Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Hepatocyte Growth Factor Attenuates the Development of TGF-β1- Induced EndMT through Down-regulating the Notch Signaling

Author(s): Ruiping Yang, Fan Yang, Yingchun Hu, Muhu Chen, Ying Liu, Jinpeng Li and Wu Zhong*

Volume 20, Issue 5, 2020

Page: [781 - 787] Pages: 7

DOI: 10.2174/1871530319666191023141638

Price: $65

Abstract

Background and Objective: Endothelial-mesenchymal transition (EndMT) not only occurs during embryonic development, but also contributes to various diseases including cardiovascular diseases, fibrosis, and even cancer. However, the specific molecular biological mechanism and relationship of related pathways have not been fully elucidated. This study aims to explore the inhibitory effect of HGF on EndMT and the molecular mechanism of Notch signal in this process.

Methods: HUVECs were treated with TGF-β1 and/or HGF for 72 hours. Expression levels of EndMT markers and the key transcriptional regulators of Notch signaling pathway were assessed by qRT-PCR and western blotting. C-Met expression was measured by qRT-PCR.

Results: CD31 was downregulated and α-SMA, FSP1 were upregulated during TGF-β1-induced EndMT. HGF treatment significantly attenuates the development of TGF-β1-induced EndMT by down-regulating the signal transduction of the Notch signal pathway.

Conclusion: This study proves that HGF treatment significantly attenuates the development of TGF- β1-induced EndMT by inhibiting the Notch signaling, which may provide new theoretical basis for the treatment of vascular diseases and numerous fibrotic diseases caused by EndMT.

Keywords: Endothelial-mesenchymal transition, epithelial-mesenchymal transition, transforming growth factor β1, Hepatocyte growth factor, Notch signaling, Fibrosis.

Graphical Abstract
[1]
Krenning, G.; Moonen, J.R.; van Luyn, M.J.; Harmsen, M.C. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials, 2008, 29(27), 3703-3711.
[PMID: 18556062]
[2]
Moonen, J.R.; Krenning, G.; Brinker, M.G.; Koerts, J.A.; van Luyn, M.J.; Harmsen, M.C. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc. Res., 2010, 86(3), 506-515.
[http://dx.doi.org/10.1093/cvr/cvq012] [PMID: 20083576]
[3]
Piera-Velazquez, S.; Jimenez, S.A. Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis Tissue Repair, 2012, 5(Suppl. 1), S7.
[PMID: 23259736]
[4]
Jimenez, S.A.; Piera-Velazquez, S. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol., 2016, 51, 26-36.
[PMID: 26807760]
[5]
Markwald, R.R.; Fitzharris, T.P.; Manasek, F.J. Structural development of endocardial cushions. Am. J. Anat., 1977, 148(1), 85-119.
[PMID: 842477]
[6]
Armstrong, E.J.; Bischoff, J. Heart valve development: endothelial cell signaling and differentiation. Circ. Res., 2004, 95(5), 459-470.
[PMID: 15345668]
[7]
Suzuki, T.; Carrier, E.J.; Talati, M.H.; Rathinasabapathy, A.; Chen, X.; Nishimura, R.; Tada, Y.; Tatsumi, K.; West, J. Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(1), L118-L126.
[PMID: 28935639]
[8]
Gong, H.; Lyu, X.; Wang, Q.; Hu, M.; Zhang, X. Endothelial to mesenchymal transition in the cardiovascular system. Life Sci., 2017, 184, 95-102.
[PMID: 28716564]
[9]
Zhao, Y.; Qiao, X.; Wang, L.; Tan, T.K.; Zhao, H.; Zhang, Y.; Zhang, J.; Rao, P.; Cao, Q.; Wang, Y.; Wang, Y.; Wang, Y.M.; Lee, V.W.; Alexander, S.I.; Harris, D.C.; Zheng, G. Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol., 2016, 17(1), 21.
[PMID: 27130612]
[10]
Sassoli, C.; Chellini, F.; Pini, A.; Tani, A.; Nistri, S.; Nosi, D.; Zecchi-Orlandini, S.; Bani, D.; Formigli, L. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One, 2013, 8(5)e63896
[PMID: 23704950]
[11]
Lai, L.; Chen, J.; Wei, X.; Huang, M.; Hu, X.; Yang, R.; Jiang, X.; Shan, H. Transplantation of MSCs Overexpressing HGF into a Rat Model of Liver Fibrosis. Mol. Imaging Biol., 2016, 18(1), 43-51.
[PMID: 26194009]
[12]
Guan, C.; Qiao, S.; Lv, Q.; Cao, N.; Wang, K.; Dai, Y.; Wei, Z. Orally administered berberine ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting activation of PPAR-γ and subsequent expression of HGF in colons. Toxicol. Appl. Pharmacol., 2018, 343, 1-15.
[http://dx.doi.org/10.1016/j.taap.2018.02.001] [PMID: 29408570]
[13]
Xu, J.; Yu, T.T.; Zhang, K.; Li, M.; Shi, H.J.; Meng, X.J.; Zhu, L.S.; Zhu, L.K. HGF alleviates renal interstitial fibrosis via inhibiting the TGF-β1/SMAD pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(22), 7621-7627.
[PMID: 30536302]
[14]
Wang, Z.; Fei, S.; Suo, C.; Han, Z.; Tao, J.; Xu, Z.; Zhao, C.; Tan, R.; Gu, M. Antifibrotic Effects of Hepatocyte Growth Factor on Endothelial-to-Mesenchymal Transition via Transforming Growth Factor-Beta1 (TGF-β1)/Smad and Akt/mTOR/P70S6K Signaling Pathways. Ann. Transplant., 2018, 23, 1-10.
[http://dx.doi.org/10.12659/AOT.906700] [PMID: 29292365]
[15]
Evrard, S.M.; Lecce, L.; Michelis, K.C.; Nomura-Kitabayashi, A.; Pandey, G.; Purushothaman, K.R.; d’Escamard, V.; Li, J.R.; Hadri, L.; Fujitani, K.; Moreno, P.R.; Benard, L.; Rimmele, P.; Cohain, A.; Mecham, B.; Randolph, G.J.; Nabel, E.G.; Hajjar, R.; Fuster, V.; Boehm, M.; Kovacic, J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun., 2016, 7, 11853.
[http://dx.doi.org/10.1038/ncomms11853] [PMID: 27340017]
[16]
Kovacic, J.C.; Dimmeler, S.; Harvey, R.P.; Finkel, T.; Aikawa, E.; Krenning, G.; Baker, A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol., 2019, 73(2), 190-209.
[http://dx.doi.org/10.1016/j.jacc.2018.09.089] [PMID: 30654892]
[17]
Dschietzig, T.; Bartsch, C.; Baumann, G.; Stangl, K. Relaxin-a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol. Ther., 2006, 112(1), 38-56.
[http://dx.doi.org/10.1016/j.pharmthera.2006.03.004] [PMID: 16647137]
[18]
Pardali, E.; Sanchez-Duffhues, G.; Gomez-Puerto, M.C.; Ten Dijke, P. TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int. J. Mol. Sci., 2017, 18(10), 18.
[http://dx.doi.org/10.3390/ijms18102157] [PMID: 29039786]
[19]
Wang, L.Y.; Diao, Z.L.; Zheng, J.F.; Wu, Y.R.; Zhang, Q.D.; Liu, W.H. Apelin attenuates TGF-β1-induced epithelial to mesenchymal transition via activation of PKC-ε in human renal tubular epithelial cells. Peptides, 2017, 96, 44-52.
[http://dx.doi.org/10.1016/j.peptides.2017.08.006] [PMID: 28847490]
[20]
Li, J.; Qu, X.; Bertram, J.F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol., 2009, 175(4), 1380-1388.
[http://dx.doi.org/10.2353/ajpath.2009.090096] [PMID: 19729486]
[21]
LeBleu, V.S.; Taduri, G.; O’Connell, J.; Teng, Y.; Cooke, V.G.; Woda, C.; Sugimoto, H.; Kalluri, R. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med., 2013, 19(8), 1047-1053.
[http://dx.doi.org/10.1038/nm.3218] [PMID: 23817022]
[22]
Li, J.; Qu, X.; Yao, J.; Caruana, G.; Ricardo, S.D.; Yamamoto, Y.; Yamamoto, H.; Bertram, J.F. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes, 2010, 59(10), 2612-2624.
[http://dx.doi.org/10.2337/db09-1631] [PMID: 20682692]
[23]
Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact., 2018, 292, 76-83.
[http://dx.doi.org/10.1016/j.cbi.2018.07.008] [PMID: 30017632]
[24]
Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines, 2014, 2(4), 247-262.
[http://dx.doi.org/10.3390/biomedicines2040247] [PMID: 28548070]
[25]
Ueki, T.; Kaneda, Y.; Tsutsui, H.; Nakanishi, K.; Sawa, Y.; Morishita, R.; Matsumoto, K.; Nakamura, T.; Takahashi, H.; Okamoto, E.; Fujimoto, J. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat. Med., 1999, 5(2), 226-230.
[http://dx.doi.org/10.1038/5593] [PMID: 9930873]
[26]
Taniyama, Y.; Morishita, R.; Nakagami, H.; Moriguchi, A.; Sakonjo, H.; Shokei-Kim, ; Matsumoto, K.; Nakamura, T.; Higaki, J.; Ogihara, T. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation, 2000, 102(2), 246-252.
[http://dx.doi.org/10.1161/01.CIR.102.2.246] [PMID: 10889138]
[27]
Mizuno, S.; Matsumoto, K.; Li, M.Y.; Nakamura, T. HGF reduces advancing lung fibrosis in mice: a potential role for MMP-dependent myofibroblast apoptosis. FASEB J., 2005, 19(6), 580-582.
[http://dx.doi.org/10.1096/fj.04-1535fje] [PMID: 15665032]
[28]
Yang, Y.; Ahn, Y.H.; Gibbons, D.L.; Zang, Y.; Lin, W.; Thilaganathan, N.; Alvarez, C.A.; Moreira, D.C.; Creighton, C.J.; Gregory, P.A.; Goodall, G.J.; Kurie, J.M. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J. Clin. Invest., 2011, 121(4), 1373-1385.
[http://dx.doi.org/10.1172/JCI42579] [PMID: 21403400]
[29]
Timmerman, L.A.; Grego-Bessa, J.; Raya, A.; Bertrán, E.; Pérez-Pomares, J.M.; Díez, J.; Aranda, S.; Palomo, S.; McCormick, F.; Izpisúa-Belmonte, J.C.; de la Pompa, J.L. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev., 2004, 18(1), 99-115.
[http://dx.doi.org/10.1101/gad.276304] [PMID: 14701881]
[30]
Xie, M.; Zhang, L.; He, C.S.; Xu, F.; Liu, J.L.; Hu, Z.H.; Zhao, L.P.; Tian, Y. Activation of Notch-1 enhances epithelial-mesenchymal transition in gefitinib-acquired resistant lung cancer cells. J. Cell. Biochem., 2012, 113(5), 1501-1513.
[http://dx.doi.org/10.1002/jcb.24019] [PMID: 22173954]
[31]
Mack, J.J.; Iruela-Arispe, M.L. NOTCH regulation of the endothelial cell phenotype. Curr. Opin. Hematol., 2018, 25(3), 212-218.
[http://dx.doi.org/10.1097/MOH.0000000000000425] [PMID: 29547401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy