bolinder J, Ljunggren Ö, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014; 16(2): 159-69.
[http://dx.doi.org/10.1111/dom.12189] [PMID: 23906445]
[54]
Cefalu WT, Stenlöf K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia 2015; 58(6): 1183-7.
[http://dx.doi.org/10.1007/s00125-015-3547-2] [PMID: 25813214]
[55]
Roden M, Merker L, Christiansen AV, et al. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: A double-blind extension of a Phase III randomized controlled trial. Cardiovasc Diabetol 2015; 14: 154.
[http://dx.doi.org/10.1186/s12933-015-0314-0] [PMID: 26701110]
[56]
Stenlöf K, Cefalu WT, Kim KA, et al. Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: Findings from the 52-week CANTATA-M study. Curr Med Res Opin 2014; 30(2): 163-75.
[http://dx.doi.org/10.1185/03007995.2013.850066] [PMID: 24073995]
[57]
Handlon AL. Sodium glucose co-transporter 2 (SGLT2) inhibitors as potential antidiabetic agents. Expert Opin Ther Pat 2005; 15(11): 1531-40.
[http://dx.doi.org/10.1517/13543776.15.11.1531]
[58]
Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev 2005; 21(1): 31-8.
[http://dx.doi.org/10.1002/dmrr.532] [PMID: 15624123]
[59]
Katsuno K, Fujimori Y, Takemura Y, et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007; 320(1): 323-30.
[http://dx.doi.org/10.1124/jpet.106.110296] [PMID: 17050778]
[60]
Fujimori Y, Katsuno K, Nakashima I, Ishikawa-Takemura Y, Fujikura H, Isaji M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 2008; 327(1): 268-76.
[http://dx.doi.org/10.1124/jpet.108.140210] [PMID: 18583547]
[61]
Isaji M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int Suppl 2011; (120): S14-9.
[http://dx.doi.org/10.1038/ki.2010.511] [PMID: 21358697]
[62]
Wang C, Zhou Y, Kong Z, et al. The renoprotective effects of sodium-glucose cotransporter 2 inhibitors versus placebo in patients with type 2 diabetes with or without prevalent kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab 2018.
[http://dx.doi.org/10.1111/dom.13047] [PMID: 30565382]
[63]
Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 2018; 94(1): 26-39.
[http://dx.doi.org/10.1016/j.kint.2017.12.027] [PMID: 29735306]
[64]
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 2017; 136(17): 1643-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030012] [PMID: 29061576]
[65]
Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 2016; 39(11): 2036-41.
[http://dx.doi.org/10.2337/dc15-2688] [PMID: 27561923]
[66]
Scheen AJ. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin Pharmacokinet 2015; 54(7): 691-708.
[http://dx.doi.org/10.1007/s40262-015-0264-4] [PMID: 25805666]
[67]
Laffel LMB, Tamborlane WV, Yver A, et al. Pharmacokinetic and pharmacodynamic profile of the sodium-glucose co-transporter-2 inhibitor empagliflozin in young people with Type 2 diabetes: a randomized trial. Diabet Med 2018; 35(8): 1096-104.
[http://dx.doi.org/10.1111/dme.13629] [PMID: 29655290]
[68]
Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet 2014; 53(1): 17-27.
[http://dx.doi.org/10.1007/s40262-013-0104-3] [PMID: 24105299]
[69]
Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 2011; 80(1): 17-28.
[http://dx.doi.org/10.1038/ki.2010.483] [PMID: 21150873]
[70]
Mathieu C, Dandona P, Gillard P, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the depict-2 study): 24-week results from a randomized controlled trial. Diabetes Care 2018; 41(9): 1938-46.
[http://dx.doi.org/10.2337/dc18-0623] [PMID: 30026335]
[71]
Eriksson JW, Lundkvist P, Jansson PA, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia 2018; 61(9): 1923-34.
[http://dx.doi.org/10.1007/s00125-018-4675-2] [PMID: 29971527]
[72]
Fernandez A, Warton EM, Schillinger D, et al. Language barriers and LDL-C/SBP control among Latinos with diabetes. Am J Manag Care 2018; 24(9): 405-10.
[PMID: 30222919]
[73]
Matthaei S, Catrinoiu D, Celiński A, et al. Randomized, double-blind trial of triple therapy with saxagliptin add-on to dapagliflozin plus metformin in patients with type 2 diabetes. Diabetes Care 2015; 38(11): 2018-24.
[http://dx.doi.org/10.2337/dc15-0811] [PMID: 26324329]
[74]
Coppenrath VA, Hydery T. Dapagliflozin/saxagliptin fixed-dose tablets: a new sodium-glucose cotransporter 2 and dipeptidyl peptidase 4 combination for the treatment of type 2 diabetes. Ann Pharmacother 2018; 52(1): 78-85.
[http://dx.doi.org/10.1177/1060028017731111] [PMID: 28884600]
[75]
Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 2018; 17(1): 132.
[http://dx.doi.org/10.1186/s12933-018-0775-z] [PMID: 30296931]
[76]
Brown AJM, Lang C, McCrimmon R, Struthers A. Does dapagliflozin regress left ventricular hypertrophy in patients with type 2 diabetes? A prospective, double-blind, randomised, placebo-controlled study. BMC Cardiovasc Disord 2017; 17(1): 229.
[http://dx.doi.org/10.1186/s12872-017-0663-6] [PMID: 28835229]
[77]
Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018; 20(3): 479-87.
[http://dx.doi.org/10.1111/dom.13126] [PMID: 29024278]
[78]
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the cvd-real study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[79]
Furukawa S, Miyake T, Senba H, et al. The effectiveness of dapagliflozin for sleep-disordered breathing among Japanese patients with obesity and type 2 diabetes mellitus. Endocr J 2018; 65(9): 953-61.
[http://dx.doi.org/10.1507/endocrj.EJ17-0545] [PMID: 30047511]
[80]
Forst T, Alghdban MK, Fischer A, et al. Sequential treatment escalation with dapagliflozin and saxagliptin improves beta cell function in type 2 diabetic patients on previous metformin treatment: an exploratory mechanistic study. Horm Metab Res 2018; 50(5): 403-7.
[http://dx.doi.org/10.1055/a-0591-9442] [PMID: 29727906]
[81]
Ekholm E, Hansen L, Johnsson E, et al. Combined treatment with saxagliptin plus dapagliflozin reduces insulin levels by increased insulin clearance and improves β-cell function. Endocr Pract 2017; 23(3): 258-65.
[http://dx.doi.org/10.4158/EP161323.OR] [PMID: 27849380]
[82]
Yang W, Ma J, Li Y, et al. Dapagliflozin as add-on therapy in Asian patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: A randomized controlled trial. J Diabetes 2018; 10(7): 589-99.
[http://dx.doi.org/10.1111/1753-0407.12634] [PMID: 29215189]
[83]
González-Ortiz M, Grover-Páez F, Díaz-Cruz C. de J Patiño-Laguna A, López-Murillo LD, Martínez-Abundis E. Dapagliflozin administration on visceral adiposity, blood pressure and aortic central pressure in overweight patients without type 2 diabetes. Minerva Med 2017; 108(4): 384-6.
[PMID: 28677364]
[84]
Kato K, Suzuki K, Aoki C, et al. The effects of intermittent use of the SGLT-2 inhibitor, dapagliflozin, in overweight patients with type 2 diabetes in Japan: A randomized, crossover, controlled clinical trial. Expert Opin Pharmacother 2017; 18(8): 743-51.
[http://dx.doi.org/10.1080/14656566.2017.1317748] [PMID: 28426260]
[85]
Lundkvist P, Pereira MJ, Katsogiannos P, Sjöström CD, Johnsson E, Eriksson JW. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: Sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab 2017; 19(9): 1276-88.
[http://dx.doi.org/10.1111/dom.12954] [PMID: 28345814]
[86]
Fadini GP, Bonora BM, Zatti G, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol 2017; 16(1): 42.
[http://dx.doi.org/10.1186/s12933-017-0529-3] [PMID: 28376855]
[87]
González-Ortiz M, Méndez-Del Villar M, Martínez-Abundis E, Ramírez-Rodríguez AM. Effect of dapagliflozin administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Minerva Endocrinol 2018; 43(3): 229-35.
[PMID: 28001016]
[88]
Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naïve type 2 diabetes. Diabetes Care 2016; 39(3): 353-62.
[http://dx.doi.org/10.2337/dc15-1736] [PMID: 26786577]
[89]
Henry RR, Thakkar P, Tong C, Polidori D, Alba M. Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 2015; 38(12): 2258-65.
[http://dx.doi.org/10.2337/dc15-1730] [PMID: 26486192]
[90]
Gavin JR III, Davies MJ, Davies M, Vijapurkar U, Alba M, Meininger G. The efficacy and safety of canagliflozin across racial groups in patients with type 2 diabetes mellitus. Curr Med Res Opin 2015; 31(9): 1693-702.
[http://dx.doi.org/10.1185/03007995.2015.1067192] [PMID: 26121561]
[91]
Kusunoki M, Natsume Y, Miyata T, Tsutsumi K, Oshida Y. Effects of concomitant administration of a dipeptidyl peptidase-4 inhibitor in japanese patients with type 2 diabetes showing relatively good glycemic control under treatment with a sodium glucose co-transporter 2 inhibitor. Drug Res (Stuttg) 2018; 68(12): 704-9.
[http://dx.doi.org/10.1055/a-0585-0145] [PMID: 29966149]
[92]
Harashima SI, Inagaki N, Kondo K, et al. Efficacy and safety of canagliflozin as add-on therapy to a glucagon-like peptide-1 receptor agonist in Japanese patients with type 2 diabetes mellitus: A 52-week, open-label, phase IV study. Diabetes Obes Metab 2018; 20(7): 1770-5.
[http://dx.doi.org/10.1111/dom.13267] [PMID: 29473709]
[93]
Polidori D, Iijima H, Goda M, Maruyama N, Inagaki N, Crawford PA. Intra- and inter-subject variability for increases in serum ketone bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin. Diabetes Obes Metab 2018; 20(5): 1321-6.
[http://dx.doi.org/10.1111/dom.13224] [PMID: 29341404]
[94]
Hollander P, Bays HE, Rosenstock J, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care 2017; 40(5): 632-9.
[http://dx.doi.org/10.2337/dc16-2427] [PMID: 28289041]
[95]
Bays HE, Weinstein R, Law G, Canovatchel W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring) 2014; 22(4): 1042-9.
[http://dx.doi.org/10.1002/oby.20663] [PMID: 24227660]
[96]
Pfeifer M, Townsend RR, Davies MJ, Vijapurkar U, Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol 2017; 16(1): 29.
[http://dx.doi.org/10.1186/s12933-017-0511-0] [PMID: 28241822]
[97]
Neal B, Perkovic V, Matthews DR, et al. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): A randomized, placebo-controlled trial. Diabetes Obes Metab 2017; 19(3): 387-93.
[http://dx.doi.org/10.1111/dom.12829] [PMID: 28120497]
[98]
Peters AL, Henry RR, Thakkar P, Tong C, Alba M. Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care 2016; 39(4): 532-8.
[http://dx.doi.org/10.2337/dc15-1995] [PMID: 26989182]
[99]
Osonoi T, Gouda M, Kubo M, Arakawa K, Hashimoto T, Abe M. Effect of canagliflozin on urinary albumin excretion in japanese patients with type 2 diabetes mellitus and microalbuminuria: a pilot study. Diabetes Technol Ther 2018; 20(10): 681-8.
[http://dx.doi.org/10.1089/dia.2018.0169] [PMID: 30096243]
[100]
Garvey WT, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 2018; 85: 32-7.
[http://dx.doi.org/10.1016/j.metabol.2018.02.002] [PMID: 29452178]
[101]
Takebayashi K, Hara K, Terasawa T, et al. Effect of canagliflozin on circulating active GLP-1 levels in patients with type 2 diabetes: a randomized trial. Endocr J 2017; 64(9): 923-31.
[http://dx.doi.org/10.1507/endocrj.EJ17-0065] [PMID: 28824041]
[102]
Romera I, Gomis R, Crowe S, et al. Empagliflozin in combination with oral agents in young and overweight/obese Type 2 diabetes mellitus patients: A pooled analysis of three randomized trials. J Diabetes Complications 2016; 30(8): 1571-6.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.016] [PMID: 27499456]
[103]
Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ, Broedl UC. Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 2016; 39(10): 1718-28.
[http://dx.doi.org/10.2337/dc16-0522] [PMID: 27493136]
[104]
Kalgutkar AS, Tugnait M, Zhu T, et al. Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus. Drug Metab Dispos 2011; 39(9): 1609-19.
[http://dx.doi.org/10.1124/dmd.111.040675] [PMID: 21690265]
[105]
Miao Z, Nucci G, Amin N, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab Dispos 2013; 41(2): 445-56.
[http://dx.doi.org/10.1124/dmd.112.049551] [PMID: 23169609]
[106]
Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (e-lift trial). Diabetes Care 2018; 41(8): 1801-8.
[http://dx.doi.org/10.2337/dc18-0165] [PMID: 29895557]
[107]
Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia 2018; 61(10): 2155-63.
[http://dx.doi.org/10.1007/s00125-018-4702-3] [PMID: 30066148]
[108]
Levine MJ. Empagliflozin for Type 2 Diabetes Mellitus: An Overview of Phase 3 Clinical Trials. Curr Diabetes Rev 2017; 13(4): 405-23.
[http://dx.doi.org/10.2174/1573399812666160613113556] [PMID: 27296042]
[109]
Cinti F, Moffa S, Impronta F, et al. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther 2017; 11: 2905-19.
[http://dx.doi.org/10.2147/DDDT.S114932] [PMID: 29042751]
[110]
Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24(1): 73-9.
[PMID: 27898586]
[111]
Khouri C, Cracowski JL, Roustit M. SGLT-2 inhibitors and the risk of lower-limb amputation: Is this a class effect? Diabetes Obes Metab 2018; 20(6): 1531-4.
[http://dx.doi.org/10.1111/dom.13255] [PMID: 29430814]
[112]
Park K. Identification of YH-GKA, a novel benzamide glucokinase activator as therapeutic candidate for type 2 diabetes mellitus. Arch Pharm Res 2012; 35(12): 2029-33.
[http://dx.doi.org/10.1007/s12272-012-1201-9] [PMID: 23263798]
[113]
Matschinsky FM. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 1996; 45(2): 223-41.
[http://dx.doi.org/10.2337/diab.45.2.223] [PMID: 8549869]
[114]
Matschinsky FM, Glaser B, Magnuson MA. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 1998; 47(3): 307-15.
[http://dx.doi.org/10.2337/diabetes.47.3.307] [PMID: 9519733]
[115]
Grimsby J, Sarabu R, Corbett WL, et al. Allosteric activators of glucokinase: potential role in diabetes therapy. Science 2003; 301(5631): 370-3.
[http://dx.doi.org/10.1126/science.1084073] [PMID: 12869762]
[116]
Bertram LS, Black D, Briner PH, et al. SAR, pharmacokinetics, safety, and efficacy of glucokinase activating 2-(4-sulfonylphenyl)-N-thiazol-2-ylacetamides: discovery of PSN-GK1. J Med Chem 2008; 51(14): 4340-5.
[http://dx.doi.org/10.1021/jm8003202] [PMID: 18588279]
[117]
Iino T, Hashimoto N, Hasegawa T, Chiba M, Eiki J, Nishimura T. Metabolic activation of N-thiazol-2-yl benzamide as glucokinase activators: Impacts of glutathione trapping on covalent binding. Bioorg Med Chem Lett 2010; 20(5): 1619-22.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.041] [PMID: 20138764]
[118]
Fyfe MC, White JR, Taylor A, et al. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions. Diabetologia 2007; 50(6): 1277-87.
[http://dx.doi.org/10.1007/s00125-007-0646-8] [PMID: 17415548]
[119]
Park K, Lee BM, Kim YH, et al. Discovery of a novel phenylethyl benzamide glucokinase activator for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2013; 23(2): 537-42.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.018] [PMID: 23218712]
[120]
Eiki J, Nagata Y, Futamura M, et al. Pharmacokinetic and pharmacodynamic properties of the glucokinase activator MK-0941 in rodent models of type 2 diabetes and healthy dogs. Mol Pharmacol 2011; 80(6): 1156-65.
[http://dx.doi.org/10.1124/mol.111.074401] [PMID: 21937665]
[121]
Xu J, Lin S, Myers RW, et al. Discovery of orally active hepatoselective glucokinase activators for treatment of Type II Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27(9): 2063-8.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.088] [PMID: 28284809]
[122]
Xu J, Lin S, Myers RW, et al. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27(9): 2069-73.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.085] [PMID: 28284804]
[123]
Dransfield PJ, Pattaropong V, Lai S, et al. Novel series of potent glucokinase activators leading to the discovery of AM-2394. ACS Med Chem Lett 2016; 7(7): 714-8.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00140] [PMID: 27437083]
[124]
Zhi J, Zhai S, Boldrin M. Dose-dependent effect of piragliatin, a glucokinase activator, on the qt interval following short-term multiple doses in patients with type 2 diabetes mellitus. Clin Pharmacol Drug Dev 2017; 6(3): 258-65.
[http://dx.doi.org/10.1002/cpdd.289] [PMID: 27364955]
[125]
Wang P, Liu H, Chen L, Duan Y, Chen Q, Xi S. Effects of a novel glucokinase activator, hms5552, on glucose metabolism in a rat model of type 2 diabetes mellitus. J Diabetes Res 2017.20175812607
[http://dx.doi.org/10.1155/2017/5812607] [PMID: 28191470]
[126]
Tsumura Y, Tsushima Y, Tamura A, et al. TMG-123, a novel glucokinase activator, exerts durable effects on hyperglycemia without increasing triglyceride in diabetic animal models. PLoS One 2017; 12(2)e0172252
[http://dx.doi.org/10.1371/journal.pone.0172252] [PMID: 28207836]
[127]
Filipski KJ, Pfefferkorn JA. A patent review of glucokinase activators and disruptors of the glucokinase--glucokinase regulatory protein interaction: 2011-2014. Expert Opin Ther Pat 2014; 24(8): 875-91.
[http://dx.doi.org/10.1517/13543776.2014.918957] [PMID: 24821087]
[128]
Terauchi Y, Sakura H, Yasuda K, et al. Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem 1995; 270(51): 30253-6.
[http://dx.doi.org/10.1074/jbc.270.51.30253] [PMID: 8530440]
[129]
Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 1995; 83(1): 69-78.
[http://dx.doi.org/10.1016/0092-8674(95)90235-X] [PMID: 7553875]
[130]
Postic C, Shiota M, Niswender KD, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274(1): 305-15.
[http://dx.doi.org/10.1074/jbc.274.1.305] [PMID: 9867845]
[131]
Velho G, Blanché H, Vaxillaire M, et al. Identification of 14 new glucokinase mutations and description of the clinical profile of 42 MODY-2 families. Diabetologia 1997; 40(2): 217-24.
[http://dx.doi.org/10.1007/s001250050666] [PMID: 9049484]
[132]
Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 2014; 311(3): 279-86.
[http://dx.doi.org/10.1001/jama.2013.283980] [PMID: 24430320]
[133]
Byrne MM, Sturis J, Clément K, et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest 1994; 93(3): 1120-30.
[http://dx.doi.org/10.1172/JCI117064] [PMID: 8132752]
[134]
Hussain K. Mutations in pancreatic ß-cell Glucokinase as a cause of hyperinsulinaemic hypoglycaemia and neonatal diabetes mellitus. Rev Endocr Metab Disord 2010; 11(3): 179-83.
[http://dx.doi.org/10.1007/s11154-010-9147-z] [PMID: 20878480]
[135]
Efanov AM, Barrett DG, Brenner MB, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology 2005; 146(9): 3696-701.
[http://dx.doi.org/10.1210/en.2005-0377] [PMID: 15919746]
[136]
Coope GJ, Atkinson AM, Allott C, et al. Predictive blood glucose lowering efficacy by Glucokinase activators in high fat fed female Zucker rats. Br J Pharmacol 2006; 149(3): 328-35.
[http://dx.doi.org/10.1038/sj.bjp.0706848] [PMID: 16921397]
[137]
Yellapu NK, Kandlapalli K, Kandimalla R, Adi PJ. Conformational transition pathway of R308K mutant glucokinase in the presence of the glucokinase activator YNKGKA4. FEBS Open Bio 2018; 8(8): 1202-8.
[http://dx.doi.org/10.1002/2211-5463.12255] [PMID: 30087826]
[138]
Zhu XX, Zhu DL, Li XY, et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic β-cell function in patients with type 2 diabetes: A 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab 2018; 20(9): 2113-20.
[http://dx.doi.org/10.1111/dom.13338] [PMID: 29707866]
[139]
Lei L, Liu S, Li Y, et al. The potential role of glucokinase activator SHP289-04 in anti-diabetes and hepatic protection. Eur J Pharmacol 2018; 826: 17-23.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.036] [PMID: 29477658]
[140]
Wang Z, Shi X, Zhang H, et al. Discovery of cycloalkyl-fused N-thiazol-2-yl-benzamides as tissue non-specific glucokinase activators: Design, synthesis, and biological evaluation. Eur J Med Chem 2017; 139: 128-52.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.051] [PMID: 28800453]
[141]
Cheruvallath ZS, Gwaltney SL II, Sabat M, et al. Discovery of potent and orally active 1,4-disubstituted indazoles as novel allosteric glucokinase activators. Bioorg Med Chem Lett 2017; 27(12): 2678-82.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.041] [PMID: 28512030]
[142]
Min Q, Cai X, Sun W, et al. Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening. Sci Rep 2017; 7: 44681.
[http://dx.doi.org/10.1038/srep44681] [PMID: 28317897]
[143]
Denney WS, Denham DS, Riggs MR, Amin NB. Glycemic Effect and Safety of a Systemic, Partial Glucokinase Activator, PF-04937319, in patients with type 2 diabetes mellitus inadequately controlled on metformin-a randomized, crossover, active-controlled study. Clin Pharmacol Drug Dev 2016; 5(6): 517-27.
[http://dx.doi.org/10.1002/cpdd.261] [PMID: 27870481]
[144]
Katz L, Manamley N, Snyder WJ, et al. AMG 151 (ARRY-403), a novel glucokinase activator, decreases fasting and postprandial glycaemia in patients with type 2 diabetes. Diabetes Obes Metab 2016; 18(2): 191-5.
[http://dx.doi.org/10.1111/dom.12586] [PMID: 26434934]
[145]
Jahan M, Johnström P, Nag S, et al. Synthesis and biological evaluation of [11C]AZ12504948; a novel tracer for imaging of glucokinase in pancreas and liver. Nucl Med Biol 2015; 42(4): 387-94.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.12.003] [PMID: 25633247]
[146]
Agius L. Lessons from glucokinase activators: the problem of declining efficacy. Expert Opin Ther Pat 2014; 24(11): 1155-9.
[http://dx.doi.org/10.1517/13543776.2014.965680] [PMID: 25266490]
[147]
Sonoda J, Chen MZ, Baruch A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig 2017; 30(2): /j/hmbci.2017.30.issue-2/hmbci- 2017-0002/hmbci-2017-0002.xml.
[http://dx.doi.org/10.1515/hmbci-2017-0002] [PMID: 28525362]
[148]
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 2015; 4(3): 215-66.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[149]
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 2015; 26(1): 22-9.
[http://dx.doi.org/10.1016/j.tem.2014.10.002] [PMID: 25476453]
[150]
Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18(3): 333-40.
[http://dx.doi.org/10.1016/j.cmet.2013.08.005] [PMID: 24011069]
[151]
Kharitonenkov A, Beals JM, Micanovic R, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 2013; 8(3)e58575
[http://dx.doi.org/10.1371/journal.pone.0058575] [PMID: 23536797]
[152]
Adams AC, Halstead CA, Hansen BC, et al. LY2405319, an engineered fgf21 variant, improves the metabolic status of diabetic monkeys. PLoS One 2013; 8(6)e65763
[http://dx.doi.org/10.1371/journal.pone.0065763] [PMID: 23823755]
[153]
Kim JH, Bae KH, Choi YK, et al. Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabetes Obes Metab 2015; 17(2): 161-9.
[http://dx.doi.org/10.1111/dom.12408] [PMID: 25359298]
[154]
Lee JH, Kang YE, Chang JY, et al. An engineered FGF21 variant, LY2405319, can prevent non-alcoholic steatohepatitis by enhancing hepatic mitochondrial function. Am J Transl Res 2016; 8(11): 4750-63.
[PMID: 27904677]
[155]
Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting fgf21 analog for the treatment of type 2 diabetes. PLoS One 2012; 7(11)e49345
[http://dx.doi.org/10.1371/journal.pone.0049345] [PMID: 23209571]
[156]
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17(1): 157.
[http://dx.doi.org/10.1186/s12933-018-0800-2] [PMID: 30545359]
[157]
Moore B. On the treatment of Diabetus mellitus by acid extract of duodenal mucous membrane. Biochem J 1906; 1(1): 28-38.
[http://dx.doi.org/10.1042/bj0010028] [PMID: 16742013]
[158]
Balsano F, Pitucco G, Musca A, Dinoto V. New interpretation of oral glucose tolerance. Lancet 1964; 2(7364): 865.
[http://dx.doi.org/10.1016/S0140-6736(64)90724-X] [PMID: 14197177]
[159]
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230(3): R95-R113.
[http://dx.doi.org/10.1530/JOE-16-0056] [PMID: 27496374]
[160]
Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003; 114(2-3): 189-96.
[http://dx.doi.org/10.1016/S0167-0115(03)00125-3] [PMID: 12832109]
[161]
Holst JJ, Orskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes 2004; 53(Suppl. 3): S197-204.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S197] [PMID: 15561911]
[162]
Guglielmi V, Sbraccia P. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products. Eat Weight Disord 2017; 22(2): 231-40.
[http://dx.doi.org/10.1007/s40519-016-0352-y] [PMID: 28040864]
[163]
Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 2009; 23(4): 479-86.
[http://dx.doi.org/10.1016/j.beem.2009.03.004] [PMID: 19748065]
[164]
Wang Q, Long M, Qu H, et al. DPP-4 inhibitors as treatments for type 1 diabetes mellitus: a systematic review and meta-analysis. J Diabetes Res 2018.20185308582
[http://dx.doi.org/10.1155/2018/5308582] [PMID: 29507862]
[165]
Lerche S, Soendergaard L, Rungby J, et al. No increased risk of hypoglycaemic episodes during 48 h of subcutaneous glucagon-like-peptide-1 administration in fasting healthy subjects. Clin Endocrinol (Oxf) 2009; 71(4): 500-6.
[http://dx.doi.org/10.1111/j.1365-2265.2008.03510.x] [PMID: 19094067]
[166]
Tran KL, Park YI, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. Am Health Drug Benefits 2017; 10(4): 178-88.
[PMID: 28794822]
[167]
Executive summary: Standards of medical care in diabetes--2013. Diabetes Care 2013; 36(Suppl. 1): S4-S10.
[http://dx.doi.org/10.2337/dc13-S004] [PMID: 23264424]
[168]
Hjerpsted JB, Flint A, Brooks A, Axelsen MB, Kvist T, Blundell J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab 2018; 20(3): 610-9.
[http://dx.doi.org/10.1111/dom.13120] [PMID: 28941314]
[169]
Nauck MA, Petrie JR, Sesti G, et al. A phase 2, randomized, dose-finding study of the novel once-weekly human glp-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 2016; 39(2): 231-41.
[PMID: 26358288]
[170]
Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8(12): 728-42.
[http://dx.doi.org/10.1038/nrendo.2012.140] [PMID: 22945360]
[171]
Saraiva FK, Sposito AC. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol 2014; 13: 142.
[http://dx.doi.org/10.1186/s12933-014-0142-7] [PMID: 25338737]
[172]
Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 2008; 478(2): 136-42.
[http://dx.doi.org/10.1016/j.abb.2008.08.001] [PMID: 18708025]
[173]
Golpon HA, Puechner A, Welte T, Wichert PV, Feddersen CO. Vasorelaxant effect of glucagon-like peptide-(7-36)amide and amylin on the pulmonary circulation of the rat. Regul Pept 2001; 102(2-3): 81-6.
[http://dx.doi.org/10.1016/S0167-0115(01)00300-7] [PMID: 11730979]
[174]
Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(-/-) mouse model. Diab Vasc Dis Res 2013; 10(4): 353-60.
[http://dx.doi.org/10.1177/1479164113481817] [PMID: 23673376]
[175]
Rizzo M, Rizvi AA, Patti AM, et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: an 18-month prospective study. Cardiovasc Diabetol 2016; 15(1): 162.
[http://dx.doi.org/10.1186/s12933-016-0480-8] [PMID: 27912784]
[176]
Kumarathurai P, Anholm C, Larsen BS, et al. Effects of liraglutide on heart rate and heart rate variability: A randomized, double-blind, placebo-controlled crossover study. Diabetes Care 2017; 40(1): 117-24.
[http://dx.doi.org/10.2337/dc16-1580] [PMID: 27797930]
[177]
Kumarathurai P, Anholm C, Nielsen OW, et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study. Cardiovasc Diabetol 2016; 15(1): 105.
[http://dx.doi.org/10.1186/s12933-016-0425-2] [PMID: 27455835]
[178]
Oyama J, Node K. Incretin therapy and heart failure. Circ J 2014; 78(4): 819-24.
[http://dx.doi.org/10.1253/circj.CJ-13-1561] [PMID: 24614493]
[179]
Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH. A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell Transplant 2017; 26(9): 1560-71.
[http://dx.doi.org/10.1177/0963689717721234] [PMID: 29113464]
[180]
Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA 2009; 106(4): 1285-90.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[181]
Chen F, Wang W, Ding H, Yang Q, Dong Q, Cui M. The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia. J Neuroinflammation 2016; 13(1): 204.
[http://dx.doi.org/10.1186/s12974-016-0661-0] [PMID: 27566245]
[182]
Monami M, Nreu B, Scatena A, et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017; 19(9): 1233-41.
[http://dx.doi.org/10.1111/dom.12926] [PMID: 28244632]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy