Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Arylglyoxals as Versatile Synthons for Heterocycles Through Multi-Component Reactions

Author(s): Ankita Chaudhary*

Volume 23, Issue 18, 2019

Page: [1945 - 1983] Pages: 39

DOI: 10.2174/1385272823666191019110010

Price: $65

Abstract

Arylglyoxals are important synthons that have been used in the construction of a diverse spectrum of compounds. The use of multicomponent approaches in organic synthesis due to its environmentally friendly nature is a step forward towards sustainability. This review will offer the reader insightful perspectives on the use of arylglyoxals for the synthesis of various heterocyclic compounds like pyrroles, pyrazoles, furans, imidazoles, indoles, oxazoles, pyridines, quinazolines, pyrans, etc using multicomponent approach.

Keywords: Arylglyoxals, 1, 2-dicarbonyl compound, heterocycles, multicomponent reactions, synthon, green chemistry, organic synthesis.

Graphical Abstract
[1]
Katritzky, A.R. Introduction: Heterocycles. Chem. Rev., 2004, 104, 2125-2126.
[http://dx.doi.org/10.1021/cr0406413]
[2]
Quin, L.D.; Tyrell, J.A. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals, 1st ed; Wiley & Sons: New York, 2010.
[3]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[4]
Desai, N.; Trivedi, A.; Pandit, U.; Dodiya, A.; Rao, V.K.; Desai, P. Hybrid bioactive heterocycles as potential antimicrobial agents: A review. Mini Rev. Med. Chem., 2016, 16(18), 1500-1526.
[http://dx.doi.org/10.2174/1389557516666160609075620] [PMID: 27292782]
[5]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[6]
Sokolova, A.S.; Yarovaya, O.I.; Bormotov, N.I.; Shishkina, L.N.; Salakhutdinov, N.F. Synthesis and antiviral activity of camphor-based 1,3-thiazolidin-4-one and thiazole derivatives as Orthopoxvirus-reproduction inhibitors. MedChemComm, 2018, 9(10), 1746-1753.
[http://dx.doi.org/10.1039/C8MD00347E] [PMID: 30429979]
[7]
Fouad, M.M.; El-Bendary, E.R.; Suddek, G.M.; Shehata, I.A.; El-Kerdawy, M.M. Synthesis and in vitro antitumor evaluation of some new thiophenes and thieno[2,3-d]pyrimidine derivatives. Bioorg. Chem., 2018, 81, 587-598.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.022] [PMID: 30248510]
[8]
Siddiqui, N. Andalip; Bawa, S.; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. J. Pharm. Bioallied Sci., 2011, 3(2), 194-212.
[http://dx.doi.org/10.4103/0975-7406.80765] [PMID: 21687347]
[9]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[10]
Goel, A.; Agarwal, N.; Singh, F.V.; Sharon, A.; Tiwari, P.; Dixit, M.; Pratap, R.; Srivastava, A.K.; Maulik, P.R.; Ram, V.J. Antihyperglycemic activity of 2-methyl-3,4,5-triaryl-1H-pyrroles in SLM and STZ models. Bioorg. Med. Chem. Lett., 2004, 14(5), 1089-1092.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.009] [PMID: 14980641]
[11]
Li, W.; Zhao, S-J.; Gao, F.; Lv, Z-S.; Tu, J-Y.; Xu, Z. Synthesis and in vitro anti-tumor, anti-mycobacterial and anti-HIV activities of diethylene-glycol-tethered bis-isatin derivatives. ChemistrySelect, 2018, 3, 10250-10254.
[http://dx.doi.org/10.1002/slct.201802185]
[12]
Amir, M.; Javed, S.A.; Kumar, H. Pyrimidine as anti-inflammatory agent: A review. Indian J. Pharm. Sci., 2007, 69, 337-343.
[http://dx.doi.org/10.4103/0250-474X.34540]
[13]
Zhao, X.; Chaudhry, S.T.; Mei, J. Heterocyclic building blocks for organic semiconductors. In:. Heterocyclic Chemistry in the 21st Century - A Tribute to Alan Katritzky, Scriven, E.F.V.; Ramsden, C.A.; Elsevier Science. 2017, Vol. 121, pp. 133-171.
[http://dx.doi.org/10.1016/bs.aihch.2016.04.009]
[14]
Chen, D.; Su, S-J.; Cao, Y. Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(45), 9565-9578.
[http://dx.doi.org/10.1039/C4TC01941E]
[15]
Khattab, T.A.; Rehan, M. A review on synthesis of nitrogen-containing heterocyclic dyes for textile fibers - Part 2: Fused heterocycles. Egypt. J. Chem., 2018, 61(6), 989-1018.
[http://dx.doi.org/10.21608/ejchem.2018.4131.1363]
[16]
Steel, P.J. Aromatic nitrogen heterocycles as bridging ligands; a survey. Coord. Chem. Rev., 1990, 106, 227-265.
[http://dx.doi.org/10.1016/0010-8545(60)80005-7]
[17]
Horak, E.; Kassal, P.; Murković Steinberg, I. Benzimidazole as a structural unit in fluorescent chemical sensors: The hidden properties of a multifunctional heterocyclic scaffold. Supramol. Chem., 2017, 30(10), 838-857.
[http://dx.doi.org/10.1080/10610278.2017.1403607]
[18]
Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[19]
Barreto, A.F.S.; Andrade, C.K.Z. Synthesis of (macro)heterocycles by consecutive/repetitive isocyanide-based multicomponent reactions. Beilstein J. Org. Chem., 2019, 15, 906-930.
[http://dx.doi.org/10.3762/bjoc.15.88] [PMID: 31164928]
[20]
Tietze, L.F.; Bsasche, C.; Gericke, K.M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925]
[21]
Weber, L.; Illgen, M.; Almstetter, M. Discovery of new multi component reactions with combinatorial methods. Synlett, 1999, 3, 366-374.
[http://dx.doi.org/10.1055/s-1999-2612]
[22]
Akbari, A. Phenylglyoxal. Synlett, 2012, 23(6), 951-952.
[http://dx.doi.org/10.1055/s-0031-1290293]
[23]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[24]
Yadav, J.S.; Reddy, B.S.S.; Premalatha, K.; Shankar, K.S. Bismuth(III)-catalyzed rapid synthesis of 2,3-disubstituted quinoxalines in water. Synthesis, 2008, 3787-3792.
[http://dx.doi.org/10.1055/s-0028-1083230]
[25]
Antoine, M.; Gerlach, M.; Gunther, E.; Schuster, T.; Czech, M.; Seipelt, I.; Marchand, P. Synthesis, 2012, 44, 69-82.
[http://dx.doi.org/10.1055/s-0031-1289613]
[26]
Verma, G.K.; Shukla, G.; Nagaraju, A.; Srivastava, A.; Singh, M.S. In(OTf)3-mediated dehydrative annulation of β-ketothioamides with phenylglyoxal: One-pot access to diversely functionalized pyrrol-2-thiones. Tetrahedron Lett., 2014, 55, 5182-5185.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.062]
[27]
Anary-Abbasinejad, M.; Shams, N.; Hassanabadi, A. An efficient, one-pot synthesis of dialkyl 5-Hydroxy-4-aryl-2,5-dihydrofuran-2,3-dicarboxylate derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 1823-1829.
[http://dx.doi.org/10.1080/10426500903329229]
[28]
Xiang, Y.; Xu, H-W.; Fan, W.; Jiang, B.; Tu, S-J. Efficient Domino Approach to Polysubstituted 2-Hydroxyindole-3,4-(2H,5H)-diones. J. Heterocycl. Chem., 2015, 52, 551-555.
[http://dx.doi.org/10.1002/jhet.2097]
[29]
Takahashi, K. The reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem., 1968, 243(23), 6171-6179.
[PMID: 5723461]
[30]
Yamasaki, R.B.; Vega, A.; Feeney, R.E. Modification of available arginine residues in proteins by p-hydroxyphenylglyoxal. Anal. Biochem., 1980, 109(1), 32-40.
[http://dx.doi.org/10.1016/0003-2697(80)90006-8] [PMID: 7053120]
[31]
Bicker, K.L.; Subramanian, V.; Chumanevich, A.A.; Hofseth, L.J.; Thompson, P.R. Seeing citrulline: Development of a phenylglyoxal-based probe to visualize protein citrullination. J. Am. Chem. Soc., 2012, 134(41), 17015-17018.
[http://dx.doi.org/10.1021/ja308871v] [PMID: 23030787]
[32]
Moffett, R.B.; Tiffany, B.D.; Aspergren, B.D.; Heinzelman, R.V. Antiviral Compounds. II. Aromatic Glyoxals. J. Amer. Chem. Soc., 1957, 79(7), 1687-1690.
[http://dx.doi.org/10.1021/ja01564a043]
[33]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 2018, 157, 527-561.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.002] [PMID: 30119011]
[34]
Chang, X.; Yang, X.; Chen, Z.; Zhong, W. 1,4-Diazabicyclo[2.2.2]octane-Catalyzed multicomponent domino strategy for the synthesis of tetrasubstituted NH-pyrroles. Synlett, 2019, 30(12), 1431-1436.
[http://dx.doi.org/10.1055/s-0037-1611857]
[35]
Karamthulla, S.; Jana, A.; Choudhury, L.H. Synthesis of novel 5,6-disubstituted pyrrolo [2,3-d]pyrimidine-2,4-diones via one-pot three-component reactions. ACS Comb. Sci., 2017, 19(2), 108-112.
[http://dx.doi.org/10.1021/acscombsci.6b00147] [PMID: 28036166]
[36]
Yang, X.; Zheng, L.; Chen, Z.; Zhong, W. Catalyst-free three-component approach to efficient synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Synth. Commun., 2008, 48(8), 929-935.
[http://dx.doi.org/10.1080/00397911.2018.1430237]
[37]
Mishra, R.; Jana, A.; Panday, A.K.; Choudhury, L.H. Synthesis of fused pyrroles containing 4-hydroxycoumarins by regioselective metal-free multicomponent reactions. Org. Biomol. Chem., 2018, 16(17), 3289-3302.
[http://dx.doi.org/10.1039/C8OB00161H] [PMID: 29667668]
[38]
Javahershenas, R.; Khalafy, J. One-pot, three-component synthesis of pyrrolo [2,3-d]pyrimidine derivatives. J. Mex. Chem. Soc., 2018, 62(1), 1-12.
[39]
Chen, Z.; Ye, S.; Zhang, X. Brønsted acid-promoted multicomponent reaction for the construction of pyrrolocoumarin derivatives. Heterocycles, 2018, 96(3), 501-508.
[http://dx.doi.org/10.3987/COM-18-13867]
[40]
Mishra, A.K.; Panday, R.; Choudhury, L.H.; Pal, J.; Subramanian, R. Multicomponent reactions of arylglyoxal, 4-hydroxycoumarin, and cyclic 1,3-C, N-binucleophiles: Binucleophile-directed synthesis of fused five- and six-membered N-heterocycles. Eur. J. Org. Chem., 2017, 9, 2789-2800.
[http://dx.doi.org/10.1002/ejoc.201700115]
[41]
Chen, Z.; Yang, X.; Su, W. An efficient protocol for multicomponent synthesis of functionalized chromeno[4,3-b]pyrrol-4(1H)-one derivatives. Tetrahedron Lett., 2015, 56(19), 2476-2479.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.095]
[42]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. Synthesis of pentasubstituted pyrroles via catalyst-free multicomponent reactions. Synlett, 2014, 25(13), 1926-1936.
[http://dx.doi.org/10.1055/s-0034-1378329]
[43]
Mondal, P.; Chatterjee, S.; Bhaumik, A.; Maity, S.; Ghosh, P.; Mukhopadhyay, C. Creation of DABCO-based amphoteric ionic liquid supported TiO2 nanoparticles: Execution of amplified catalytic properties on microwave-assisted synthesis of n-substituted pyrroles. Chem. Select, 2019, 4(11), 3140-3150.
[http://dx.doi.org/10.1002/slct.201900325]
[44]
Ambethkar, S.; Padmini, V.; Bhuvanesh, N. A one-pot sequential five-component domino reaction for the expedient synthesis of polysubstituted pyrroles. New J. Chem., 2016, 40(5), 4705-4709.
[http://dx.doi.org/10.1039/C5NJ03444B]
[45]
Alizadeh, A.; Abadi, M.H.; Ghanbaripour, R. An efficient approach to the synthesis of alkyl 7-hydroxy-1-oxo-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazine-8-carboxylates via a one-pot, three-component reaction. Synlett, 2014, 25(12), 1705-1708.
[http://dx.doi.org/10.1055/s-0034-1378275]
[46]
Bayat, M.; Nasri, S. A catalyst-free approach to regioselective synthesis of multi-functional 1H-pyrrolo[1,2-a] fused[1,3]diazaheterocycle using ketene dithioacetals in water–ethanol media. Tetrahedron Lett., 2017, 58(32), 3107-3111.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.076]
[47]
Bayat, M.; Rezaei, M. Synthesis of new types of pyrrolo/pyrido[1,2-a][1,3]diazepines based on seven-membered ring HKA via a one-pot three-component reaction. J. Iran. Chem. Soc., 2018, 15(4), 769-777.
[http://dx.doi.org/10.1007/s13738-017-1275-x]
[48]
Chaudhary, A.; Khurana, J.M.; Khanna, G.; Saroha, M. A catalyst-free domino protocol for the chemoselective synthesis of multifunctionalised pyrroles in aqueous media via nitroketene-N,S-acetal chemistry. Chem. Select, 2018, 3(23), 6334-6337.
[http://dx.doi.org/10.1002/slct.201800831]
[49]
Balachandra, B.; Shanmugam, S. A simple and direct synthesis of pentasubstituted pyrroles via [3+4] annulation and th veir in vitro evaluation as thrombolytic agents and cytotoxicity studies on L929 cells. Chem. Select, 2018, 3(7), 2037-2044.
[http://dx.doi.org/10.1002/slct.201702476]
[50]
Poorand, M.A.; Anary-Abbasinejad, M.; Darehkordi, A. A direct phosphine-mediated synthesis of polyfunctionalized 1-aminopyrroles from arylglyoxals, phenylhydrazine and acetylene diesters. ARKIVOC, 2017, 5, 141-147.
[http://dx.doi.org/10.24820/ark.5550190.p009.912]
[51]
Masoudi, M.; Anary-Abbasinejad, M.; Maleki, A. A facile and effective procedure for synthesis of polyfunctionalized pyrrolines from simultaneously stirring of carbon disulfide, aniline, arylglyoxals and β-enaminocarbonyls. J. Iran. Chem. Soc., 2017, 14(11), 2299-2304.
[http://dx.doi.org/10.1007/s13738-017-1166-1]
[52]
Mukherjee, S.; Sarkar, S.; Pramanik, A. A sustainable synthesis of functionalized pyrrole fused coumarins under solvent-free conditions using magnetic nanocatalyst and a new route to polyaromatic indolocoumarins. ChemistrySelect, 2018, 3(5), 1537-1544.
[http://dx.doi.org/10.1002/slct.201703146]
[53]
Wang, H.; Liu, X.; Feng, X.; Huang, Z.; Shi, D. GAP chemistry for pyrrolyl coumarin derivatives: A highly efficient one-pot synthesis under catalyst-free conditions. Green Chem., 2013, 15(12), 3307-3311.
[http://dx.doi.org/10.1039/c3gc41799a]
[54]
Saroha, M.; Khanna, G.; Khurana, J.M. Synthesis of Novel 5-Substituted 6-Phenylpyrrolo[2, 3-d]pyrimidine derivatives via one-pot three-component reactions under catalyst-free condition. Chem. Select, 2017, 2, 7263-7266.
[http://dx.doi.org/10.1002/slct.201701234]
[55]
Anary-Abbasinejad, M.; Farashah, H.D.; Hassanabadi, A.; Anaraki-Ardakani, H.; Shams, N. Three-component reaction of triphenylphosphine, dialkyl acetylenedicarboxylate, and 2- aminobenzothiazole in the presence of arylglyoxals: An efficient one-pot synthesis of highly functionalized pyrroles. Synth. Commun., 2012, 42(13), 1877-1884.
[http://dx.doi.org/10.1080/00397911.2010.545496]
[56]
Quiroga, J.; Acosta, P.A.; Cruz, S.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Generation of pyrrolo[2,3-d]pyrimidines. Unexpected products in the multicomponent reaction of 6-aminopyrimidines, dimedone, and arylglyoxal. Tetrahedron Lett., 2010, 51(41), 5443-5447.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.021]
[57]
Maity, S.; Kundu, A.; Pramanik, A. Synthesis of biologically important, fluorescence active 5-hydroxy benzo[g]indoles through four-component domino condensations and their fluorescence “Turn-off” sensing of Fe(iii) ions. RSC Advances, 2015, 5(65), 52852-52865.
[http://dx.doi.org/10.1039/C5RA05780A]
[58]
Feng, X.; Wang, Q.; Lin, W.; Dou, G-L.; Huang, Z-B.; Shi, D-Q. Highly efficient synthesis of polysubstituted pyrroles via four-component domino reaction. Org. Lett., 2013, 15(10), 2542-2545.
[http://dx.doi.org/10.1021/ol4010382] [PMID: 24490761]
[59]
Khalili, B.; Jajarmi, P.; Eftekhari-Sis, B.; Hashemi, M.M. Novel one-pot, three-component synthesis of new 2-alkyl-5-aryl-(1H)-pyrrole-4-ol in water. J. Org. Chem., 2008, 73(6), 2090-2095.
[http://dx.doi.org/10.1021/jo702385n] [PMID: 18290660]
[60]
Chen, X-B.; Liu, Z-C.; Yang, L-F.; Yan, S-J.; Lin, J. A three-component catalyst-free approach to regioselective synthesis of dual highly functionalized fused pyrrole derivatives in water-ethanol media: Thermodynamics versus kinetics. ACS Sustain. Chem. Eng., 2014, 2(5), 1155-1163.
[http://dx.doi.org/10.1021/sc500170d]
[61]
Chen, X-B.; Yan, S-J.; Su, A.; Liu, W.; Lin, J. Catalyst-free three-component domino reactions for regioselective synthesis of multi-functional fused pyrroles. Tetrahedron, 2015, 71(29), 4745-4751.
[http://dx.doi.org/10.1016/j.tet.2015.05.067]
[62]
Chen, X-B.; Wang, X-Y.; Zhu, D-D.; Yan, S-J.; Lin, J. Three-component domino reaction synthesis of highly functionalized bicyclic pyrrole derivatives. Tetrahedron, 2014, 70(5), 1047-1054.
[http://dx.doi.org/10.1016/j.tet.2013.12.062]
[63]
Dommaraju, Y.; Prajapati, D. A highly efficient group-assisted purification method for the synthesis of poly-functionalized pyrimidin-5-yl-pyrroles via one-pot four-component domino reaction. Mol. Divers., 2015, 19(1), 173-187.
[http://dx.doi.org/10.1007/s11030-014-9547-1] [PMID: 25173493]
[64]
Masoudi, M.; Anary-Abbasinejad, M. Efficient synthesis of terpyrrole derivatives by a pseudo-five-component reaction between pyrrole, β-enaminocarbonyls and arylglyoxals. J. Chem. Res., 2015, 39(3), 145-147.
[http://dx.doi.org/10.3184/174751915X14241056315134]
[65]
Wang, S-S.; Zhu, Q-W.; Liu, S.; Yang, Y.; Wang, Z-T.; Jiang, B.; Tu, S-J. Three-component domino [3+2] heterocyclization leading to pyran-3-yl-substituted fused pyrroles. Res. Chem. Intermed., 2015, 41(5), 2879-2889.
[http://dx.doi.org/10.1007/s11164-013-1396-5]
[66]
Masoudi, M.; Anary-Abbasinejad, M. A direct phosphine-mediated synthesis of polyfunctionalized pyrroles from arylglyoxals and β-enaminones. Tetrahedron Lett., 2016, 57(1), 103-104.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.075]
[67]
Kolos, N.N.; Zubar, V.V.; Omelchenko, I.V.; Musatov, V.I. Three-component synthesis of tetrasubstituted pyrroles by condensation with amines and arylglyoxals. Chem. Heterocycl. Compd., 2016, 52(4), 237-243.
[http://dx.doi.org/10.1007/s10593-016-1869-8]
[68]
Mehrabi, H.; Alizadeh-Bami, F.; Ranjbar-Karimi, R. An efficient synthesis of pentasubstituted pyrroles: One-pot four-component reaction of arylamine, acetylenedicarboxylate, arylglyoxal, and symmetrical 1,3-dicarbonyl compounds. J. Iran. Chem. Soc., 2018, 15(9), 1961-1967.
[http://dx.doi.org/10.1007/s13738-018-1393-0]
[69]
Tu, X-C.; Fan, W.; Jiang, B.; Wang, S-L.; Tu, S-J. A novel allylic substitution strategy to four-component synthesis of pyrazole-substituted fused pyrroles. Tetrahedron, 2013, 69(30), 6100-6107.
[http://dx.doi.org/10.1016/j.tet.2013.05.063]
[70]
Mousavizadeh, F.; Talebizadeh, M.; Anary-Abbasinejad, M. Synthesis of new indolylpyrrole derivatives via a four-component domino reaction between arylglyoxals, acetylacetone, indole and aliphatic amines in aqueous media. Tetrahedron Lett., 2018, 59(31), 2970-2974.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.043]
[71]
Pramanik, S.; Maity, S.; Ghosh, P.; Mukhopadhyay, P. Acid-promoted multicomponent allylic amidation towards 7-acetamido tetrahydroindole derivatives. Tetrahedron Lett., 2019, 60(5), 435-438.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.068]
[72]
Cai, Q.; Li, D-K.; Zhou, R-R.; Shu, W-M.; Wu, Y-D.; Wu, A-X. Acid-catalyzed multicomponent tandem cyclizations: Access to polyfunctional dihydroindolizino[8,7-b]indoles. Org. Lett., 2016, 18(6), 1342-1345.
[http://dx.doi.org/10.1021/acs.orglett.6b00281] [PMID: 26926047]
[73]
Lin, W.; Zheng, Y-X.; Xun, Z.; Huang, Z-B.; Shi, D-Q. Microwave-assisted regioselective synthesis of 3-functionalized indole derivatives via three-component domino reaction. ACS Comb. Sci., 2017, 19(11), 708-713.
[http://dx.doi.org/10.1021/acscombsci.7b00126] [PMID: 28985045]
[74]
Fu, L-P.; Shi, Q-Q.; Shi, Y.; Jiang, B.; Tu, S-J. Three-component domino reactions for regioselective formation of bis-indole derivatives. ACS Comb. Sci., 2013, 15(2), 135-140.
[http://dx.doi.org/10.1021/co3001428] [PMID: 23339825]
[75]
Khorshidi, A.; Shariati, S. Efficient synthesis of 3,3′-bisindoles catalyzed by Fe3O4@MCM-48-OSO3H magnetic core-shell nanoparticles. Chin. J. Catal., 2015, 36(5), 778-784.
[http://dx.doi.org/10.1016/S1872-2067(14)60281-3]
[76]
Wang, H-Y.; Shi, D-Q. Efficient synthesis of functionalized dihydro-1H-indol-4(5H)-ones via one-pot three-component reaction under catalyst-free conditions. ACS Comb. Sci., 2013, 15(5), 261-266.
[http://dx.doi.org/10.1021/co4000198] [PMID: 23597107]
[77]
Ansari, A.; Ali, A.; Asifa, M. Shamsuzzaman, Review: Biologically active pyrazole derivatives. New J. Chem., 2017, 41, 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[78]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[79]
Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774]
[80]
Shu, W-M.; Zheng, K-L.; Ma, J-R.; Sun, H-Y.; Wang, M.; Wu, A-X. Convenient access to polyfunctional pyrazoles via a highly efficient and regioselective multicomponent reaction. Org. Lett., 2015, 17(8), 1914-1917.
[http://dx.doi.org/10.1021/acs.orglett.5b00605] [PMID: 25826709]
[81]
Zhang, L.; Peng, X-M.; Damu, G.L.; Geng, R-X.; Zhou, C-H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290] [PMID: 23740514]
[82]
Kolos, N.N.; Gozalishvili, L.L.; Sivokon, E.N.; Knyazev, I.V. Reaction of 4-hydroxycoumarin with arylglyoxals and ureas. Russ. J. Org. Chem., 2009, 45, 119.
[http://dx.doi.org/10.1134/S1070428009010151]
[83]
Gozalishvili, L.L.; Beryozkina, T.V.; Omelchenko, I.V.; Zubatyuk, R.I.; Shishkin, O.V.; Kolos, N.N. A rapid and facile synthesis of new spiropyrimidines from 5-(2-arylethylidene-2-oxo)-1,3-dimethylpyrimidine-2,4,6-triones. Tetrahedron, 2008, 64, 8759-8765.
[http://dx.doi.org/10.1016/j.tet.2008.06.097]
[84]
Balalaie, S.; Soleiman-Beigi, M.; Rominger, F. Novel One-pot synthesis of new derivatives of dihydropyrimidinones, unusual multisubstituted imidazoline-2-ones: X-ray crystallography structure. J. Iran. Chem. Soc., 2005, 2, 319-329.
[http://dx.doi.org/10.1007/BF03245937]
[85]
Mehrabi, H.; Alizadeh-Bami, F.; Ranjbar-Karimi, R. Catalyst-free synthesis of 1,2,4,5-tetrasubstituted imidazoles from arylamins, benzonitriles, arylglyoxals, and Meldrum’s acid. Tetrahedron Lett., 2018, 59(20), 1924-1927.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.093]
[86]
Saha, A.; Jana, A.; Choudhury, L.H. Lemon juice mediated multicomponent reactions for the synthesis of fused imidazoles. New J. Chem., 2018, 42(22), 17909-17922.
[http://dx.doi.org/10.1039/C8NJ03480J]
[87]
Khalafy, J.; Etivand, E.; Marjani, A.P.; Khalillou, N. Synthesis of 4-hydroxy-3-(2-arylimidazo[1,2-a]pyridin-3-yl)quinolin-2(1H)-ones in the presence of DABCO as an efficient organocatalyst. J. Heterocycl. Chem., 2019, 56(6), 1857-1865.
[http://dx.doi.org/10.1002/jhet.3571]
[88]
Etivand, N.; Ahmadi Sabegh, M.; Khalafy, J. Synthesis of a new series of benzo[d]imidazo[2,1-b]thiazole-1-ium hydroxides by a one-pot, three-component reaction in water. Monatsh. Chem., 2019, 150(2), 317-325.
[http://dx.doi.org/10.1007/s00706-018-2315-7]
[89]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[90]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[91]
Sravanthi, T.V.; Manju, S.L. Indoles - A promising scaffold for drug development. Eur. J. Pharm. Sci., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[92]
Wei, J.; Liu, L.; Tang, D-N.; Wu, C-P.; Zhao, X-J.; Hao, W-J.; Jiang, B. Microwave-assisted three-component reactions for regioselective synthesis of functionalized benzo[e]indoles. J. Heterocycl. Chem., 2017, 54(6), 3403-3409.
[http://dx.doi.org/10.1002/jhet.2962]
[93]
Lukevits, E.; Demicheva, L. Biological activity of furan derivatives. Chem. Heterocycl. Compd., 1993, 29(3), 243-267.
[http://dx.doi.org/10.1007/BF00531499]
[94]
Mosslemin, M.H.; Anary-Abbasinejad, M.; Nia, A.F.; Bakhtiari, S.; Anaraki-Ardakani, H. Synthesis of furan annulated heterocycles via a one-pot three-component reaction. J. Chem. Res., 2009, 10, 599-601.
[http://dx.doi.org/10.3184/030823409X12510192920315]
[95]
Balwe, S.G.; Kim, J.S.; Kim, Y-I.; Jeong, Y.T. Diversity-oriented one-pot synthesis of furan based densely substituted biheteroaryls via isocyanide insertion. Tetrahedron, 2019, 75(6), 797-807.
[http://dx.doi.org/10.1016/j.tet.2018.12.066]
[96]
Chang, X.; Zhang, X.; Chen, Z. FeCl3 or MeSO3H-promoted multicomponent reactions for facile synthesis of structurally diverse furan analogues. Org. Biomol. Chem., 2018, 16(23), 4279-4287.
[http://dx.doi.org/10.1039/C8OB00942B] [PMID: 29796558]
[97]
Anary-Abbasinejad, M.; Falahati, A. Synthesis of polyfunctionalized furans by three-component reaction between arylglyoxals, phosphites and malononitrile. J. Iran. Chem. Soc., 2015, 12(8), 1415-1418.
[http://dx.doi.org/10.1007/s13738-015-0608-x]
[98]
Dehghanzadeh, F.; Shahrokhabadi, F.; Anary-Abbasinejad, M. A simple route for synthesis of 5-(furan-3-yl)barbiturate/thiobarbiturate derivatives via a multi-component reaction between arylglyoxals, acetylacetone and barbituric/thiobarbituric acid. ARKIVOC, 2019, 5, 133-141.
[http://dx.doi.org/10.24820/ark.5550190.p010.837]
[99]
Karami, B.; Khodabakhshi, S.; Vahabinia, H.R. Zirconium catalyzed chemoselective synthesis of new amido-substituted benzo[b]furans via a one-pot reaction. Heterocycles, 2013, 87(2), 399-405.
[http://dx.doi.org/10.3987/COM-12-12621]
[100]
Vahabinia, H.R.; Karami, B.; Khodabakhshi, S. One-pot synthesis of benzamidonaphtho[2,1-b]furans and benzamidobenzo[b] furans as novel polycyclic heteroaromatic compounds. J. Chin. Chem. Soc. (Taipei), 2013, 60(11), 1323-1327.
[http://dx.doi.org/10.1002/jccs.201300126]
[101]
Karami, B.; Khodabakhshi, S.; Hashemi, F. Synthesis of a novel class of benzofurans via a three-component, regiospecific intramolecular heterocylization reaction. Tetrahedron Lett., 2013, 54(28), 3583-358.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.124]
[102]
Salari, M.R.; Mosslemin, M.H.; Hassanabadi, A. Diastereoselective synthesis of functionalised trans-tetrahydrobenzofuran-4-ones in an aqueous medium by using DABCO as an efficient catalyst. J. Chem. Res., 2017, 41(11), 657-660.
[http://dx.doi.org/10.3184/174751917X15094552081215]
[103]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[104]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[105]
Kolos, N.N.; Zamigailo, L.L.; Chechina, N.V.; Omel’chenko, I.V.; Shishkin, O.V.; Vashchenko, E.V. Three-component condensation of 1,3-dimethyl-barbituric acid, arylglyoxals, and substituted thioureas. Chem. Heterocycl. Compd., 2013, 48(12), 1817-1823.
[http://dx.doi.org/10.1007/s10593-013-1214-4]
[106]
Alizadeh-Bami, F.; Mehrabi, M.; Ranjbar-Karimi, R. One-pot three-component reaction of arylglyoxals with acetylthiourea and Meldrum’s acid or barbituric acid for synthesis of new 2-acetamido-4-arylthiazol-5-yl derivatives. J. Sulfur Chem., 2019, 1-10.
[http://dx.doi.org/10.1080/17415993.2019.1602127]
[107]
Cai, Q.; Jia, F-C.; Li, D-K.; Xu, C.; Ding, K-R.; Wu, A-X. Chemoselective synthesis of biheterocyclic skeletons tetrahydro-1H-pyrrolo[1,2-c]imidazole and tetrahydropyrrolo[1,2-c]thiazole derivatives via multicomponent self-sorting domino strategy. Tetrahedron, 2015, 71(36), 6104-6111.
[http://dx.doi.org/10.1016/j.tet.2015.06.104]
[108]
Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem, 2019, 13(1), 16.
[http://dx.doi.org/10.1186/s13065-019-0531-9] [PMID: 31384765]
[109]
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[110]
Wang, L.; Shi, L-X.; Liu, L.; Li, Z-X.; Xu, T.; Hao, W-J.; Li, G.; Tu, S-J.; Jiang, B. Synthesis of diastereoenriched oxazolo[5,4-b]indoles via catalyst-free multicomponent bicyclizations. J. Org. Chem., 2017, 82(7), 3605-3611.
[http://dx.doi.org/10.1021/acs.joc.7b00129] [PMID: 28296402]
[111]
Fearnley, S.P. 2-(3H)-Oxazolone - A simple heterocycle with manifold potential. Curr. Org. Chem., 2004, 8(14), 1289-1337.
[http://dx.doi.org/10.2174/1385272043369971]
[112]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Ozalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[113]
García-Valverde, M.; Macho, S.; Marcaccini, S.; Rodríguez, T.; Rojo, J.; Torroba, T. A one-pot, ugi four-component synthesis of 2(3H)-oxazolone 4-carboxamides. Synlett, 2008, 1, 33-36.
[114]
Chiacchio, M.A.; Iannazzo, D.; Romeo, R.; Giofrè, S.V.; Legnani, L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr. Med. Chem., 2018, 25, 1-28.
[http://dx.doi.org/10.2174/0929867325666180904125400] [PMID: 30182842]
[115]
Zhang, W.; Xie, W.; Fang, J.; Wang, P.G. Ytterbium(III) trifluoromethanesulfonate catalyzed solid phase aza Diels-Alder reaction and subsequent facile adduct release. Tetrahedron Lett., 1999, 40, 7929-7933.
[http://dx.doi.org/10.1016/S0040-4039(99)01587-7]
[116]
Arlan, F.M.; Khalafy, J.; Maleki, R. One-pot three-component synthesis of a series of 4-aroyl-1,6-diaryl-3-methyl-1H-pyrazolo[3,4-b]pyridine-5-carbo-nitriles in the presence of aluminum oxide as a nanocatalyst. Chem. Heterocycl. Compd., 2018, 54(1), 51-57.
[http://dx.doi.org/10.1007/s10593-018-2229-7]
[117]
Ezzati, M.; Khalafy, J.; Marjani, A.P.; Prager, R.H. The catalyst-free syntheses of pyrazolo[3,4-b]quinolin-5-one and pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidin-5,7-dione derivatives by one-pot, three-component reactions. Tetrahedron, 2017, 73(47), 6587-6596.
[http://dx.doi.org/10.1016/j.tet.2017.10.004]
[118]
Javahershenas, R.; Khalafy, J. A Green synthesis of 7-amino-5-(4-aroyl)-1,3-dimethyl-2,4-dioxo-1,2,3,4,5,8-hexahydropyrido[2,3-d]pyrimidine-6-carbonitrile derivatives by a one-pot three-component reaction. J. Heterocycl. Chem., 2017, 54(6), 3163-3168.
[http://dx.doi.org/10.1002/jhet.2930]
[119]
Arabpoor, Z.; Shaterian, H.R. Applying green and highly efficient approach for a facile synthesis of new thiazoloquinoline, thiazolopyridine, and thiazolonaphthyridine derivatives. J. Iran. Chem. Soc., 2019, 16(5), 1091-1103.
[http://dx.doi.org/10.1007/s13738-018-01579-x]
[120]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[121]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[122]
Kumar, S.; Deep, A.; Narasimhan, B. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Curr. Bioact. Compd., 2019, 15(3), 289-303.
[http://dx.doi.org/10.2174/1573407214666180124160405]
[123]
Rimaz, M.; Khalafy, J.; Mousavi, H.; Bohlooli, S.; Khalili, B. Two different green catalytic systems for one-pot regioselective and chemoselective synthesis of some pyrimido[4,5-d]pyrimidinone derivatives in water. J. Heterocycl. Chem., 2017, 54(6), 3174-3186.
[http://dx.doi.org/10.1002/jhet.2932]
[124]
Asif, M. Diverse biologically active pyridazine analogs: A scaffold for the highly functionalized heterocyclic compounds. Rev. J. Chem., 2018, 8(3), 280-300.
[http://dx.doi.org/10.1134/S2079978018030019]
[125]
Rimaz, M.; Khalafy, J.; Moghadam, P.N. A regioselective one-pot, three component synthesis of 6-aryl-4-cyano-3(2H)-pyridazinones in Water. Aust. J. Chem., 2010, 63, 1396-1401.
[http://dx.doi.org/10.1071/CH09602]
[126]
Rimaz, M.; Khalafy, J. A novel one-pot, three-component synthesis of alkyl 6-aryl-3- methylpyridazine-4-carboxylates in water. ARKIVOC, 2010, 2, 110-117.
[127]
Khalafy, J.; Rimaz, M.; Panahi, L.; Rabiei, H. A regiospecific One-Pot, Three component synthesis of 4-Aryl-6,8dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones as New potential monoamine oxidase inhibitors. Bull. Korean Chem. Soc., 2011, 32(7), 2428-2432.
[http://dx.doi.org/10.5012/bkcs.2011.32.7.2428]
[128]
Khalafy, J.; Rimaz, M.; Rabiei, H.; Panahi, L. An efficient one-pot protocol for regioselective synthesis of 3-aryl-6,8-dialkyl-7-thioxo-7,8-dihydro-pyrimido[4,5-c] pyridazine-5(6H)-ones. J. Sulfur Chem., 2013, 34(4), 395-406.
[http://dx.doi.org/10.1080/17415993.2012.745126]
[129]
Rimaz, M. Two efficient one-pot approaches for regioselective synthesis of new 3-arylpyridazino[4,3-c]quinolin-5(6H)-ones. Aust. J. Chem., 2015, 68(10), 1529-1534.
[http://dx.doi.org/10.1071/CH15029]
[130]
Khalafy, J. Rimaz, M. Ezzati, M. Prager, R.H. A green one-pot protocol for regioselective synthesis of new substituted 7,8-dihydrocinnoline-5(6H)-ones. Bull. Korean Chem. Soc., 2012, 33(9), 2890-2896.
[http://dx.doi.org/10.5012/bkcs.2012.33.9.2890]
[131]
Khalafy, J.; Ezzati, M.; Rimaz, M.; Marjani, A.P.; Asl, H.Y. An efficient and facile regioselective synthesis of new substituted (E)-1-(3-aryl-7,8-dihydrocinnoline-5(6H)-ylidene)hydrazines and (1E,2E)-1,2-bis(3-aryl-7,8-dihydrocinnoline-5(6H)-ylidene)hydrazines. J. Iran. Chem. Soc., 2014, 11(4), 1067-1074.
[http://dx.doi.org/10.1007/s13738-013-0378-2]
[132]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Arshia, Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review. Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]
[133]
Cai, Q.; Li, D-K.; Zhou, R-R.; Zhuang, S-Y.; Ma, J-T.; Wu, Y-D.; Wu, A-X. Acid-catalyzed multicomponent tandem double cyclization: A One-pot, metal-free route to synthesize polyfunctional 4,9-dihydropyrrolo[2,1-b]quinazolines. J. Org. Chem., 2016, 81(17), 8104-8111.
[http://dx.doi.org/10.1021/acs.joc.6b01660] [PMID: 27504693]
[134]
Rideout, J.A.; Smith, I.R.; Sutherland, M.D. Pigments of marine animals. XII. The synthesis of certain substituted naphthopyrones related to crinoid pigments. Aust. J. Chem., 1976, 29(5), 1087-1098.
[http://dx.doi.org/10.1071/CH9761087]
[135]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[136]
Khalafy, J.; Ilkhanizadeh, S.; Ranjbar, M.A. Green, Organometallic catalyzed synthesis of a series of novel functionalized 4-aroyl-4H-benzo[g]chromenes through one-pot, three component reaction. J. Heterocycl. Chem., 2018, 55(4), 951-956.
[http://dx.doi.org/10.1002/jhet.3124]
[137]
Khaligh, N.G. Synthesis and characterization of some novel 4-arylglyoxal-chromene derivatives in the presence of a polymeric catalyst and biological evaluation against Escherichia coli. Monatsh. Chem., 2018, 149(1), 33-38.
[http://dx.doi.org/10.1007/s00706-017-2059-9]
[138]
Marjani, A.P. Ebrahimi, Saatluo, B. Nouri, F. An efficient synthesis of 4H-chromene derivatives by a one-pot, three-component reaction. Iran. J. Chem. Chem. Eng., 2017, 37(1), 149-157.
[139]
Khodabakhshi, S.; Jafari, F.; Marahel, F.; Baghernejad, M. One-pot, three-component synthesis of pyranocoumarins containing an aroyl group. Heterocycl. Commun., 2014, 20(5), 285-288.
[http://dx.doi.org/10.1515/hc-2014-0099]
[140]
Khalafy, J. Arlan, F.M.; Chalanchi, S.S. One-pot, Three-component synthesis of a new series of 2-Amino-4-aroyl-5-oxo-5,6-dihydro-2H-pyrano[3,2-c]quinoline-3-carbonitrile in the presence of SBA-15 as a nanocatalyst. J. Heterocycl. Chem., 2018, 55(1), 149-153.
[http://dx.doi.org/10.1002/jhet.3017]
[141]
Khodabakhshi, S.; Shahamirian, M.; Baghernejad, M. A new three-component coupling reaction of aryl glyoxal, malononitrile, and 4-hydroxy coumarin catalyzed by recyclable TiO2 nanoparticles. J. Chem. Res., 2014, 8, 473-476.
[http://dx.doi.org/10.3184/174751914X14050999895192]
[142]
Marjani, A.P.; Khalafy, J.; Farajollahi, A.A. Synthesis of Ethyl 2-Amino-4-benzoyl-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylates by a one-pot, three-component reaction in the presence of TPAB. J. Heterocycl. Chem., 2019, 56(1), 68-274.
[143]
Choudhary, S.; Silakari, O.; Singh, P.K. Key updates on the chemistry and biological roles of thiazine scaffold: A review. Mini Rev. Med. Chem., 2018, 18(17), 1452-1478.
[http://dx.doi.org/10.2174/1389557518666180416150552] [PMID: 29663882]
[144]
Mehrabia, H.; Esfandiarpour, Z. A facile and effective procedure for the synthesis of new 1,3-thiazine-2-thione derivatives. J. Sulfur Chem., 2015, 36, 583-590.
[http://dx.doi.org/10.1080/17415993.2015.1072718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy