Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Recent Progress on Heteropolyacids for Green Fuels Synthesis

Author(s): Qiuyun Zhang*, Xiaofang Liu, Taoli Deng, Yutao Zhang and Peihua Ma

Volume 7, Issue 3, 2020

Page: [267 - 281] Pages: 15

DOI: 10.2174/2213346106666191014104156

Abstract

Decreasing fossil fuel reserves and growing concerns are driving the utilization of renewable feedstocks as green fuel sources. Heteropolyacids (HPAs) are one of the most promising catalytic materials in green biodiesel production. Their unique chemical and physical properties are outstanding and could allow the preparation of composite materials. In this review, esterification /transesterification for biodiesel synthesis using various types of HPAs base catalysts including pristine HPAs, substituted HPAs, supported HPAs and encapsulated HPAs has been described. In addition, esterification/transesterification reaction conditions such as reaction time and temperature, alcohol content and catalyst dosage affect the catalytic activity of the HPAs base catalysts, which are also discussed in detail. Finally, the present drawbacks and future challenges on HPAs based catalytic systems for the production of biodiesel are also addressed in the concluding remarks.

Keywords: Heteropolyacids, heterogeneous catalysis, esterification and transesterification, biodiesel, feedstocks, diesel engines.

Graphical Abstract
[1]
Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev., 2014, 43(22), 7887-7916.
[http://dx.doi.org/10.1039/C4CS00189C] [PMID: 24957179]
[2]
Wang, S.X.; Shan, R.; Wang, Y.Z.; Lu, L.L.; Yuan, H.R. Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renew. Energy, 2019, 130, 41-49.
[http://dx.doi.org/10.1016/j.renene.2018.06.047]
[3]
Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel, 2019, 235, 886-907.
[http://dx.doi.org/10.1016/j.fuel.2018.08.021]
[4]
Murugesan, A.; Umarani, C.; Chinnusamy, T.R.; Krishnan, M.; Subramanian, R.; Neduzchezhain, N. Production and analysis of bio-diesel from non-edible oils-A review. Renew. Sustain. Energy Rev., 2009, 13, 825-834.
[http://dx.doi.org/10.1016/j.rser.2008.02.003]
[5]
Salimi, Z.; Hosseini, S.A. Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst. Fuel, 2019, 239, 1204-1212.
[http://dx.doi.org/10.1016/j.fuel.2018.11.125]
[6]
Gardy, J.; Hassanpour, A.; Lai, X.; Ahmed, M.H. Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A Gen., 2016, 527, 81-95.
[http://dx.doi.org/10.1016/j.apcata.2016.08.031]
[7]
Deng, Y.Q.; Hu, X.J.; Cheng, L.H.; Wang, H.L.; Duan, L.H.; Qiu, R.H. Zirconocene-catalysed biodiesel synthesis from vegetable oil with high free fatty acid contents. J. Organomet. Chem., 2018, 870, 116-120.
[http://dx.doi.org/10.1016/j.jorganchem.2018.06.021]
[8]
Prabu, M.; Manikandan, M.; Kandasamy, P.; Kalaivani, P.R.; Rajendiran, N.; Raja, T. Synthesis of biodiesel using the Mg/Al/Zn hydrotalcite/SBA-15 nanocomposite catalyst. ACS Omega, 2019, 4, 3500-3507.
[http://dx.doi.org/10.1021/acsomega.8b02547]
[9]
Sharma, Y.C.; Singh, B.; Korstad, J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels Bioprod. Biorefin., 2011, 5, 69-92.
[http://dx.doi.org/10.1002/bbb.253]
[10]
Su, F.; Guo, Y.H. Advancements in solid acid catalysts for biodiesel production. Green Chem., 2014, 16, 2934-2957.
[http://dx.doi.org/10.1039/C3GC42333F]
[11]
Lan, J.H.; Lin, J.C.; Chen, Z.Q.; Yin, G.C. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts. ACS Catal., 2015, 5, 2035-2041.
[http://dx.doi.org/10.1021/cs501776n]
[12]
Zhang, Q.Y.; Li, H.; Liu, X.F.; Qin, W.T.; Zhang, Y.P.; Xue, W.; Yang, S. Modified porous Zr-Mo mixed oxides as strong acid catalysts for biodiesel production. Energ. Technol., 2013, 1, 735-742.
[http://dx.doi.org/10.1002/ente.201300109]
[13]
Zhang, Q.Y.; Li, H.; Qin, W.T.; Liu, X.F.; Zhang, Y.P.; Xue, W.; Yang, S. Solid acid used as highly efficient catalyst for esterification of free fatty acids with alcohols. China Pet. Process Pe., 2013, 15, 19-24.
[14]
Gaeta-Bernardi, A.; Parente, V. Organic municipal solid waste (MSW) as feedstock for biodiesel production: A financial feasibility analysis. Renew. Energy, 2015, 86, 1422-1432.
[http://dx.doi.org/10.1016/j.renene.2015.08.025]
[15]
Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol., 2010, 101(19), 7201-7210.
[http://dx.doi.org/10.1016/j.biortech.2010.04.079] [PMID: 20493683]
[16]
Aarthy, M.; Saravanan, P.; Gowthaman, M.K.; Rose, C.; Kamini, N.R. Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chem. Eng. Res. Des., 2014, 92, 1591-1601.
[http://dx.doi.org/10.1016/j.cherd.2014.04.008]
[17]
Tessier, F.; Ray, E.; Cheviré, F.; Lemaître, L.; Bonnier, F.; Bazer-Bachi, D.; Lecocq, V. Transesterification of vegetable oils by AlPOxNy heterogeneous catalysts. Appl. Catal. Afr. Environ., 2016, 185, 253-264.
[18]
Rashtizadeh, E.; Farzaneh, F. Transesterification of soybean oil catalyzed by Sr-Ti mixed oxides nanocomposite. J. Taiwan Inst. Chem. Eng., 2013, 44, 917-923.
[http://dx.doi.org/10.1016/j.jtice.2013.02.008]
[19]
Xu, Q.Q.; Li, Q.; Yin, J.Z.; Guo, D.; Qiao, B.Q. Continuous production of biodiesel from soybean flakes by extraction coupling with transesterification under supercritical conditions. Fuel Process. Technol., 2016, 144, 37-41.
[http://dx.doi.org/10.1016/j.fuproc.2015.12.018]
[20]
Celante, D.; Schenkel, J.V.D.; Castilhos, F.D. Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide. Fuel, 2018, 212, 101-107.
[http://dx.doi.org/10.1016/j.fuel.2017.10.040]
[21]
Martínez, S.L.; Romero, R.; López, J.C.; Romero, A.; Mendieta, V.S.; Natividad, R. Preparation and characterization of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil. Ind. Eng. Chem. Res., 2011, 50, 2665-2670.
[http://dx.doi.org/10.1021/ie1006867]
[22]
Vahid, B.R.; Haghighi, M.; Toghiani, J.; Alaei, S. Hybrid-coprecipitation vs. combustion synthesis of Mg-Al spinel based nanocatalyst for efficient biodiesel production. Energy Convers. Manage., 2018, 160, 220-229.
[http://dx.doi.org/10.1016/j.enconman.2018.01.030]
[23]
Madhuvilakku, R.; Piraman, S. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour. Technol., 2013, 150, 55-59.
[http://dx.doi.org/10.1016/j.biortech.2013.09.087] [PMID: 24148858]
[24]
Nongbe, M.C.; Ekou, T.; Ekou, L.; Yao, K.B.; Grognec, E.L.; Felpin, F.X. Biodiesel production from palm oil using sulfonated graphene catalyst. Renew. Energy, 2017, 106, 135-141.
[http://dx.doi.org/10.1016/j.renene.2017.01.024]
[25]
Zhang, Q.; Li, H.; Yang, S. Facile and low-cost synthesis of mesoporous Ti-Mo bi-metal oxide catalysts for biodiesel production from esterification of free fatty acids in Jatropha curcas crude oil. J. Oleo Sci., 2018, 67(5), 579-588.
[http://dx.doi.org/10.5650/jos.ess17231] [PMID: 29628490]
[26]
Raia, R.Z.; Silva, L.S.D.; Marcucci, S.M.P.; Arroyo, P.A. Biodiesel production from jatropha curcas l. oil by simultaneous esterification and transesterification using sulphated zirconia. Catal. Today, 2016, 289, 105-114.
[http://dx.doi.org/10.1016/j.cattod.2016.09.013]
[27]
Zhang, Q.Y.; Wei, F.F.; Ma, P.H.; Zhang, Y.T.; Wei, F.H.; Chen, H.L. Mesoporous Al-Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valoriz., 2018, 9, 911-918.
[http://dx.doi.org/10.1007/s12649-017-9865-5]
[28]
Anjum, S.S.; Prakash, O.; Pal, A. Conversion of non-edible Argemone Mexicana seed oil into biodiesel through the transesterification process; Energ; Source. Part A, 2019.
[http://dx.doi.org/10.1080/15567036.2018.1563244]
[29]
Nata, I.F.; Putra, M.D.; Irawan, C.; Lee, C.K. Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. J. Environ. Chem. Eng., 2017, 5, 2171-2175.
[http://dx.doi.org/10.1016/j.jece.2017.04.029]
[30]
Asikainen, M.; Munter, T.; Linnekoski, J. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study. Bioresour. Technol., 2015, 191, 300-305.
[http://dx.doi.org/10.1016/j.biortech.2015.05.001] [PMID: 26004380]
[31]
Cardona, C.A.; Rincón, L.E.; Jaramillo, J.J. Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation. Renew. Energy, 2014, 69, 479-487.
[http://dx.doi.org/10.1016/j.renene.2014.03.058]
[32]
Johari, A.; Nyakuma, B.B.; Mohd Nor, S.H.; Mat, R.; Hashim, H.; Ahmad, A.; Zakaria, Z.Y.; Abdullah, T.A.T. The challenges and prospects of palm oil based biodiesel in Malaysia. Energy, 2015, 81, 255-261.
[http://dx.doi.org/10.1016/j.energy.2014.12.037]
[33]
Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev., 2010, 14, 200-216.
[http://dx.doi.org/10.1016/j.rser.2009.07.017]
[34]
Kaur, N.; Ali, A. Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil. Fuel Process. Technol., 2014, 119, 173-184.
[http://dx.doi.org/10.1016/j.fuproc.2013.11.002]
[35]
Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy, 2010, 87, 1083-1095.
[http://dx.doi.org/10.1016/j.apenergy.2009.10.006]
[36]
Saeidi, S.; Amin, N.A.S.; Rahimpour, M. R. Hydrogenation of CO2 to value-added products-A review and potential future developments. J. CO2 Util. 2014, 5, 66-81.
[37]
Lin, L.; Zhou, C.; Saritporn, V.; Shen, X.; Dong, M. Opportunities and challenges for biodiesel fuel. Appl. Energy, 2011, 88, 1020-1031.
[http://dx.doi.org/10.1016/j.apenergy.2010.09.029]
[38]
Wang, R.; Zhou, W.W.; Hanna, M.A.; Zhang, Y.P.; Bhadury, P.S.; Wang, Y.; Song, B.A.; Yang, S. Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel, 2012, 91, 182-186.
[http://dx.doi.org/10.1016/j.fuel.2011.07.001]
[39]
Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels, 2010, 1(5), 763-784.
[http://dx.doi.org/10.4155/bfs.10.44] [PMID: 21833344]
[40]
Paul, A.M.; Patel, J.; Prem, R.A. Algae oil: A sustainable renewable fuel of future. Biotechnol. Res. Int., 2014, •••2014272814
[http://dx.doi.org/10.1155/2014/272814] [PMID: 24883211]
[41]
Cheng, J.; Yu, T.; Li, T.; Zhou, J.; Cen, K. Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresour. Technol., 2013, 131, 531-535.
[http://dx.doi.org/10.1016/j.biortech.2013.01.045] [PMID: 23403061]
[42]
Huang, Y.B.; Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem., 2013, 15, 1095-1111.
[http://dx.doi.org/10.1039/c3gc40136g]
[43]
Tamborini, L.H.; Casco, M.E.; Militello, M.P.; Silvestre-Albero, J.; Barbero, C.A.; Acevedoa, D.F. Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Process. Technol., 2016, 149, 209-217.
[http://dx.doi.org/10.1016/j.fuproc.2016.04.006]
[44]
Mutlu, V.N.; Yilmaz, S. Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Appl. Catal. A Gen., 2016, 522, 194-200.
[http://dx.doi.org/10.1016/j.apcata.2016.05.010]
[45]
D’Souza, R.; Vats, T.; Chattree, A.; Siril, P.F. Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew. Energy, 2018, 126, 1064-1073.
[http://dx.doi.org/10.1016/j.renene.2018.04.035]
[46]
Li, Y.; Zhang, X.D.; Sun, L.; Zhang, J.; Xu, H.P. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO42-/ZrO2-TiO2/La3+. Appl. Energy, 2010, 87, 156-159.
[http://dx.doi.org/10.1016/j.apenergy.2009.06.030]
[47]
Diamantopoulos, N.; Panagiotaras, D.; Nikolopoulos, D. Comprehensive review on the biodiesel production using solid acid hetero-geneous catalysts. J. Therm. Catal., 2015, 6, 1-8.
[http://dx.doi.org/10.4172/2157-7544.1000143]
[48]
Zhang, Q.; Wei, F.; Zhang, Y.; Wei, F.; Ma, P.; Zheng, W.; Zhao, Y.; Chen, H. d Zhao, Y. T. Biodiesel production by catalytic esterification of oleic acid over copper (II)-alginate complexes. J. Oleo Sci., 2017, 66(5), 491-497.
[http://dx.doi.org/10.5650/jos.ess16211] [PMID: 28458387]
[49]
Li, X.; Li, B.; Xu, J.; Wang, Q.; Pang, X.; Gao, X.; Zhou, Z.; Piao, J. Synthesis and characterization of Ln-ZSM-5/MCM-41 (Ln = La, Ce) by using kaolin as raw material. Appl. Clay Sci., 2010, 50, 81-86.
[http://dx.doi.org/10.1016/j.clay.2010.07.006]
[50]
Pan, Y.; Alam, M.A.; Wang, Z.; Wu, J.; Zhang, Y.; Yuan, Z. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst. Bioresour. Technol., 2016, 220, 543-548.
[http://dx.doi.org/10.1016/j.biortech.2016.08.113] [PMID: 27614157]
[51]
Lu, D.; Zhao, J.; Leng, Y.; Jiang, P.; Zhang, C. Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catal. Commun., 2016, 83, 27-30.
[http://dx.doi.org/10.1016/j.catcom.2016.05.004]
[52]
Pirez, C.; Lee, A.F.; Manayil, J.C.; Parlett, C.M.A.; Wilson, K. Hydrothermal saline promoted grafting: A route to sulfonic acid SBA-15 silica with ultra-high acid site loading for biodiesel synthesis. Green Chem., 2014, 16, 4506-4509.
[http://dx.doi.org/10.1039/C4GC01139B]
[53]
Popa, A.; Sasca, V.; Bajuk-Bogdanović, D.; Holclajtner-Antunovic, I. Acidic nickel salts of Keggin type heteropolyacids supported on SBA-15 mesoporous silica. J. Porous Mater., 2016, 23, 211-223.
[http://dx.doi.org/10.1007/s10934-015-0072-0]
[54]
Wang, E.B.; Hu, C.W.; Xu, L. Introduction to Polyoxometalates; Chemical Industry Press: Beijing, 1997, p. 4.
[55]
Morin, P.; Hamad, B.; Sapaly, G.; Carneiro, R.M.G.; Pries de Oliveira, P.G.; Gonzalez, W.A.; Andrade, S.E.; Essayem, N. Transesterification of rapeseed oil with ethanol: I. Catalysis with homogeneous Keggin heteropolyacids. Appl. Catal. A Gen., 2007, 330, 69-76.
[http://dx.doi.org/10.1016/j.apcata.2007.07.011]
[56]
Cardoso, A.L.; Augusti, R.; Da Silva, M.J. Investigation on the Esterification of Fatty Acids Catalyzed by the H3PW12O40 heteropolyacid. J. Am. Oil Chem. Soc., 2008, 85, 555-560.
[http://dx.doi.org/10.1007/s11746-008-1231-0]
[57]
Cao, F.; Chen, Y.; Zhai, F.; Li, J.; Wang, J.; Wang, X.; Wang, S.; Zhu, W. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnol. Bioeng., 2008, 101(1), 93-100.
[http://dx.doi.org/10.1002/bit.21879] [PMID: 18646228]
[58]
Noshadi, I.; Amin, N.A.S.; Parnas, R.S. Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM). Fuel, 2012, 94, 156-164.
[http://dx.doi.org/10.1016/j.fuel.2011.10.018]
[59]
Fernandes, S.A.; Cardoso, A.L.; Silva, M.J.A. Novel kinetic study of H3PW12O40-catalyzed oleic acid esterification with methanol via 1H NMR spectroscopy. Fuel Process. Technol., 2012, 96, 98-103.
[http://dx.doi.org/10.1016/j.fuproc.2011.12.025]
[60]
Talebian-Kiakalaieh, A.; Amin, N.A.S.; Zarei, A.; Noshadi, I. Transesterification of waste cooking oil by heteropoly acid (hpa) catalyst: Optimization and kinetic model. Appl. Energy, 2013, 102, 283-292.
[http://dx.doi.org/10.1016/j.apenergy.2012.07.018]
[61]
Sun, Z.; Duan, X.X.; Zhao, J.; Wang, X.H.; Jiang, Z.J. Homogeneous borotungstic acid and heterogeneous micellar borotungstic acid catalysts for biodiesel production by esterification of free fatty acid. Biomass Bioenergy, 2015, 76, 31-42.
[http://dx.doi.org/10.1016/j.biombioe.2015.03.002]
[62]
Zhao, P.P.; Zhang, Y.Y.; Wang, Y.; Cui, H.Y.; Song, F.; Sun, X.Y.; Zhang, L.P. Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid-base bifunctional heteropolyacid-based ionic hybrids. Green Chem., 2018, 20, 1551-1559.
[http://dx.doi.org/10.1039/C7GC03821F]
[63]
Han, J.Y.; Wang, D.P.; Du, Y.H.; Xi, S.B.; Chen, Z.; Yin, S.M.; Zhou, T.H.; Xu, R. Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Appl. Catal. A Gen., 2016, 521, 83-89.
[http://dx.doi.org/10.1016/j.apcata.2015.10.015]
[64]
Chai, F.; Cao, F.H.; Zhai, F.Y.; Chen, Y.; Wang, X.H.; Su, Z.M. Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. Adv. Synth. Catal., 2007, 349, 1057-1065.
[http://dx.doi.org/10.1002/adsc.200600419]
[65]
Li, S.W.; Wang, Y.P.; Dong, S.W.; Chen, Y.; Cao, F.H.; Chai, F.; Wang, X.H. Biodiesel production from eruca sativa gars vegetable oil and motor, emissions properties. Renew. Energy, 2009, 34, 1871-1876.
[http://dx.doi.org/10.1016/j.renene.2008.12.020]
[66]
Zhang, S.; Zu, Y.G.; Fu, Y.J.; Luo, M.; Zhang, D.Y.; Efferth, T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour. Technol., 2010, 101(3), 931-936.
[http://dx.doi.org/10.1016/j.biortech.2009.08.069] [PMID: 19793648]
[67]
Santos, J.S.; Dias, J.A.; Dias, S.C.L.; de Macedo, J.L.; Garcia, F.A.C.; Almeida, L.S.; de Carvalho, E.N.C.B. Acidic characterization and activity of (NH4)xCs2.5−xH0.5PW12O40 catalysts in the esterification reaction of oleic acid with ethanol. Appl. Catal. A Gen., 2012, 443-444, 33-39.
[http://dx.doi.org/10.1016/j.apcata.2012.07.013]
[68]
Srilatha, K.; Sree, R.; Prabhavathi Devi, B.L.; Sai Prasad, P.S.; Prasad, R.B.N.; Lingaiah, N. Preparation of biodiesel from rice bran fatty acids catalyzed by heterogeneous cesium-exchanged 12-tungstophosphoric acids. Bioresour. Technol., 2012, 116, 53-57.
[http://dx.doi.org/10.1016/j.biortech.2012.04.047] [PMID: 22609655]
[69]
Shin, H.Y.; An, S.H.; Sheikh, R.; Park, Y.H.; Bae, S.Y. Transesterification of used vegetable oils with a Cs-doped heteropolyacid catalyst in supercritical methanol. Fuel, 2012, 96, 572-578.
[http://dx.doi.org/10.1016/j.fuel.2011.12.076]
[70]
Badday, A.S.; Abdullah, A.Z.; Lee, K.T. Ultrasound-assisted transesterification of crude Jatropha oil using cesium doped heteropolyacid catalyst: Interactions between process variables. Energy, 2013, 60, 283-291.
[http://dx.doi.org/10.1016/j.energy.2013.08.002]
[71]
Vu, T.H.T.; Au, H.T.; Nguyen, T.M.T.; Pham, M.T.; Bach, T.T.; Nong, H.N. Esterification of 2-keto-l-gulonic acid catalyzed by a solid heteropoly acid. Catal. Sci. Technol., 2013, 3, 699-705.
[http://dx.doi.org/10.1039/C2CY20497E]
[72]
Han, X.X.; Chen, K.K.; Yan, W.; Hung, C.T.; Liu, L.L.; Wu, P.H. Lin Lin K. C.; Liu, S. B. Amino acid-functionalized heteropolyacids as efficient and recyclable catalysts for esterification of palmitic acid to biodiesel. Fuel, 2016, 165, 115-122.
[http://dx.doi.org/10.1016/j.fuel.2015.10.027]
[73]
Da Silva, M.J.; Vilanculo, C.B.; Teixeira, M.G.; Julio, A.A. Catalysis of vegetable oil transesterification by Sn (II)-exchanged Keggin heteropolyacids: bifunctional solid acid catalysts. React. Kinet. Mech. Catal., 2017, 122, 1011-1030.
[http://dx.doi.org/10.1007/s11144-017-1258-z]
[74]
Li, J.; Li, D.; Xie, J.; Liu, Y.; Guo, Z.; Wang, Q.; Lyu, Y.; Zhou, Y.; Wang, J. Pyrazinium polyoxometalate tetrakaidecahedron-like crystals esterify oleic acid with equimolar methanol at room temperature. J. Catal., 2016, 339, 123-134.
[http://dx.doi.org/10.1016/j.jcat.2016.03.036]
[75]
Zhang, Q.Y.; Wei, F.F.; Li, Q.; Huang, J.S.; Feng, Y.M.; Zhang, Y.T. Mesoporous Ag1(NH4)2PW12O40 heteropolyacids as effective catalysts for the esterification of oleic acid to biodiesel. RSC Advances, 2017, 7, 51090-51095.
[http://dx.doi.org/10.1039/C7RA10554A]
[76]
Cai, J.; Zhang, Q.Y.; Wei, F.F.; Huang, J.S.; Feng, Y.M.; Ma, H.T.; Zhang, Y. Preparation of copper (II) containing phosphomolybdic acid salt as catalyst for the synthesis of biodiesel by esterification. J. Oleo Sci., 2018, 67(4), 427-432.
[http://dx.doi.org/10.5650/jos.ess17208] [PMID: 29526877]
[77]
Zhang, Q.; Yue, C.; Pu, Q.; Yang, T.; Wu, Z.; Zhang, Y. Facile synthesis of ferric modified phosphomolybdic acid composite catalysts for biodiesel production with response surface optimization. ACS Omega, 2019, 4(5), 9041-9048.
[http://dx.doi.org/10.1021/acsomega.9b01037] [PMID: 31172044]
[78]
Su, F.; Ma, L.; Song, D.Y.; Zhang, X.H.; Guo, Y.H. Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph)Si hybrid catalyst for methyl levulinate synthesis. Green Chem., 2013, 15, 885-890.
[http://dx.doi.org/10.1039/c3gc36912a]
[79]
Zhu, S.; Zhu, Y.; Gao, X.; Mo, T.; Zhu, Y.; Li, Y. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour. Technol., 2013, 130, 45-51.
[http://dx.doi.org/10.1016/j.biortech.2012.12.011] [PMID: 23306111]
[80]
Srinivas, M.; Raveendra, G.; Parameswaram, G.; Sai Prasad, P.S.; Lingaiah, N. Cesium exchanged tungstophosphoric acid supported on tin oxide: An efficient solid acid catalyst for etherification of glycerol with tert-butanol to synthesize biofuel additives. J. Mol. Catal. Chem., 2016, 413, 7-14.
[http://dx.doi.org/10.1016/j.molcata.2015.10.005]
[81]
Ma, W.W.; Xu, Y.; Ma, K.W.; Zhang, H. Electrospinning synthesis of H3PW12O40/TiO2 nanofiber catalyticmaterials and their application in ultra-deep desulfurization. Appl. Catal. A Gen., 2016, 526, 147-154.
[http://dx.doi.org/10.1016/j.apcata.2016.08.021]
[82]
Bertolini, G.R.; Pizzio, L.R.; Kubacka, A.; Muñoz-Batista, M.J.; Fernández-García, M. Composite H3PW12O40-TiO2 catalysts for toluene selective photo-oxidation. Appl. Catal. B, 2018, 225, 100-109.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.055]
[83]
Pacuła, A.; Pamin, K.; Kryściak-Czerwenka, J.; Olejniczak, Z.; Gil, B.; Biela’nska, E.; Dula, R.; Serwicka, E.M.; Drelinkiewicz, A. Physicochemical and catalytic properties of hybrid catalysts derived from 12-molybdophosphoric acid and montmorillonites. Appl. Catal. A Gen., 2015, 498, 192-204.
[http://dx.doi.org/10.1016/j.apcata.2015.03.030]
[84]
Wang, H.F.; Zhang, L.; Yang, Y.F.; Fang, L.P.; Wang, Y.J. One-pot synthesis of cyclohexanone oxime from cyclohexanol on a single site multifunctional catalyst: H3PW12O40 incorporated on exfoliated montmorillonite. Catal. Commun., 2016, 87, 27-31.
[http://dx.doi.org/10.1016/j.catcom.2016.07.020]
[85]
Gawade, A.B.; Tiwari, M.S.; Yadav, G.D. Biobased green process: Selective hydrogenation of 5-hydroxymethyl furfural (HMF) to 2,5 dimethyl furan (DMF) under mild conditions using Pd-Cs2.5H0.5PW12O40/K-10 clay. ACS Sustain. Chem.& Eng., 2016, 4, 4113-4123.
[http://dx.doi.org/10.1021/acssuschemeng.6b00426]
[86]
Klein, M.; Varvak, A.; Segal, E.; Markovsky, B.; Pulidindi, I.N.; Perkas, N.; Gedanken, A. Sonochemical synthesis of HSiW/graphene catalysts for enhanced biomass hydrolysis. Green Chem., 2015, 17, 2418-2425.
[http://dx.doi.org/10.1039/C4GC02519A]
[87]
Gadamsetti, S.; Rajan, N.P.; Rao, G.S.; Chary, K.V.R. Acetalization of glycerol with acetone to bio fuel additives over supported molybdenum phosphate catalysts. J. Mol. Catal. Chem., 2015, 410, 49-57.
[http://dx.doi.org/10.1016/j.molcata.2015.09.006]
[88]
Popa, A.; Sasca, V.; Bajuk-Bogdanović, D.; Holclajtner-Antunovic, I. Acidic nickel salts of Keggin type heteropolyacids supported on SBA-15 mesoporous silica. J. Porous Mater., 2016, 23, 211-223.
[http://dx.doi.org/10.1007/s10934-015-0072-0]
[89]
Gomes, F.N.D.C.; Mendes, F.M.T.; Souza, M.M.V.M. Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by phosphotungstic acid. Catal. Today, 2016, 279, 296-304.
[http://dx.doi.org/10.1016/j.cattod.2016.02.018]
[90]
Cotta, R.F.; Da, S.R.K.A.; Kozhevnikova, E.F.; Kozhevnikov, I.V.; Gusevskaya, E.V. Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica-supported tungstophosphoric heteropoly acid. Catal. Today, 2017, 289, 14-19.
[http://dx.doi.org/10.1016/j.cattod.2016.07.021]
[91]
Safariamin, M.; Paul, S.; Moonen, K.; Ulrichts, D.; Dumeignil, F.; Katryniok, B. Novel direct amination of glycerol over heteropolyacid-based catalysts. Catal. Sci. Technol., 2016, 6, 2129-2135.
[http://dx.doi.org/10.1039/C5CY01478F]
[92]
Zhao, Z.K.; Wang, X.H. Supported phosphotungstic acid catalyst on mesoporous carbon with bimodal pores: A superior catalyst for Friedel-Crafts alkenylation of aromatics with phenylacetylene. Appl. Catal. A Gen., 2016, 526, 139-146.
[http://dx.doi.org/10.1016/j.apcata.2016.08.028]
[93]
Wang, H.F.; Fang, L.P.; Yang, Y.F.; Zhang, L.; Wang, Y.J.H. 5PMo10V2O40 immobilized on functionalized chloromethylated polystyrene by electrostatic interactions: a highly efficient and recyclable heterogeneous catalyst for hydroxylation of benzene. Catal. Sci. Technol., 2016, 6, 8005-8015.
[http://dx.doi.org/10.1039/C6CY01270A]
[94]
Xu, Y.; Huang, W.J.; Chen, X.Y.; Ge, F.; Zhu, R.L.; Sun, L.Y. Self-assembled ZnAl-LDH/PMo12 nano-hybrids as effective catalysts on the degradation of methyl orange under room temperature and ambient pressure. Appl. Catal. A Gen., 2018, 550, 206-213.
[http://dx.doi.org/10.1016/j.apcata.2017.11.012]
[95]
Kirpsza, A.; Lalik, E.; Mordarski, G.; Micek-Ilnicka, A. Catalytic properties of carbon nanotubes-supported heteropolyacids in isopropanol conversion. Appl. Catal. A Gen., 2018, 549, 254-262.
[http://dx.doi.org/10.1016/j.apcata.2017.10.008]
[96]
Clemente, M.C.H.; Martins, G.A.V.; de Freitas, E.F.; Dias, J.A.; Dias, S.C.L. Ethylene production via catalytic ethanol dehydration by 12-tungstophosphoric acid@ceria-zirconia. Fuel, 2019, 239, 491-501.
[http://dx.doi.org/10.1016/j.fuel.2018.11.026]
[97]
Júnior, L.O.D.S.; Cavalcanti, R.M.; Matos, T.M.D.; Angélica, R.S.; Filho, G.N.R.; Barros, I. C L. Esterification of oleic acid using 12-tungstophosphoric supported in flint kaolin of the Amazonia. Fuel, 2013, 108, 604-611.
[http://dx.doi.org/10.1016/j.fuel.2013.01.008]
[98]
Yan, K.; Wu, G.S.; Wen, J.L.; Chen, A.C. One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catal. Commun., 2013, 34, 58-63.
[http://dx.doi.org/10.1016/j.catcom.2013.01.010]
[99]
Duan, X.X.; Liu, Y.; Zhao, Q.; Wang, X.H.; Li, S.W. Water-tolerant heteropolyacid on magnetic nanoparticles as efficient catalysts for esterification of free fatty acid. RSC Advances, 2013, 3, 13748-13755.
[http://dx.doi.org/10.1039/c3ra40219c]
[100]
Nandiwale, K.Y.; Bokade, V.V. Process optimization by response surface methodology and kinetic modeling for synthesis of methyl oleate biodiesel over H3PW12O40 anchored montmorillonite K10. Ind. Eng. Chem. Res., 2014, 53, 18690-18698.
[http://dx.doi.org/10.1021/ie500672v]
[101]
Singh, S.; Patel, A. Mono lacunary phosphotungstate anchored to MCM-41 as recyclable catalyst for biodiesel production via trans-esterification of waste cooking oil. Fuel, 2015, 159, 720-727.
[http://dx.doi.org/10.1016/j.fuel.2015.07.004]
[102]
Wang, S.L.; Tang, R.Z.; Zhang, Y.Z.; Chen, T.; Wang, G.Y. 12-Molybdophosphoric acid supported on titania: A highly active and selective heterogeneous catalyst for the transesterification of dimethyl carbonate and phenol. Chem. Eng. Sci., 2015, 138, 93-98.
[http://dx.doi.org/10.1016/j.ces.2015.08.005]
[103]
Zhang, D.Y.; Duan, M.H.; Yao, X.H.; Fu, Y.J.; Zu, Y.G. Preparation of a novel cellulose-based immobilized heteropoly acid system and its application on the biodiesel production. Fuel, 2016, 172, 293-300.
[http://dx.doi.org/10.1016/j.fuel.2015.12.020]
[104]
Fu, S.P.; Chu, J.F.; Chen, X.; Li, W.H.; Song, Y.F. Well-dispersed H3PW12O40/H4SiW12O40 nanoparticles on mesoporous polymer for highly efficient acid-catalyzed reactions. Ind. Eng. Chem. Res., 2015, 54, 11534-11542.
[http://dx.doi.org/10.1021/acs.iecr.5b03385]
[105]
Wu, M.; Zhang, X.L.; Su, X.L.; Li, X.Y.; Zheng, X.C.; Guan, X.X.; Liu, P. 3D graphene aerogel anchored tungstophosphoric acid catalysts: Characterization and catalytic performance for levulinic acid esterification with ethanol. Catal. Commun., 2016, 85, 66-69.
[http://dx.doi.org/10.1016/j.catcom.2016.07.023]
[106]
Freitas, E.F.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Generation and characterization of catalytically active sites of heteropolyacids on zeolite Y for liquid-phase esterification. Catal. Today, 2016, 289, 70-77.
[http://dx.doi.org/10.1016/j.cattod.2016.08.010]
[107]
Prado, R.G.; Bianchi, M.L.; Mota, E.G.D.; Brum, S.S.; Lopes, J.H.; da Silva, M.J. H3PMo12O40/agroindustry waste activated carbon-catalyzed esterification of lauric acid with methanol: A renewable catalytic support. Waste Biomass Valoriz., 2018, 9, 669-679.
[http://dx.doi.org/10.1007/s12649-017-0012-0]
[108]
da Conceiçao, L.R.V.; Carneiro, L.M.; Giordani, D.S.; de Castro, H.F. Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia. Renew. Energy, 2017, 113, 119-128.
[http://dx.doi.org/10.1016/j.renene.2017.05.080]
[109]
Wang, Y.Q.; Zhao, D.; Wang, L.L.; Wang, X.Q.; Li, L.J.; Xing, Z.P.; Ji, N.; Liu, S.J.; Ding, H. Immobilized phosphotungstic acid based ionic liquid: Application for heterogeneous esterification of palmitic acid. Fuel, 2018, 216, 364-370.
[http://dx.doi.org/10.1016/j.fuel.2017.11.153]
[110]
Kurhade, A.; Zhu, J.; Hu, Y.; Dalai, A.K. Surface investigation of tungstophosphoric acid supported on ordered mesoporous aluminosilicates for biodiesel synthesis. ACS Omega, 2018, 3(10), 14064-14075.
[http://dx.doi.org/10.1021/acsomega.8b01931] [PMID: 31458100]
[111]
Alcañiz-Monge, J.; Bakkalia, B.E.; Trautwein, G.; Reinoso, S. Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Appl. Catal. B, 2018, 224, 194-203.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.066]
[112]
Huang, L.M.; Wang, H.T.; Chen, J.X.; Wang, Z.B.; Sun, J.Y.; Zhao, D.Y.; Yan, Y.S. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Microporous Mesoporous Mater., 2003, 58, 105-114.
[http://dx.doi.org/10.1016/S1387-1811(02)00609-1]
[113]
Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot synthesis of metal-organic frameworks with en-capsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc., 2016, 138(3), 962-968.
[http://dx.doi.org/10.1021/jacs.5b11720] [PMID: 26710234]
[114]
Wee, L.H.; Bajpe, S.R.; Janssens, N.; Hermans, I.; Houthoofd, K.; Kirschhock, C.E.A.; Martens, J.A. Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis. Chem. Commun. (Camb.), 2010, 46(43), 8186-8188.
[http://dx.doi.org/10.1039/c0cc01447h] [PMID: 20927469]
[115]
Wee, L.H.; Janssens, N.; Bajpe, S.R.; Kirschhock, C.E.A.; Martens, J.A. Heteropolyacid encapsulated in Cu3(BTC)2 nanocrystals: An effective esterification catalyst. Catal. Today, 2011, 171, 275-280.
[http://dx.doi.org/10.1016/j.cattod.2011.03.017]
[116]
Nikseresht, A.; Daniyali, A.; Ali-Mohammadi, M.; Afzalinia, A.; Mirzaie, A. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem., 2017, 37, 203-207.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.011] [PMID: 28427624]
[117]
Li, L.; Zou, C.J.; Zhou, L.; Lin, L. Cucurbituril-protected Cs2.5H0.5PW12O40 for optimized biodiesel production from waste cooking oil. Renew. Energy, 2017, 107, 14-22.
[http://dx.doi.org/10.1016/j.renene.2017.01.053]
[118]
Zhang, Q.Y.; Liu, X.F.; Yang, T.T.; Yue, C.Y.; Pu, Q.L.; Zhang, Y.T. Facile synthesis of polyoxometalates tethered to post Fe-BTC frameworks for esterification of free fatty acids to biodiesel. RSC Advances, 2019, 9, 8113-8120.
[http://dx.doi.org/10.1039/C8RA10574J]
[119]
Hu, X.F.; Lu, Y.K.; Dai, F.N.; Liu, C.G.; Liu, Y.Q. Host-guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via bottle around ship: An effective catalyst for oxidative desulfurization. Microporous Mesoporous Mater., 2013, 170, 36-44.
[http://dx.doi.org/10.1016/j.micromeso.2012.11.021]
[120]
Ribeiro, S.; Barbosa, A.D.S.; Gomes, A.C.; Pillinger, M.; Gonçalves, I.S.; Cunha-Silva, L.; Balula, S.S. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Process. Technol., 2013, 116, 350-357.
[http://dx.doi.org/10.1016/j.fuproc.2013.07.011]
[121]
Xie, W.L.; Yang, X.L.; Hu, P.T. Cs2.5H0.5PW12O40 encapsulated in metal-organic framework UiO-66 as heterogeneous catalysts for acidolysis of soybean oil. Catal. Lett., 2017, 147, 2772-2782.
[http://dx.doi.org/10.1007/s10562-017-2189-z]
[122]
Malkar, R.S.; Yadav, G.D. Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Appl. Catal. A Gen., 2018, 560, 54-65.
[http://dx.doi.org/10.1016/j.apcata.2018.04.038]
[123]
Zhang, Q.Y.; Yue, C.Y.; Ao, L.F.; Lei, D.D.; Ling, D.; Yang, D.; Zhang, Y.T. Facile one-pot synthesis of Cu-BTC metal-organic frameworks supported Keggin phosphomolybdic acid for esterification reactions; Energ; Source Part A, 2019, pp. 1-12.
[124]
Zhang, Q.Y.; Yang, T.T.; Liu, X.F.; Yue, C.Y.; Ao, L.F.; Deng, T.L.; Zhang, Y.T. Heteropoly acid-encapsulated metal-organic framework as a stable and highly efficient nanocatalyst for esterification reaction. RSC Advances, 2019, 9, 16357-16365.
[http://dx.doi.org/10.1039/C9RA03209F]

© 2024 Bentham Science Publishers | Privacy Policy