Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

A Review on the Application of Poly(amidoamine) Dendritic Nano-polymers for Modification of Cellulosic Fabrics

Author(s): Ali Akbar Zolriasatein*

Volume 13, Issue 2, 2020

Page: [110 - 122] Pages: 13

DOI: 10.2174/2405520412666191019101828

Price: $65

Abstract

Dendritic nano-polymers are recently used in medical and industrial applications. Cationic dendritic polymers can be used for the modification of anionic cellulose fibers. This review deals with the chemical modification of cellulosic fibers with poly(amidoamine) type dendritic polymers. It has been shown that after modification, the physical and mechanical properties including moisture regain, breaking strength, breaking elongation, and Young’s modulus of the treated cotton fibers increase slightly. It is also a possible way to achieve saltfree dyeing with reactive dyes. Several researches concluded that when poly(amidoamine) increases in cellulose fiber, the mechanism of dye adsorption changes from Freundlich to Langmuir model. Moreover, dendritic polymers can be used as a template for inorganic nano-particles. Both poly(amidoamine) silver salts and nano-composites can display antimicrobial activity. On the other hand, the water and oil repellency results showed that poly(amidoamine) dendrimer containing fluorocarbon had better results than conventional ones in relation to performance and washing resistance. To improve wash and wear properties, poly(amidoamine) dendrimers can be modified and applied as a new material for wrinkle resistance of cotton.

Keywords: Dendrimers, poly(amidoamine), cellulose, antibacterial, dyeing, flame retardant.

Next »
Graphical Abstract
[1]
Arkas M. Hybrid organic/inorganic materials based on functionalized dendritic polymers: Methods of preparation, applications and future prospects. J Mar Sci Eng 2012; 1(03): 1-2.
[2]
Park Y, Lee J, Jin J. Synthesis and liquid crystalline properties of hyperbranched aromatic polyesters consisting of azoxybenzene mesogens and polymethylene spacers. Bull Korean Chem Soc 2002; 23(9): 1201-10.
[http://dx.doi.org/10.5012/bkcs.2002.23.9.1201]
[3]
Seiler M, Köhler D, Arlt W. Hyperbranched polymers: New selective solvents for extractive distillation and solvent extraction. Separ Purif Tech 2002; 29(3): 245-63.
[http://dx.doi.org/10.1016/S1383-5866(02)00163-6]
[4]
Gao C, Yan D. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci 2004; 29(3): 183-275.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.12.002]
[5]
Zhang F, Chen Y, Lin H, Wang H, Zhao B. HBP-NH2 grafted cotton fiber: Preparation and salt-free dyeing properties. Carbohydr Polym 2008; 74(2): 250-6.
[http://dx.doi.org/10.1016/j.carbpol.2008.02.006]
[6]
Voit B. New developments in hyperbranched polymers. J Polym Sci A Polym Chem 2000; 38(14): 2505-25.
[http://dx.doi.org/10.1002/1099-0518(20000715)38: 14<2505:AID-POLA10>3.0.CO;2-8]
[7]
Namligoz E, Bahtiyari M, Hosaf E, Coban S. Performance comparison of new (dendrimer, nanoproduct) and conventional water, oil and stain repellents. Fibres Text East Eur 2009; 17(76): 76-81.
[8]
Mahapatra S, Karak N. Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity. Mater Chem Phys 2008; 112(3): 1114-9.
[http://dx.doi.org/10.1016/j.matchemphys.2008.07.047]
[9]
Froehling P. Dendrimers and dyes - A review. Dyes Pigments 2001; 48(3): 187-95.
[http://dx.doi.org/10.1016/S0143-7208(00)00099-1]
[10]
Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules 1986; 19(9): 2466-8.
[http://dx.doi.org/10.1021/ma00163a029]
[11]
Ghosh S, Yadav S, Vasanthan N, Sekosan G. A study of antimicrobial property of textile fabric treated with modified dendrimers. J Appl Polym Sci 2010; 115(2): 716-22.
[http://dx.doi.org/10.1002/app.31127]
[12]
Hodge P. Polymer science branches out. Nature 1993; 362(6415): 18-9.
[http://dx.doi.org/10.1038/362018a0]
[13]
Torigoe K, Suzuki A, Au Esumi K. (III)-PAMAM interaction and formation of Au–PAMAM nanocomposites in ethyl acetate. J Colloid Interface Sci 2001; 241(2): 346-56.
[http://dx.doi.org/10.1006/jcis.2001.7778]
[14]
Prosycevas I, Tamuleviciene A, Guobiene A, Adliene D, Puiso J, Abdrakhmanov O. Formation of silver-PAMAM dendrimer nanocomposites using electromagnetic radiation. Mat Sci (Medžiagotyra) 2010; 16(1): 7-11.
[15]
Tomalia D, Naylor A, Goddard W. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 1990; 29(2): 138-75.
[http://dx.doi.org/10.1002/anie.199001381]
[16]
Turro N, Barton J, Tomalia D. Molecular recognition and chemistry in restricted reaction spaces. Photophysics and photoinduced electron transfer on the surfaces of micelles, dendrimers, and DNA. Acc Chem Res 1991; 24(11): 332-40.
[http://dx.doi.org/10.1021/ar00011a003]
[17]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[18]
Lochmann L, Wooley K, Ivanova P, Frechet J. Multisite functionalized dendritic macromolecules prepared via metalation by superbases and reaction with electrophiles. J Am Chem Soc 1993; 115(15): 7043-4.
[http://dx.doi.org/10.1021/ja00068a100]
[19]
Murat M, Grest G. Molecular dynamics study of dendrimer molecules in solvents of varying quality. Macromolecules 1996; 29(4): 1278-85.
[http://dx.doi.org/10.1021/ma951219e]
[20]
Balogh L, Swanson D, Tomalia D, Hagnauer G, McManus A. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2001; 1(1): 18-21.
[http://dx.doi.org/10.1021/nl005502p]
[21]
Beck Tan N, Balogh L, Trevino S, Tomalia D, Lin J. A small angle scattering study of dendrimer-copper sulfide nanocomposites. Polymer (Guildf) 1999; 40(10): 2537-45.
[http://dx.doi.org/10.1016/S0032-3861(98)00491-1]
[22]
He J, Valluzzi R, Yang K, Dolukhanyan T, Sung C, Kumar J, et al. Electrostatic Multilayer Deposition of a Gold-dendrimer nanocomposite. Chem Mater 1999; 11(11): 3268-74.
[http://dx.doi.org/10.1021/cm990311c]
[23]
Balogh L, Tomalia D, Hagnauer G. A revolution of nanoscale proportions. Chem Innov 2001; 30(3): 19-26.
[24]
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf B Biointerfaces 2010; 79(1): 5-18.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.029] [PMID: 20417070]
[25]
Astruc D, Deraedt C, Djeda R, et al. Dentromers, a family of super dendrimers with specific properties and applications. Molecules 2018; 23(4): 966.
[http://dx.doi.org/10.3390/molecules23040966] [PMID: 29677169]
[26]
Akbari S. The application of dendritic material in textile engineering. Scientific Bulletin of Escorena 2013; 7(1): 11-26.
[27]
Akbari S, Akbari M, Haghighat KM, Mazaheri F. Preparation of long-lasting fragrant worsted fabrics using polypropylene-imine (PPI) dendrimer. Int J Cloth Sci Technol 2016; 28(5): 699-711.
[http://dx.doi.org/10.1108/IJCST-07-2015-0081]
[28]
Asadi FP, Shakoorjavan S, Akbari S. The relationship between odour intensity and antibacterial durability of encapsulated thyme essential oil by PPI dendrimer on cotton fabrics. J Textil Inst 2017; 109(6): 832-41.
[http://dx.doi.org/10.1080/00405000.2017.1376820]
[29]
Akbari S, Kozłowski R. A review of application of amine-terminated dendritic materials in textile engineering. J Textil Inst 2018; 110(3): 460-7.
[http://dx.doi.org/10.1080/00405000.2018.1512361]
[30]
Burkinshaw S, Mignanelli M, Froehling P, Bide M. The use of dendrimers to modify the dyeing behaviour of reactive dyes on cotton. Dyes Pigments 2000; 47(3): 259-67.
[http://dx.doi.org/10.1016/S0143-7208(00)00053-X]
[31]
Tomalia D, Fréchet J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J Polym Sci A Polym Chem 2002; 40(16): 2719-28.
[http://dx.doi.org/10.1002/pola.10301]
[32]
Pittelkow M, Christensen JB. Convergent synthesis of internally branched PAMAM dendrimers. Org Lett 2005; 7(7): 1295-8.
[http://dx.doi.org/10.1021/ol050040d] [PMID: 15787490]
[33]
Newkome G, Moorefield C, Vogtle F. Dendrimers and Dendrons. Weinheim: Wiley VCH 2001.
[http://dx.doi.org/10.1002/3527600612]
[34]
Newkome G, Yao Z, Baker G, Gupta V. Micelles. Part 1. Cascade molecules: A new approach to micelles. A [27]-arborol. J Org Chem 1985; 50(11): 2003-4.
[http://dx.doi.org/10.1021/jo00211a052]
[35]
Maekawa E, Koshijima T. Preparation and structural consideration of nitrogen-containing derivatives obtained from dialdehyde celluloses. J Appl Polym Sci 1991; 42(1): 169-78.
[http://dx.doi.org/10.1002/app.1991.070420120]
[36]
Punyacharoennon P, Charuchinda S, Srikulkit K. Grafting and phosphonic acid functionalization of hyperbranched polyamidoamine polymer onto ultrafine silica. J Appl Polym Sci 2008; 110(6): 3336-47.
[http://dx.doi.org/10.1002/app.28917]
[37]
Zolriasatein A, Yazdanshenas M, Khajavi R, Rashidi A, Najafi F. The use of poly (amidoamine) dendrimer in modification of jute for improving dyeing properties of reactive dyes. J Appl Polym Sci 2012; 127(6): 4203-10.
[http://dx.doi.org/10.1002/app.37666]
[38]
Zhang F, Chen Y, Lin H, Zhang D. Performance of cotton fabric treated with an amino-terminated hyperbranched polymer. Fibers Polym 2008; 9(5): 515-20.
[http://dx.doi.org/10.1007/s12221-008-0082-5]
[39]
Sijun H, Chuanjie Z, Liu W, Ping Z. The synthesis of dendrimers and application in crease-resistant finishing of cotton fabric Sciencepaper Online 10-5.
[40]
Colleoni C, Massafra M, Migani V, Rosace G. Dendrimer finishing influence on CO/PES blended fabrics color assessment. J Appl Polym Sci 2010; 120(4): 2122-9.
[http://dx.doi.org/10.1002/app.33387]
[41]
Chowdhury K. Impact of different water repellent finishes on cotton double jersey fabrics. J Textile Sci Technol 2018; 4(3): 85-99.
[http://dx.doi.org/10.4236/jtst.2018.43006]
[42]
Tsubokawa N, Ichioka H, Satoh T, Hayashi S, Fujiki K. Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface. React Funct Polym 1998; 37(1-3): 75-82.
[http://dx.doi.org/10.1016/S1381-5148(97)00139-9]
[43]
Wu XZ, Liu P, Pu QS, Sun QY, Su ZX. Preparation of dendrimer-like polyamidoamine immobilized silica gel and its application to online preconcentration and separation palladium prior to FAAS determination. Talanta 2004; 62(5): 918-23.
[http://dx.doi.org/10.1016/j.talanta.2003.10.011] [PMID: 18969380]
[44]
Taniguchi Y, Shirai K, Saitoh H, Yamauchi T, Tsubokawa N. Postgrafting of vinyl polymers onto hyperbranched poly(amidoamine)-grafted nano-sized silica surface. Polymer (Guildf) 2005; 46(8): 2541-7.
[http://dx.doi.org/10.1016/j.polymer.2005.02.016]
[45]
Jiang Y, Gao Q, Yu H, Chen Y, Deng F. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials. Microporous Mesoporous Mater 2007; 103(1-3): 316-24.
[http://dx.doi.org/10.1016/j.micromeso.2007.02.024]
[46]
Pérignon N, Marty J, Mingotaud A, Dumont M, Rico-Lattes I, Mingotaud C. Hyperbranched polymers analogous to PAMAM dendrimers for the formation and stabilization of gold nanoparticles. Macromolecules 2007; 40(9): 3034-41.
[http://dx.doi.org/10.1021/ma070176m]
[47]
Gaan S, Sun G. Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds. J Anal Appl Pyrolysis 2007; 78(2): 371-7.
[http://dx.doi.org/10.1016/j.jaap.2006.09.010]
[48]
Xu F, Zhong L, Xu Y, Zhang C, Zhang F, Zhang G. Highly efficient flame-retardant and soft cotton fabric prepared by a novel reactive flame retardant. Cellulose 2019; 26(6): 4225-40.
[http://dx.doi.org/10.1007/s10570-019-02374-4]
[49]
Taherkhani A, Hasanzadeh M. Durable flame retardant finishing of cotton fabrics with poly (amidoamine) dendrimer using citric acid. Mater Chem Phys 2018; 219(1): 425-32.
[http://dx.doi.org/10.1016/j.matchemphys.2018.08.058]
[50]
Salimpour AS, Mohammad AMR. Preparation, characterization, and antimicrobial property of cotton cellulose fabric grafted with poly (propylene imine) dendrimer. Cellulose 2012; 19(5): 1701-14.
[http://dx.doi.org/10.1007/s10570-012-9744-y]
[51]
Chou C, Lien H. Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J Nanopart Res 2010; 13(5): 2099-107.
[http://dx.doi.org/10.1007/s11051-010-9967-5]
[52]
Esumi K, Houdatsu H, Yoshimura T. Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004; 20(7): 2536-8.
[http://dx.doi.org/10.1021/la036299r] [PMID: 15835119]
[53]
Zhang F, Wu X, Chen Y, Lin H. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym 2009; 10(4): 496-501.
[http://dx.doi.org/10.1007/s12221-009-0496-8]
[54]
Aymonier C, Schlotterbeck U, Antonietti L, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun (Camb) 2002; (24): 3018-9.
[http://dx.doi.org/10.1039/b208575e] [PMID: 12536795]
[55]
Zhang C, Yang H, Liu Y, Zhu P. Durable antibacterial finish on cotton fabrics with PAMAM/Ag+. Adv Mat Res 2011; 332-334: 77-80.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.332-334.77]
[56]
Grabchev I, Staneva D, Vasileva-Tonkova E, Alexandrova R. Surface functionalization of cotton fabric with fluorescent dendrimers, spectral characterization, cytotoxicity, antimicrobial and antitumor activity. Chemosensors (Basel) 2019; 7(2): 17.
[http://dx.doi.org/10.3390/chemosensors7020017]
[57]
Kebede M, Imae T. Sabrina, Wu C, Cheng K. Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity. Chem Eng J 2017; 311(1): 340-7.
[http://dx.doi.org/10.1016/j.cej.2016.11.107]
[58]
Klaykruayat B, Siralertmukul K, Srikulkit K. Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr Polym 2010; 80(1): 197-207.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.013]
[59]
Liu X, Hao W, Lok CN, Wang YC, Zhang R, Wong KK. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J Pediatr Surg 2014; 49(12): 1846-51.
[http://dx.doi.org/10.1016/j.jpedsurg.2014.09.033] [PMID: 25487498]
[60]
Gupta D, Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr Polym 2007; 69(1): 164-71.
[http://dx.doi.org/10.1016/j.carbpol.2006.09.023]
[61]
Ma W, Zhang S, Tang B, Yang J. Pretreatment of cotton with poly (vinylamine chloride) for salt-free dyeing with reactive dyes. Color Technol 2005; 121(4): 193-7.
[http://dx.doi.org/10.1111/j.1478-4408.2005.tb00272.x]
[62]
Zolriasatein AA. Thermodynamics, kinetics and isotherms studies for sorption of direct dye onto the pectinase pre-treated jute yarn. Recent Innov Chem Eng 2019; 12(2): 160-71.
[http://dx.doi.org/10.2174/2405520412666190618144005]
[63]
Kabanov VA, Zezin AB, Rogacheva VB, et al. Polyelectrolyte behavior of astramol poly(propyleneimine) dendrimers. Macromolecules 1998; 31(15): 5142-4.
[http://dx.doi.org/10.1021/ma971643a] [PMID: 9680453]
[64]
Dodangeh M, Gharanjig K, Arami M, Atashrouz S. Surface alteration of polyamide fibers by polyamidoamine dendrimers and optimization of treatment process using neural network towards improving their dyeing properties. Dyes Pigments 2014; 111(1): 30-8.
[http://dx.doi.org/10.1016/j.dyepig.2014.05.025]
[65]
He Y, Jiang Z, Zhang G, Zhu P, Sui S. Influence of cationization PAMAM on the dyeing property of viscose fiber. J Textile Eng Fashion Technol 2018; 4(5)
[66]
Wei M, Shu-fen Z, Jin-zong Y. Development of functional polymers in modification of cotton for improving dyeability of reactive dyes, The Proceedings of the 3rd International Conference on Functional Molecules. Dalian, China 2005 69-75.
[67]
Soleimani-Gorgani A, Najafi F, Karami Z. Modification of cotton fabric with a dendrimer to improve ink-jet printing process. Carbohydr Polym 2015; 131(1): 168-76.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.031] [PMID: 26256173]
[68]
Zhao Y, Zhu X, Liu H, Luo Y, Wang S, Shen M, et al. Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. J Mater Chem B Mater Biol Med 2014; 2(42): 7384-93.
[http://dx.doi.org/10.1039/C4TB01278J]
[69]
Ding B, Du J, Hsieh Y. Tubular multi-bilayer polysaccharide biofilms on ultra-thin cellulose fibers. J Appl Polym Sci 2011; 121(5): 2526-34.
[http://dx.doi.org/10.1002/app.33955]
[70]
Rodríguez K, Renneckar S, Gatenholm P. Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 2011; 3(3): 681-9.
[http://dx.doi.org/10.1021/am100972r] [PMID: 21355545]
[71]
Luo Y, Wang S, Shen M, et al. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 2013; 91(1): 419-27.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.069] [PMID: 23044152]
[72]
Ogawa T, Ding B, Sone Y, Shiratori S. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 2007; 18(16): 1-8.
[http://dx.doi.org/10.1088/0957-4484/18/16/165607]
[73]
Xiao S, Wu S, Shen M, et al. Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications. ACS Appl Mater Interfaces 2009; 1(12): 2848-55.
[http://dx.doi.org/10.1021/am900590j] [PMID: 20356166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy