Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Syntheses and Biological Activities of triazole-based Sulfonamides

Author(s): Ali Ramazani*, Hamed Sadighian, Farideh Gouranlou and Sang W. Joo*

Volume 23, Issue 21, 2019

Page: [2319 - 2349] Pages: 31

DOI: 10.2174/1385272823666191021115023

Price: $65

Abstract

The triazole and sulfonamide compounds are known as biologically active agents that were employed for medicinal applications. These compounds were obtained in different forms by a variety of techniques to vast ranges of applications. The broad biological properties of these compounds have encouraged researchers to design and synthesize triazole-based sulfonamide derivatives as compounds with potential biological activity. In this review, we summarized the synthetic procedures of triazole-based sulfonamide compounds together with their biological activities during the last two decades.

Keywords: Triazole, sulfonamide, click chemistry, biological activity, antibacterial, antifungal.

Graphical Abstract
[1]
Dua, R.; Shrivastava, S.; Sonwane, S.; Srivastava, S. Pharmacological significance of synthetic heterocycles scaffold: a review. Adv. Biol. Res. (Faisalabad), 2011, 5(3), 120-144.
[2]
Tai, K-K.; Truong, D.D. Brivaracetam is superior to levetiracetam in a rat model of post-hypoxic myoclonus. J. Neural Transm. (Vienna), 2007, 114(12), 1547-1551.
[http://dx.doi.org/10.1007/s00702-007-0788-3] [PMID: 17690949]
[3]
Hart, F.D.; Boardman, P.L. Indomethacin: A new non-steroid anti-inflammatory agent. BMJ, 1963, 2(5363), 965-970.
[http://dx.doi.org/10.1136/bmj.2.5363.965] [PMID: 14056924]
[4]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: A review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698.
[http://dx.doi.org/10.1016/j.bmc.2012.04.045] [PMID: 22902032]
[5]
Lu, X.; Liu, X.; Wan, B.; Franzblau, S.G.; Chen, L.; Zhou, C.; You, Q. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy) phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur. J. Med. Chem., 2012, 49, 164-171.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.007] [PMID: 22264895]
[6]
Yang, W-C.; Li, J.; Li, J.; Chen, Q.; Yang, G-F. Novel synthetic methods for N-cyano-1H-imidazole-4-carboxamides and their fungicidal activity. Bioorg. Med. Chem. Lett., 2012, 22(3), 1455-1458.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.115] [PMID: 22189134]
[7]
Zhan, P.; Liu, X.; Zhu, J.; Fang, Z.; Li, Z.; Pannecouque, C.; Clercq, E.D. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5775-5781.
[http://dx.doi.org/10.1016/j.bmc.2009.07.028] [PMID: 19643613]
[8]
Fang, B.; Zhou, C-H.; Rao, X-C. Synthesis and biological activities of novel amine-derived bis-azoles as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2010, 45(9), 4388-4398.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.012] [PMID: 20598399]
[9]
Ramazani, A.; Rezaei, A. Novel one-pot, four-component condensation reaction: An efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-Wittig sequence. Org. Lett., 2010, 12(12), 2852-2855.
[http://dx.doi.org/10.1021/ol100931q] [PMID: 20481612]
[10]
Ramazani, A.; Rouhani, M.; Rezaei, A.; Shajari, N.; Souldozi, A. The reaction of. (N-Isocyanimino) triphenylphosphorane with biacetyl in the presence of aromatic carboxylic acids: Efficient one-pot three-component reaction for the synthesis of 3-(5Aryl-1, 3, 4-oxadiazol-2-yl)-3-hydroxybutan-2-one derivatives. Helv. Chim. Acta, 2011, 94(2), 282-288.
[http://dx.doi.org/10.1002/hlca.201000219]
[11]
Ramazani, A.; Souldozi, A. The reaction of (N-isocyanimino) triphenylphosphorane with anthranilic acid derivatives: One-pot synthesis of 2-substituted 1, 3, 4-oxadiazoles via intramolecular Aza-Wittig reaction. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(9), 2344-2350.
[http://dx.doi.org/10.1080/10426500802466684]
[12]
Rouhani, M.; Ramazani, A.; Joo, S.W. Novel, fast and efficient one-pot sonochemical synthesis of 2-aryl-1,3,4-oxadiazoles. Ultrason. Sonochem., 2014, 21(1), 262-267.
[http://dx.doi.org/10.1016/j.ultsonch.2013.06.009] [PMID: 23845411]
[13]
Souldozi, A.; Ramazani, A. The reaction of (N-isocyanimino) triphenylphosphorane with benzoic acid derivatives: A novel synthesis of 2-aryl-1, 3, 4-oxadiazole derivatives. Tetrahedron Lett., 2007, 48(9), 1549-1551.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.021]
[14]
Unangst, P.C.; Connor, D.T.; Cetenko, W.A.; Sorenson, R.J.; Kostlan, C.R.; Sircar, J.C.; Wright, C.D.; Schrier, D.J.; Dyer, R.D. Synthesis and biological evaluation of 5-[[3,5-bis(1,1-dimethylethyl)- 4-hydroxyphenyl]methylene] oxazoles, -thiazoles, and -imidazoles: Novel dual 5-lipoxygenase and cyclooxygenase inhibitors with antiinflammatory activity. J. Med. Chem., 1994, 37(2), 322-328.
[http://dx.doi.org/10.1021/jm00028a017] [PMID: 8295221]
[15]
Zhao, Q.; Liu, S.; Li, Y.; Wang, Q. Design, synthesis, and biological activities of novel 2-cyanoacrylates containing oxazole, oxadiazole, or quinoline moieties. J. Agric. Food Chem., 2009, 57(7), 2849-2855.
[http://dx.doi.org/10.1021/jf803632t] [PMID: 19271709]
[16]
Kazemizadeh, A.R.; Hajaliakbari, N.; Hajian, R.; Shajari, N.; Ramazani, A. Synthesis of 1, 5-disubstituted 1H-tetrazole derivatives via a three-component reaction of carbodiimides, isocyanides, and trimethylsilyl azide. Helv. Chim. Acta, 2012, 95(4), 594-597.
[http://dx.doi.org/10.1002/hlca.201100327]
[17]
Küçükgüzel, Ş.G.; Oruç, E.E.; Rollas, S.; Şahin, F.; Özbek, A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 2002, 37(3), 197-206.
[http://dx.doi.org/10.1016/S0223-5234(01)01326-5] [PMID: 11900864]
[18]
Kumar, D.; Sundaree, S.; Johnson, E.O.; Shah, K. An efficient synthesis and biological study of novel indolyl-1,3,4-oxadiazoles as potent anticancer agents. Bioorg. Med. Chem. Lett., 2009, 19(15), 4492-4494.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.172] [PMID: 19559607]
[19]
Liu, Z.; Yang, G.; Qin, X. Syntheses and biological activities of novel diheterocyclic compounds containing 1,2,4-triazolo[1,5-a]pyrimidine and 1,3,4-oxadiazole. J. Chem. Technol. Biotechnol., 2001, 76(11), 1154-1158.
[http://dx.doi.org/10.1002/jctb.500]
[20]
Ramazani, A.; Nasrabadi, F.Z.; Ślepokura, K.; Lis, T.; Joo, S.W. Regioselective and stereoselective addition of tetrazole derivatives to electron‐poor acetylenic esters in the presence of triphenylphosphine. J. Heterocycl. Chem., 2017, 54(1), 55-64.
[http://dx.doi.org/10.1002/jhet.2539]
[21]
Hasanpour, Z.; Maleki, A.; Hosseini, M.; Gorgannezhad, L.; Nejadshafiee, V.; Ramazani, A.; Haririan, I.; Shafiee, A.; Khoobi, M. Efficient multicomponent synthesis of 1, 2, 3-triazoles catalyzed by Cu (II) supported on PEI@ Fe3O4 MNPs in a water/PEG 300 system. Turk. J. Chem., 2017, 41(2), 294-307.
[22]
Herr, R.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 2002, 10(11), 3379-3393.
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[23]
Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. Synthesis and angiotensin II receptor antagonistic activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazole bioisosteres. J. Med. Chem., 1996, 39(26), 5228-5235.
[http://dx.doi.org/10.1021/jm960547h] [PMID: 8978851]
[24]
Lin, R.; Connolly, P.J.; Huang, S.; Wetter, S.K.; Lu, Y.; Murray, W.V.; Emanuel, S.L.; Gruninger, R.H.; Fuentes-Pesquera, A.R.; Rugg, C.A.; Middleton, S.A.; Jolliffe, L.K. 1-Acyl-1H-[1,2,4]triazole-3,5-diamine analogues as novel and potent anticancer cyclin-dependent kinase inhibitors: Synthesis and evaluation of biological activities. J. Med. Chem., 2005, 48(13), 4208-4211.
[http://dx.doi.org/10.1021/jm050267e] [PMID: 15974571]
[25]
Menendez, C.; Gau, S.; Lherbet, C.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Baltas, M. Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(11), 5524-5531.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.013] [PMID: 21944473]
[26]
Ariga, T.; Seki, T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: A review. Biofactors, 2006, 26(2), 93-103.
[http://dx.doi.org/10.1002/biof.5520260201] [PMID: 16823096]
[27]
White, A.K.; Metcalf, W.W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol., 2007, 61, 379-400.
[http://dx.doi.org/10.1146/annurev.micro.61.080706.093357] [PMID: 18035609]
[28]
Eisenbrand, G.; Tang, W. Food-borne heterocyclic amines. Chemistry, formation, occurrence and biological activities. A literature review. Toxicology, 1993, 84(1-3), 1-82.
[http://dx.doi.org/10.1016/0300-483X(93)90109-6] [PMID: 8266331]
[29]
Ezabadi, I.R.; Camoutsis, C.; Zoumpoulakis, P.; Geronikaki, A.; Soković, M.; Glamočilija, J.; Cirić, A. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg. Med. Chem., 2008, 16(3), 1150-1161.
[http://dx.doi.org/10.1016/j.bmc.2007.10.082] [PMID: 18053730]
[30]
Ergenç, N.; Ilhan, E.; Otük, G. Synthesis and biological activity of 1,4-disubstituted thiosemicarbazides and their 1,2,4-triazole-5-thione derivatives. Pharmazie, 1992, 47(1), 59-60.
[http://dx.doi.org/10.1002/chin.199236163] [PMID: 1608987]
[31]
Muhi-Eldeen, Z.; Nadir, M.; Aljobory, N.; Husseen, F.; Stohs, S. Synthesis and antimicrobial evaluation of 3-(4-tert-amino-2-butynyl) thio and alkyl/alkenylthio-4, 5-disubstituted-4H-1, 2, 4-triazoles; Elsevier Masson, 1991, pp. 237-241.
[32]
Ashour, F.; Almazroa, S. Synthesis of certain thiosemicarbazide and triazole derivatives as potential antimicrobial agents. Farmaco (Societa Chimi. Italiana: 1989), 1990, 45(11), 1207-1218.
[33]
Hiremath, S.; Shivaramayya, K.; Sekhar, K.R.; Purohit, M. Synthesis of substituted 2, 5-bis (1, 3, 4-oxadiazolyl/thiadiazolyl/1, 2, 4-triazolyl) indoles and study of their biological activities. ChemInform, 1991, 22(22)
[http://dx.doi.org/10.1002/chin.199122132]
[34]
Gürsoy, A.; Demirayak, S.; Cesur, Z.; Reisch, J.; Otük, G. Synthesis of some new hydrazide-hydrazones, thiosemicarbazides, thiadiazoles, triazoles and their derivatives as possible antimicrobials. Pharmazie, 1990, 45(4), 246-250.
[http://dx.doi.org/10.1002/chin.199042202] [PMID: 2381974]
[35]
Habib, N.; Abdel-Hamid, S.; El-Hawash, M. Synthesis of benzimidazole derivatives as potential antimicrobial agents. Farmaco (Societa chimica italiana: 1989), 1989, 44(12), 1225-1232.
[36]
Labouta, I.M.; Hassan, A.M.; Aboulwafa, O.M.; Kader, O. Synthesis of some substituted benzimidazoles with potential antimicrobial activity. Monatsh. Chem., 1989, 120(6), 571-574.
[http://dx.doi.org/10.1007/BF00810843]
[37]
Bennur, S.; Jigajinni, V.; Badiger, V. Pyrimidines. vi. synthesis of 2-methylthio-5-bromopyrimidine-4-carboxylic acid thiosemicarbazides, 3-pyrimidyl-1, 2, 4-4h-triazoles and 2-arylamino-1, 3, 4-thiadiazoles. ChemInform, 1976, 21(5), 757-762.
[38]
Andotra, C.; Langer, T.; Sharma, S. Synthesis of some nitro-substituted 1, 3, 4-oxadiazoles, 1, 3, 4-thiadiazoles and 1, 2, 4-triazoles as antiamebic agents. J. Indian Chem. Soc., 1989, 66(2), 122-123.
[39]
Zhang, Z.; Feng, X.; Chen, L.; Meng, Q.; Gao, D. Studies on acylthiosemicarbazides and related heterocyclic compounds X. Cyclization of 1-(4′-pyridinoyl)-4-aroylthiosemicarbazide derivatives. Gaodeng Xuexiao Huaxue Xuebao, 1989, 10(5), 471-476.
[40]
Rudnicka, W.; Foks, H.; Janowiec, M.; Zwolska-Kwiek, Z. [Studies of pyrazine derivatives. XXI. Synthesis and tuberculostatic activity of 4-aryl-1-pyrazinoylthiosemicarbazides and the products of their cyclization to 1,2,4-triazole-3-thione derivatives]. Acta Pol. Pharm., 1986, 43(6), 523-528.
[PMID: 3577832]
[41]
Eweiss, N.; Bahajaj, A. Synthesis of heterocycles. Part VII Synthesis and antimicrobial activity of some 7H‐s‐triazolo [3, 4‐b] [1, 3, 4] thiadiazine and s‐triazolo [3, 4‐b][1, 3, 4] thiadiazole derivatives. J. Heterocycl. Chem., 1987, 24(4), 1173-1182.
[http://dx.doi.org/10.1002/jhet.5570240448]
[42]
Kumar, R.; Yar, M.S.; Chaturvedi, S.; Srivastava, A. Triazole as pharmaceuticals potentials. Int. J. Pharm. Tech. Res., 2013, 5(4), 1844-1869.
[43]
Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J-Y.; Astruc, D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev., 2016, 316, 1-20.
[http://dx.doi.org/10.1016/j.ccr.2016.02.010]
[44]
Sukul, P.; Spiteller, M. Sulfonamides in the environment as veterinary drugs.Reviews of environmental contamination and toxicology; Springer, 2006, pp. 67-101.
[45]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.092] [PMID: 22520258]
[46]
Özbek, N.; Katircioğlu, H.; Karacan, N.; Baykal, T. Synthesis, characterization and antimicrobial activity of new aliphatic sulfonamide. Bioorg. Med. Chem., 2007, 15(15), 5105-5109.
[http://dx.doi.org/10.1016/j.bmc.2007.05.037] [PMID: 17544281]
[47]
Ding, Y.; Smith, K.L.; Varaprasad, C.V.; Chang, E.; Alexander, J.; Yao, N. Synthesis of thiazolone-based sulfonamides as inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett., 2007, 17(3), 841-845.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.104] [PMID: 16990004]
[48]
Mirjafary, Z.; Sadighian, H.; Piri, S.; Saeidian, H. Efficient synthesis of novel 1, 3-diyne-based sulfonamides using CuCl2/Et3N as a robust catalytic system. J. Sulfur Chem., 2017, 38(2), 188-194.
[http://dx.doi.org/10.1080/17415993.2016.1263634]
[49]
Argyropoulou, I.; Geronikaki, A.; Vicini, P.; Zani, F. Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. ARKIVOC, 2009, 6, 89-102.
[50]
Lopez, M.; Bornaghi, L.F.; Driguez, H.; Poulsen, S-A. Synthesis of sulfonamide-bridged glycomimetics. J. Org. Chem., 2011, 76(9), 2965-2975.
[http://dx.doi.org/10.1021/jo2001269] [PMID: 21401206]
[51]
Rocheblave, L.; Bihel, F.; De Michelis, C.; Priem, G.; Courcambeck, J.; Bonnet, B.; Chermann, J-C.; Kraus, J-L. Synthesis and antiviral activity of new anti-HIV amprenavir bioisosteres. J. Med. Chem., 2002, 45(15), 3321-3324.
[http://dx.doi.org/10.1021/jm0208323] [PMID: 12109915]
[52]
Parai, M.K.; Huggins, D.J.; Cao, H.; Nalam, M.N.; Ali, A.; Schiffer, C.A.; Tidor, B.; Rana, T.M. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance. J. Med. Chem., 2012, 55(14), 6328-6341.
[http://dx.doi.org/10.1021/jm300238h] [PMID: 22708897]
[53]
Kwon, Y.; Song, J.; Lee, H.; Kim, E-Y.; Lee, K.; Lee, S.K.; Kim, S. Design, synthesis, and biological activity of sulfonamide analogues of Antofine and Cryptopleurine as potent and orally active antitumor agents. J. Med. Chem., 2015, 58(19), 7749-7762.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00764] [PMID: 26393416]
[54]
Shankar, R.B.; Pews, R.G. Synthesis of 1, 2, 4-triazolo [1, 5-a] pyrimidine-2-sulfonamides. J. Heterocycl. Chem., 1993, 30(1), 169-172.
[http://dx.doi.org/10.1002/jhet.5570300130]
[55]
Chen, C-N.; Chen, Q.; Liu, Y-C.; Zhu, X-L.; Niu, C-W.; Xi, Z.; Yang, G-F. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorg. Med. Chem., 2010, 18(14), 4897-4904.
[http://dx.doi.org/10.1016/j.bmc.2010.06.015] [PMID: 20598554]
[56]
Chen, C-N.; Lv, L-L.; Ji, F-Q.; Chen, Q.; Xu, H.; Niu, C-W.; Xi, Z.; Yang, G-F. Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorg. Med. Chem., 2009, 17(8), 3011-3017.
[http://dx.doi.org/10.1016/j.bmc.2009.03.018] [PMID: 19342247]
[57]
Renyu, Q.; Yuchao, L.; Kandegama, W.M.W.W.; Qiong, C.; Guangfu, Y. Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini Rev. Med. Chem., 2018, 18(9), 781-793.
[http://dx.doi.org/10.2174/1389557517666171101112850] [PMID: 29090667]
[58]
Tasaka, A.; Teranishi, K.; Matsushita, Y.; Tamura, N.; Hayashi, R.; Okonogi, K.; Itoh, K. Optically active antifungal azoles. III. Synthesis and antifungal activity of sulfide and sulfonamide derivatives of (2R, 3R)-2-(2, 4-difluorophenyl)-3-mercapto-1-(1H, 1, 2, 4-triazol-1-yl)-2-butanol. Chem. Pharm. Bull. (Tokyo), 1994, 42(1), 85-94.
[http://dx.doi.org/10.1248/cpb.42.85] [PMID: 8124771]
[59]
El-Sharief, A.M.S.; Ghorab, M.M.; El-Gaby, M.S.A.; Mohamed, S.I.; Ammar, Y.A. Amino acids in the syntheses of heterocyclic systems: Syntheses and radiostability of novel biologically active triazoles containing the sulfonamide moiety. Heteroatom Chem., 2002, 13(4), 316-323.
[http://dx.doi.org/10.1002/hc.10037]
[60]
Yamada, H.; Kohno, S.; Maesaki, S.; Koga, H.; Kaku, M.; Hara, K.; Tanaka, H. Rapid and highly reproducible method for antifungal susceptibility testing of Aspergillus species. J. Clin. Microbiol., 1993, 31(4), 1009-1012.
[PMID: 8463380]
[61]
Kothari, P.; Kishore, V.; Stenberg, V.; Parmar, S. Synthesis of 5‐(1‐naphthylmethyl)‐4‐aryl‐s‐triazole‐3‐thiol/yl‐thioglycolic acids as possible anti‐inflammatory agents. J. Heterocycl. Chem., 1978, 15(7), 1101-1104.
[http://dx.doi.org/10.1002/jhet.5570150706]
[62]
Al-Sehemi, A.G. Structural study and biological evaluation of some novel 1, 2, 4-triazole, thiazole, and bisthiazole derivatives bearing a sulfonamide moiety. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(8), 1991-2003.
[http://dx.doi.org/10.1080/10426500802417323]
[63]
EL-SARAF, G. Synthesis of some benzofuran derivatives of s-triazolo (4, 3-b)-1, 2, 4-triazole, s-Triazolo (3, 4-b)-1, 3, 4-thiadiazole and thiadiazine systems. ChemInform, 1992, 23(35)
[64]
Peterson, D.S.; Walliker, D.; Wellems, T.E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA, 1988, 85(23), 9114-9118.
[http://dx.doi.org/10.1073/pnas.85.23.9114] [PMID: 2904149]
[65]
Ramazani, A.; Zakeri, S.; Sardari, S.; Khodakarim, N.; Djadidt, N.D. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar. J., 2010, 9(1), 124.
[http://dx.doi.org/10.1186/1475-2875-9-124] [PMID: 20462416]
[66]
Boechat, N.; Pinheiro, L.C.; Santos-Filho, O.A.; Silva, I.C. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules, 2011, 16(9), 8083-8097.
[http://dx.doi.org/10.3390/molecules16098083] [PMID: 21934646]
[67]
Docampo, R. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem. Biol. Interact., 1990, 73(1), 1-27.
[http://dx.doi.org/10.1016/0009-2797(90)90106-W] [PMID: 2406032]
[68]
Viodé, C.; Bettache, N.; Cenas, N.; Krauth-Siegel, R.L.; Chauvière, G.; Bakalara, N.; Périé, J. Enzymatic reduction studies of nitroheterocycles. Biochem. Pharmacol., 1999, 57(5), 549-557.
[http://dx.doi.org/10.1016/S0006-2952(98)00324-4] [PMID: 9952319]
[69]
Blumenstiel, K.; Schöneck, R.; Yardley, V.; Croft, S.L.; Krauth-Siegel, R.L. Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochem. Pharmacol., 1999, 58(11), 1791-1799.
[http://dx.doi.org/10.1016/S0006-2952(99)00264-6] [PMID: 10571254]
[70]
Turrens, J.F. Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol. Aspects Med., 2004, 25(1-2), 211-220.
[http://dx.doi.org/10.1016/j.mam.2004.02.021] [PMID: 15051329]
[71]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J-R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[72]
Liu, J.; Liu, Q.; Yang, X.; Xu, S.; Zhang, H.; Bai, R.; Yao, H.; Jiang, J.; Shen, M.; Wu, X.; Xu, J. Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates. Bioorg. Med. Chem., 2013, 21(24), 7742-7751.
[http://dx.doi.org/10.1016/j.bmc.2013.10.017] [PMID: 24200932]
[73]
Horiuchi, M. Functional aspects of angiotensin type 2 receptor. Recent advances in cellular and molecular aspects of angiotensin receptors; Springer, 1996, pp. 217-224.
[http://dx.doi.org/10.1007/978-1-4899-1376-0_23]
[74]
Csikos, T.; Chung, O.; Unger, T. Receptors and their classification: Focus on angiotensin II and the AT 2 receptor; Nature Publishing Group, 1998.
[75]
Zhang, H-Z.; Jeyakkumar, P.; Kumar, K.V.; Zhou, C-H. Synthesis of novel sulfonamide azoles via C–N cleavage of sulfonamides by azole ring and relational antimicrobial study. New J. Chem., 2015, 39(7), 5776-5796.
[http://dx.doi.org/10.1039/C4NJ01932F]
[76]
Brockunier, L.L.; Parmee, E.R.; Ok, H.O.; Candelore, M.R.; Cascieri, M.A.; Colwell, L.F., Jr; Deng, L.; Feeney, W.P.; Forrest, M.J.; Hom, G.J.; MacIntyre, D.E.; Tota, L.; Wyvratt, M.J.; Fisher, M.H.; Weber, A.E. Human β3-adrenergic receptor agonists containing 1,2,3-triazole-substituted benzenesulfonamides. Bioorg. Med. Chem. Lett., 2000, 10(18), 2111-2114.
[http://dx.doi.org/10.1016/S0960-894X(00)00422-4] [PMID: 10999482]
[77]
Winterwerber, M.; Geiger, R.; Otto, H-H. Synthesis of 1, 2-diazol-4-sulfonamides, 1, 2, 4-and 1, 2, 5-oxadiazol-3-sulfonamides, 1, 2, 3-triazol-4-sulfonamides, and pyrimidine-5-sulfonamides starting from cyanomethanesulfonyl chloride. Monatsh. Chem., 2006, 137(10), 1321.
[78]
Saemian, N.; Shirvani, G.; Matloubi, H. Synthesis of 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14 C]-1, 2, 3-triazole and 1-(4-sulfonamide-phenyl)-5-(4-fluoro-phenyl)-5-[14 C]-1, 2, 3-triazole as novel carbon-14 anticonvulsant. J. Radioanal. Nucl. Chem., 2006, 268(3), 545-548.
[http://dx.doi.org/10.1007/s10967-006-0203-9]
[79]
Kadaba, P.K. Triazolines. 14. 1,2,3-Triazolines and triazoles, a new class of anticonvulsants. Drug design and structure-activity relationships. J. Med. Chem., 1988, 31(1), 196-203.
[http://dx.doi.org/10.1021/jm00396a032] [PMID: 3336019]
[80]
Li, J.J.; Norton, M.B.; Reinhard, E.J.; Anderson, G.D.; Gregory, S.A.; Isakson, P.C.; Koboldt, C.M.; Masferrer, J.L.; Perkins, W.E.; Seibert, K.; Zhang, Y.; Zweifel, B.S.; Reitz, D.B. Novel terphenyls as selective cyclooxygenase-2 inhibitors and orally active anti-inflammatory agents. J. Med. Chem., 1996, 39(9), 1846-1856.
[http://dx.doi.org/10.1021/jm950878e] [PMID: 8627608]
[81]
D’Ambrosio, K.; Smaine, F-Z.; Carta, F.; De Simone, G.; Winum, J-Y.; Supuran, C.T. Development of potent carbonic anhydrase inhibitors incorporating both sulfonamide and sulfamide groups. J. Med. Chem., 2012, 55(15), 6776-6783.
[http://dx.doi.org/10.1021/jm300818k] [PMID: 22775345]
[82]
Wilkinson, B.L.; Bornaghi, L.F.; Houston, T.A.; Innocenti, A.; Vullo, D.; Supuran, C.T.; Poulsen, S-A. Carbonic anhydrase inhibitors: Inhibition of isozymes I, II, and IX with triazole-linked O-glycosides of benzene sulfonamides. J. Med. Chem., 2007, 50(7), 1651-1657.
[http://dx.doi.org/10.1021/jm061320h] [PMID: 17343373]
[83]
Singer, M.; Lopez, M.; Bornaghi, L.F.; Innocenti, A.; Vullo, D.; Supuran, C.T.; Poulsen, S-A. Inhibition of carbonic anhydrase isozymes with benzene sulfonamides incorporating thio, sulfinyl and sulfonyl glycoside moieties. Bioorg. Med. Chem. Lett., 2009, 19(8), 2273-2276.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.086] [PMID: 19286378]
[84]
Cecchi, A.; Hulikova, A.; Pastorek, J.; Pastoreková, S.; Scozzafava, A.; Winum, J-Y.; Montero, J-L.; Supuran, C.T. Carbonic anhydrase inhibitors. Design of fluorescent sulfonamides as probes of tumor-associated carbonic anhydrase IX that inhibit isozyme IX-mediated acidification of hypoxic tumors. J. Med. Chem., 2005, 48(15), 4834-4841.
[http://dx.doi.org/10.1021/jm0501073] [PMID: 16033263]
[85]
Vullo, D.; Steffansen, B.; Brodin, B.; Supuran, C.T.; Scozzafava, A.; Nielsen, C.U. Carbonic anhydrase inhibitors: transepithelial transport of thioureido sulfonamide inhibitors of the cancer-associated isozyme IX is dependent on efflux transporters. Bioorg. Med. Chem., 2006, 14(7), 2418-2427.
[http://dx.doi.org/10.1016/j.bmc.2005.11.019] [PMID: 16321542]
[86]
Wang, X-L.; Wan, K.; Zhou, C-H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[87]
Siles, R.; Kawasaki, Y.; Ross, P.; Freire, E. Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases. Bioorg. Med. Chem. Lett., 2011, 21(18), 5305-5309.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.023] [PMID: 21807511]
[88]
Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and cytotoxicity of novel 4-(4-(substituted)-1H-1, 2, 3-triazol-1-yl)-N-phenethylbenzenesulfonamides. Med. Chem. Res., 2014, 23(4), 1768-1780.
[http://dx.doi.org/10.1007/s00044-013-0777-z]
[89]
Toraskar, M.; Singasane, N.; Pichake, J.; Kadam, V. Fragment based drug discovery - A tool for drug discovery. Int. J. Drug Des. Discov., 2013, 4, 1083.
[90]
Visegrády, A.; Keserű, G.M. Fragment-based lead discovery on G-protein-coupled receptors. Expert Opin. Drug Discov., 2013, 8(7), 811-820.
[http://dx.doi.org/10.1517/17460441.2013.794135] [PMID: 23621346]
[91]
Kumar, A.; Voet, A.; Zhang, K.Y. Fragment based drug design: From experimental to computational approaches. Curr. Med. Chem., 2012, 19(30), 5128-5147.
[http://dx.doi.org/10.2174/092986712803530467] [PMID: 22934764]
[92]
Morphy, R. Historical strategies for lead generation; Design. Multi-Target Drugs, 2012, pp. 111-129.
[93]
Lipinski, C.A. Phenotypic and in vivo screening: Lead discovery and drug repurposing; Royal Society of Chemistry, 2012.
[94]
Fabbrizzi, P.; Bianchini, F.; Menchi, G.; Raspanti, S.; Guarna, A.; Trabocchi, A. Combination of click chemistry and sulfonamides to develop three-armed triazole compounds. Tetrahedron, 2014, 70(35), 5439-5449.
[http://dx.doi.org/10.1016/j.tet.2014.06.125]
[95]
Rostovtsev, V. Green. LG; Fokin, VV; Sharpless, KB. A stepwise huisgen cycloaddition process: copper (1)- catalyzed regioselective “ligation” of azides. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2599.
[96]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[97]
Palmieri, C.; Patten, D.K.; Januszewski, A.; Zucchini, G.; Howell, S.J. Breast cancer: Current and future endocrine therapies. Mol. Cell. Endocrinol., 2014, 382(1), 695-723.
[http://dx.doi.org/10.1016/j.mce.2013.08.001] [PMID: 23933149]
[98]
Gobbi, S.; Rampa, A.; Belluti, F.; Bisi, A. Nonsteroidal aromatase inhibitors for the treatment of breast cancer: an update. Anticancer. Agents Med. Chem., 2014, 14(1), 54-65.
[http://dx.doi.org/10.2174/18715206113139990306]
[99]
Favia, A.D.; Nicolotti, O.; Stefanachi, A.; Leonetti, F.; Carotti, A. Computational methods for the design of potent aromatase inhibitors. Expert Opin. Drug Discov., 2013, 8(4), 395-409.
[http://dx.doi.org/10.1517/17460441.2013.768983] [PMID: 23373669]
[100]
Pingaew, R.; Prachayasittikul, V.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg. Med. Chem., 2015, 23(13), 3472-3480.
[http://dx.doi.org/10.1016/j.bmc.2015.04.036] [PMID: 25934226]
[101]
Kaushik, C.P.; Pahwa, A.; Kumar, A.; Singh, D.; Kumar, K. Facile synthesis, characterization, and antimicrobial studies of some disubstituted 1,2,3-triazoles with sulfonamide functionality. Synth. Commun., 2017, 47(16), 1485-1494.
[http://dx.doi.org/10.1080/00397911.2017.1333124]
[102]
Saeidian, H.; Sadighian, H.; Abdoli, M.; Sahandi, M. Versatile and green synthesis, spectroscopic characterizations, crystal structure and DFT calculations of 1, 2, 3‒triazole‒based sulfonamides. J. Mol. Struct., 2017, 1131, 73-78.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.027]
[103]
Mirjafary, Z.; Ahmadi, L.; Moradi, M.; Saeidian, H. A copper (II)–thioamide combination as a robust heterogeneous catalytic system for green synthesis of 1, 4-disubstituted-1, 2, 3-triazoles under click conditions. RSC Advances, 2015, 5(95), 78038-78046.
[http://dx.doi.org/10.1039/C5RA16581D]
[104]
Saeidian, H.; Sadighian, H.; Arabgari, M.; Mirjafary, Z.; Ayati, S.E.; Najafi, E.; Moghaddam, F.M. Organocopper-based magnetically recoverable and reusable nanocatalyst for efficient synthesis of novel 1,2,3-triazole-based sulfonamides in green medium. Res. Chem. Intermed., 2018, 44(1), 601-612.
[http://dx.doi.org/10.1007/s11164-017-3122-1]
[105]
Moghaddam, F.M.; Ayati, S.E. Copper immobilized onto a triazole functionalized magnetic nanoparticle: A robust magnetically recoverable catalyst for “click” reactions. RSC Advances, 2015, 5(5), 3894-3902.
[http://dx.doi.org/10.1039/C4RA13330G]
[106]
Welch, J.; Eswarakrishnan, S. Fluorine in Bioorganic ChemistryJohn Wiley & Sons; New York, 1991.
[107]
Isanbor, C.; O’Hagan, D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem., 2006, 127(3), 303-319.
[http://dx.doi.org/10.1016/j.jfluchem.2006.01.011]
[108]
Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007, 317(5846), 1881-1886.
[http://dx.doi.org/10.1126/science.1131943] [PMID: 17901324]
[109]
Li, N.; Liu, N.; Tang, S.; Li, D-L.; Zhang, X-J. Synthesis and antiproliferative activity of novel 1,2,3-triazole-sulfonamide hybrids. J. Chem. Res., 2018, 42(1), 50-53.
[http://dx.doi.org/10.3184/174751918X15161933697853]
[110]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1, 2,3]-triazole-tethered sulfonamide-berberine hybrids. Chem. Select, 2018, 3(34), 9790-9793.
[http://dx.doi.org/10.1002/slct.201801905]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy