Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Dicarbonyls Generation, Toxicities, Detoxifications and Potential Roles in Diabetes Complications

Author(s): Sultan Alouffi and Mohd Wajid Ali Khan*

Volume 21, Issue 9, 2020

Page: [890 - 898] Pages: 9

DOI: 10.2174/1389203720666191010155145

Price: $65

Abstract

It has been well established that advanced glycation end-products (AGEs) have a strong correlation with diabetes and its secondary complications. Moreover, dicarbonyls, especially, methylglyoxal (MG) and glyoxal, accelerate AGEs formation and hence, have potential roles in the pathogenesis of diabetes. They can also induce oxidative stress and concomitantly decrease the efficiency of antioxidant enzymes. Increased proinflammatory cytokines (tumor necrosis factor-α and interleukin- 1β) are secreted by monocytes due to the dicarbonyl-modified proteins. High levels of blood dicarbonyls have been identified in diabetes and its associated complications (retinopathy, nephropathy and neuropathy). This review aims to provide a better understanding by including in-depth information about the formation of MG and glyoxal through multiple pathways with a focus on their biological functions and detoxifications. The potential role of these dicarbonyls in secondary diabetic complications is also discussed.

Keywords: Dicarbonyls, methylglyoxal, glyoxal, toxicity, detoxification, diabetic complications.

Graphical Abstract
[1]
World Health Organization 2016. Global report on diabetes. World Health Organization. https://apps.who.int/iris/handle/10665/204871
[2]
Khan, M.W.A.; Qadrie, Z.L.; Khan, W.A. Antibodies against gluco-oxidatively modified human serum albumin detected in diabetes-associated complications. Int. Arch. Allergy Immunol., 2010, 153(2), 207-214.
[http://dx.doi.org/10.1159/000312639 ] [PMID: 20413989]
[3]
Ahmad, S.; Siddiqui, Z.; Rehman, S.; Khan, M.Y.; Khan, H.; Khanum, S.; Alouffi, S.; Saeed, M. A glycation angle to look into the diabetic vasculopathy: Cause and cure. Curr. Vasc. Pharmacol., 2017, 15(4), 352-364.
[http://dx.doi.org/10.2174/1570161115666170327162639 ] [PMID: 28356033]
[4]
Rabbani, N.; Xue, M.; Thornalley, P.J. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin. Sci. (Lond.), 2016, 130(19), 1677-1696.
[http://dx.doi.org/10.1042/CS20160025 ] [PMID: 27555612]
[5]
Welsh, K.J.; Kirkman, M.S.; Sacks, D.B.; Sacks, D.B. Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions. Diabetes Care, 2016, 39(8), 1299-1306.
[http://dx.doi.org/10.2337/dc15-2727 ] [PMID: 27457632]
[6]
Lapolla, A.; Fedele, D.; Reitano, R.; Bonfante, L.; Guizzo, M.; Seraglia, R.; Tubaro, M.; Traldi, P. Mass spectrometric study of in vivo production of advanced glycation end-products/peptides. J. Mass Spectrom., 2005, 40(7), 969-972.
[http://dx.doi.org/10.1002/jms.842 ] [PMID: 15768376]
[7]
Lapolla, A.; Fedele, D.; Seraglia, R.; Traldi, P. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom. Rev., 2006, 25(5), 775-797.
[http://dx.doi.org/10.1002/mas.20090 ] [PMID: 16625652]
[8]
Zhang, Q.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J. Proteome Res., 2009, 8(2), 754-769.
[http://dx.doi.org/10.1021/pr800858h ] [PMID: 19093874]
[9]
Wadman, S.K.; De Bree, P.K.; Van Sprang, F.J.; Kamerling, J.P.; Haverkamp, J.; Vliegenthart, J.F.G.N. -(Carboxymethyl)Lysine, A Constituent of Human Urine. Clin. Chim. Acta, 1975, 59(3), 313-320.
[http://dx.doi.org/10.1016/0009-8981(75)90007-8 ] [PMID: 1126020]
[10]
Ahmed, M.U.; Thorpe, S.R.; Baynes, J.W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., 1986, 261(11), 4889-4894.
[PMID: 3082871]
[11]
Thorpe, S.R.; Baynes, J.W. CML: A Brief History. Int. Congr. Ser., 2002, 1245, 91-99.
[http://dx.doi.org/10.1016/S0531-5131(02)00881-6]
[12]
Dunn, J.A.; Ahmed, M.U.; Murtiashaw, M.H.; Richardson, J.M.; Walla, M.D.; Thorpe, S.R.; Baynes, J.W. Reaction of ascorbate with lysine and protein under autoxidizing conditions: formation of N epsilon-(carboxymethyl)lysine by reaction between lysine and products of autoxidation of ascorbate. Biochemistry, 1990, 29(49), 10964-10970.
[http://dx.doi.org/10.1021/bi00501a014 ] [PMID: 2125497]
[13]
Fu, M.X.; Requena, J.R.; Jenkins, A.J.; Lyons, T.J.; Baynes, J.W.; Thorpe, S.R. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem., 1996, 271(17), 9982-9986.
[http://dx.doi.org/10.1074/jbc.271.17.9982 ] [PMID: 8626637]
[14]
Sell, D.R.; Biemel, K.M.; Reihl, O.; Lederer, M.O.; Strauch, C.M.; Monnier, V.M. Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J. Biol. Chem., 2005, 280(13), 12310-12315.
[http://dx.doi.org/10.1074/jbc.M500733200 ] [PMID: 15677467]
[15]
Sena, C.M.; Matafome, P.; Crisóstomo, J.; Rodrigues, L.; Fernandes, R.; Pereira, P.; Seiça, R.M. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res., 2012, 65(5), 497-506.
[http://dx.doi.org/10.1016/j.phrs.2012.03.004 ] [PMID: 22425979]
[16]
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
[http://dx.doi.org/10.1042/bj3440109 ] [PMID: 10548540]
[17]
Glomb, M.A.; Monnier, V.M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol. Chem., 1995, 270(17), 10017-10026.
[http://dx.doi.org/10.1074/jbc.270.17.10017 ] [PMID: 7730303]
[18]
Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation, 2006, 114(6), 597-605.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621854 ] [PMID: 16894049]
[19]
Thornalley, P.J.; Jahan, I.; Ng, R. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J. Biochem., 2001, 129(4), 543-549.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002889 ] [PMID: 11275553]
[20]
Matafome, P.; Sena, C.; Seiça, R. Methylglyoxal, obesity, and diabetes. Endocrine, 2013, 43(3), 472-484.
[http://dx.doi.org/10.1007/s12020-012-9795-8 ] [PMID: 22983866]
[21]
Rabbani, N.; Thornalley, P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids, 2012, 42(4), 1133-1142.
[http://dx.doi.org/10.1007/s00726-010-0783-0 ] [PMID: 20963454]
[22]
Thornalley, P.J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J., 2003, 375(Pt 3), 581-592.
[http://dx.doi.org/10.1042/bj20030763 ] [PMID: 12885296]
[23]
Ahmed, N.; Thornalley, P.J.; Dawczynski, J.; Franke, S.; Strobel, J.; Stein, G.; Haik, G.M. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci., 2003, 44(12), 5287-5292.
[http://dx.doi.org/10.1167/iovs.03-0573 ] [PMID: 14638728]
[24]
Ahmed, N.; Thornalley, P.J. Peptide mapping of human serum albumin modified minimally by methylglyoxal in vitro and in vivo. Ann. N. Y. Acad. Sci., 2005, 1043, 260-266.
[http://dx.doi.org/10.1196/annals.1333.031 ] [PMID: 16037246]
[25]
Watanabe, H.; Tanase, S.; Nakajou, K.; Maruyama, T.; Kragh-Hansen, U.; Otagiri, M. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity. Biochem. J., 2000, 349(Pt 3), 813-819.
[http://dx.doi.org/10.1042/bj3490813 ] [PMID: 10903143]
[26]
Faure, P.; Troncy, L.; Lecomte, M.; Wiernsperger, N.; Lagarde, M.; Ruggiero, D.; Halimi, S. Albumin antioxidant capacity is modified by methylglyoxal. Diabetes Metab., 2005, 31(2), 169-177.
[http://dx.doi.org/10.1016/S1262-3636(07)70183-0 ] [PMID: 15959423]
[27]
Gao, Y.; Wang, Y. Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Biochemistry, 2006, 45(51), 15654-15660.
[http://dx.doi.org/10.1021/bi061410o ] [PMID: 17176087]
[28]
Cantero, A.V.; Portero-Otín, M.; Ayala, V.; Auge, N.; Sanson, M.; Elbaz, M.; Thiers, J.C.; Pamplona, R.; Salvayre, R.; Nègre-Salvayre, A. Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. FASEB J., 2007, 21(12), 3096-3106.
[http://dx.doi.org/10.1096/fj.06-7536com ] [PMID: 17504976]
[29]
Jia, X.; Olson, D.J.; Ross, A.R.; Wu, L. Structural and functional changes in human insulin induced by methylglyoxal. FASEB J., 2006, 20(9), 1555-1557.
[http://dx.doi.org/10.1096/fj.05-5478fje ] [PMID: 16723378]
[30]
Biswas, A.; Wang, B.; Miyagi, M.; Nagaraj, R.H. Effect of methylglyoxal modification on stress-induced aggregation of client proteins and their chaperoning by human alphaA-crystallin. Biochem. J., 2008, 409(3), 771-777.
[http://dx.doi.org/10.1042/BJ20071006 ] [PMID: 17941823]
[31]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a ] [PMID: 11742414]
[32]
Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol., 2013, 60, 10-37.
[http://dx.doi.org/10.1016/j.fct.2013.06.052 ] [PMID: 23867544]
[33]
Abordo, E.A.; Thornalley, P.J. Synthesis and secretion of tumour necrosis factor-alpha by human monocytic THP-1 cells and chemotaxis induced by human serum albumin derivatives modified with methylglyoxal and glucose-derived advanced glycation endproducts. Immunol. Lett., 1997, 58(3), 139-147.
[http://dx.doi.org/10.1016/S0165-2478(97)00080-1 ] [PMID: 9293394]
[34]
Westwood, M.E.; McLellan, A.C.; Thornalley, P.J. Receptor-mediated endocytic uptake of methylglyoxal-modified serum albumin. Competition with advanced glycation end product-modified serum albumin at the advanced glycation end product receptor. J. Biol. Chem., 1994, 269(51), 32293-32298.
[PMID: 7798229]
[35]
Fan, X.; Subramaniam, R.; Weiss, M.F.; Monnier, V.M. Methylglyoxal-bovine serum albumin stimulates tumor necrosis factor alpha secretion in RAW 264.7 cells through activation of mitogen-activating protein kinase, nuclear factor kappaB and intracellular reactive oxygen species formation. Arch. Biochem. Biophys., 2003, 409(2), 274-286.
[http://dx.doi.org/10.1016/S0003-9861(02)00599-4 ] [PMID: 12504894]
[36]
Westwood, M.E.; Thornalley, P.J. Induction of synthesis and secretion of interleukin 1 beta in the human monocytic THP-1 cells by human serum albumins modified with methylglyoxal and advanced glycation endproducts. Immunol. Lett., 1996, 50(1-2), 17-21.
[http://dx.doi.org/10.1016/0165-2478(96)02496-0 ] [PMID: 8793554]
[37]
Westwood, M.E.; Argirov, O.K.; Abordo, E.A.; Thornalley, P.J. Methylglyoxal-modified arginine residues--a signal for receptor-mediated endocytosis and degradation of proteins by monocytic THP-1 cells. Biochim. Biophys. Acta, 1997, 1356(1), 84-94.
[http://dx.doi.org/10.1016/S0167-4889(96)00154-1 ] [PMID: 9099994]
[38]
Monnier, V.M.; Sell, D.R.; Strauch, C.; Sun, W.; Lachin, J.M.; Cleary, P.A.; Genuth, S. DCCT Research Group. The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J. Diabetes Complications, 2013, 27(2), 141-149.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.10.004 ] [PMID: 23153673]
[39]
Bose, T.; Bhattacherjee, A.; Banerjee, S.; Chakraborti, A.S. Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics. Arch. Biochem. Biophys., 2013, 529(2), 99-104.
[http://dx.doi.org/10.1016/j.abb.2012.12.001 ] [PMID: 23232081]
[40]
Brings, S.; Fleming, T.; Freichel, M.; Muckenthaler, M.U.; Herzig, S.; Nawroth, P.P. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int. J. Mol. Sci., 2017, 18(5), 984.
[http://dx.doi.org/10.3390/ijms18050984 ] [PMID: 28475116]
[41]
Dobler, D.; Ahmed, N.; Song, L.; Eboigbodin, K.E.; Thornalley, P.J. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes, 2006, 55(7), 1961-1969.
[http://dx.doi.org/10.2337/db05-1634 ] [PMID: 16804064]
[42]
Morcos, M.; Du, X.; Pfisterer, F.; Hutter, H.; Sayed, A.A.; Thornalley, P.; Ahmed, N.; Baynes, J.; Thorpe, S.; Kukudov, G.; Schlotterer, A.; Bozorgmehr, F.; El Baki, R.A.; Stern, D.; Moehrlen, F.; Ibrahim, Y.; Oikonomou, D.; Hamann, A.; Becker, C.; Zeier, M.; Schwenger, V.; Miftari, N.; Humpert, P.; Hammes, H.P.; Buechler, M.; Bierhaus, A.; Brownlee, M.; Nawroth, P.P. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell, 2008, 7(2), 260-269.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00371.x ] [PMID: 18221415]
[43]
Queisser, M.A.; Yao, D.; Geisler, S.; Hammes, H.P.; Lochnit, G.; Schleicher, E.D.; Brownlee, M.; Preissner, K.T. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes, 2010, 59(3), 670-678.
[http://dx.doi.org/10.2337/db08-1565 ] [PMID: 20009088]
[44]
Nagaraj, R.H.; Panda, A.K.; Shanthakumar, S.; Santhoshkumar, P.; Pasupuleti, N.; Wang, B.; Biswas, A. Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics. PLoS One, 2012, 7(1)e30257
[http://dx.doi.org/10.1371/journal.pone.0030257 ] [PMID: 22272318]
[45]
Negre-Salvayre, A.; Salvayre, R.; Augé, N.; Pamplona, R.; Portero-Otín, M. Hyperglycemia and glycation in diabetic complications. Antioxid. Redox Signal., 2009, 11(12), 3071-3109.
[http://dx.doi.org/10.1089/ars.2009.2484 ] [PMID: 19489690]
[46]
Xue, M.; Rabbani, N.; Thornalley, P.J. Glyoxalase in ageing. Semin. Cell Dev. Biol., 2011, 22(3), 293-301.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.013 ] [PMID: 21320620]
[47]
Thornalley, P.J.; Rabbani, N. Glyoxalase in tumourigenesis and multidrug resistance. Semin. Cell Dev. Biol., 2011, 22(3), 318-325.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.006 ] [PMID: 21315826]
[48]
Hoon, S.; Gebbia, M.; Costanzo, M.; Davis, R.W.; Giaever, G.; Nislow, C. A global perspective of the genetic basis for carbonyl stress resistance. G3 (Bethesda), 2011, 1(3), 219-231.
[http://dx.doi.org/10.1534/g3.111.000505 ] [PMID: 22384333]
[49]
Neuberg, C. The destruction of lactic aldehyde and methylglyoxal by animal organs. Biochem. Z., 1913, 49, 502-506.
[50]
Birkenmeier, G.; Stegemann, C.; Hoffmann, R.; Günther, R.; Huse, K.; Birkemeyer, C. Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS One, 2010, 5(4)e10399
[http://dx.doi.org/10.1371/journal.pone.0010399 ] [PMID: 20454679]
[51]
Mitsumoto, A.; Kim, K.R.; Oshima, G.; Kunimoto, M.; Okawa, K.; Iwamatsu, A.; Nakagawa, Y. Glyoxalase I is a novel nitric-oxide-responsive protein. Biochem. J., 1999, 344(Pt 3), 837-844.
[http://dx.doi.org/10.1042/bj3440837 ] [PMID: 10585871]
[52]
de Hemptinne, V.; Rondas, D.; Toepoel, M.; Vancompernolle, K. Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-kappaB. Mol. Cell. Biochem., 2009, 325(1-2), 169-178.
[http://dx.doi.org/10.1007/s11010-009-0031-7 ] [PMID: 19199007]
[53]
Berner, A.K.; Brouwers, O.; Pringle, R.; Klaassen, I.; Colhoun, L.; McVicar, C.; Brockbank, S.; Curry, J.W.; Miyata, T.; Brownlee, M.; Schlingemann, R.O.; Schalkwijk, C.; Stitt, A.W. Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia, 2012, 55(3), 845-854.
[http://dx.doi.org/10.1007/s00125-011-2393-0 ] [PMID: 22143324]
[54]
Inagi, R.; Kumagai, T.; Fujita, T.; Nangaku, M. The role of glyoxalase system in renal hypoxia. Adv. Exp. Med. Biol., 2010, 662, 49-55.
[http://dx.doi.org/10.1007/978-1-4419-1241-1_6 ] [PMID: 20204770]
[55]
Jack, M.M.; Ryals, J.M.; Wright, D.E. Protection from diabetes-induced peripheral sensory neuropathy--a role for elevated glyoxalase I? Exp. Neurol., 2012, 234(1), 62-69.
[http://dx.doi.org/10.1016/j.expneurol.2011.12.015 ] [PMID: 22201551]
[56]
Agar, N.S.; Board, P.G.; Bell, K. Studies of erythrocyte glyoxalase II in various domestic species: discovery of glyoxalase II deficiency in the horse. Anim. Blood Groups Biochem. Genet., 1984, 15(1), 67-70.
[http://dx.doi.org/10.1111/j.1365-2052.1984.tb01099.x ] [PMID: 6742517]
[57]
Sousa Silva, M.; Gomes, R.A.; Ferreira, A.E.; Ponces Freire, A.; Cordeiro, C. The glyoxalase pathway: the first hundred years and beyond. Biochem. J., 2013, 453(1), 1-15.
[http://dx.doi.org/10.1042/BJ20121743 ] [PMID: 23763312]
[58]
Lange, J.N.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Glyoxal formation and its role in endogenous oxalate synthesis. Adv. Urol., 2012, 2012819202
[http://dx.doi.org/10.1155/2012/819202 ] [PMID: 22567004]
[59]
Nikiforova, V.J.; Giesbertz, P.; Wiemer, J.; Bethan, B.; Looser, R.; Liebenberg, V.; Noppinger, P.R.; Daniel, H.; Rein, D. Glyoxylate, a New Marker Metabolite of Type 2 Diabetes 2014, 685204, 9.
[60]
Wells-Knecht, K.J.; Zyzak, D.V.; Litchfield, J.E.; Thorpe, S.R.; Baynes, J.W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry, 1995, 34(11), 3702-3709.
[http://dx.doi.org/10.1021/bi00011a027 ] [PMID: 7893666]
[61]
Awada, M.; Dedon, P.C. Formation of the 1,N2-glyoxal adduct of deoxyguanosine by phosphoglycolaldehyde, a product of 3′-deoxyribose oxidation in DNA. Chem. Res. Toxicol., 2001, 14(9), 1247-1253.
[http://dx.doi.org/10.1021/tx0155092 ] [PMID: 11559039]
[62]
O’Brien, P.J.; Siraki, A.G.; Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol., 2005, 35(7), 609-662.
[http://dx.doi.org/10.1080/10408440591002183 ] [PMID: 16417045]
[63]
Benov, L.; Fridovich, I. Superoxide dependence of the toxicity of short chain sugars. J. Biol. Chem., 1998, 273(40), 25741-25744.
[http://dx.doi.org/10.1074/jbc.273.40.25741 ] [PMID: 9748243]
[64]
Hofmann, T.; Bors, W.; Stettmaier, K. Studies on radical intermediates in the early stage of the nonenzymatic browning reaction of carbohydrates and amino acids. J. Agric. Food Chem., 1999, 47(2), 379-390.
[http://dx.doi.org/10.1021/jf980626x ] [PMID: 10563904]
[65]
Loidl-Stahlhofen, A.; Spiteller, G. α-Hydroxyaldehydes, products of lipid peroxidation. Biochim. Biophys. Acta, 1994, 1211(2), 156-160.
[http://dx.doi.org/10.1016/0005-2760(94)90264-X ] [PMID: 8117742]
[66]
Mlakar, A.; Spiteller, G. Reinvestigation of lipid peroxidation of linolenic acid. Biochim. Biophys. Acta, 1994, 1214(2), 209-220.
[http://dx.doi.org/10.1016/0005-2760(94)90046-9 ] [PMID: 7918602]
[67]
Dudda, A.; Spiteller, G.; Kobelt, F. Lipid oxidation products in ischemic porcine heart tissue. Chem. Phys. Lipids, 1996, 82(1), 39-51.
[http://dx.doi.org/10.1016/0009-3084(96)02557-1 ] [PMID: 8810050]
[68]
Murata-Kamiya, N.; Kamiya, H.; Iwamoto, N.; Kasai, H. Formation of a mutagen, glyoxal, from DNA treated with oxygen free radicals. Carcinogenesis, 1995, 16(9), 2251-2253.
[http://dx.doi.org/10.1093/carcin/16.9.2251 ] [PMID: 7554085]
[69]
Murata-Kamiya, N.; Kamiya, H.; Kaji, H.; Kasai, H. Glyoxal, a major product of DNA oxidation, induces mutations at G:C sites on a shuttle vector plasmid replicated in mammalian cells. Nucleic Acids Res., 1997, 25(10), 1897-1902.
[http://dx.doi.org/10.1093/nar/25.10.1897 ] [PMID: 9115355]
[70]
Agalou, S.; Karachalias, N.; Thornalley, P.J.; Tucker, B.; Dawnay, A.B. Estimation of α-oxoaldehydes formed from the degradation of glycolytic intermediates and glucose fragmentation in blood plasma of human subjects with uraemia. In: Excerpta Medica International Congress Series,; , 2002; 1245, pp. 181-182.
[http://dx.doi.org/10.1016/S0531-5131(02)00879-8]
[71]
Lapolla, A.; Flamini, R.; Tonus, T.; Fedele, D.; Senesi, A.; Reitano, R.; Marotta, E.; Pace, G.; Seraglia, R.; Traldi, P. An effective derivatization method for quantitative determination of glyoxal and methylglyoxal in plasma samples by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom., 2003, 17(8), 876-878.
[http://dx.doi.org/10.1002/rcm.992 ] [PMID: 12672144]
[72]
Shangari, N.; O’Brien, P.J. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol., 2004, 68(7), 1433-1442.
[http://dx.doi.org/10.1016/j.bcp.2004.06.013 ] [PMID: 15345333]
[73]
Abordo, E.A.; Minhas, H.S.; Thornalley, P.J. Accumulation of α-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem. Pharmacol., 1999, 58(4), 641-648.
[http://dx.doi.org/10.1016/S0006-2952(99)00132-X ] [PMID: 10413301]
[74]
Miyata, T.; van Ypersele de Strihou, C.; Imasawa, T.; Yoshino, A.; Ueda, Y.; Ogura, H.; Kominami, K.; Onogi, H.; Inagi, R.; Nangaku, M.; Kurokawa, K. Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney Int., 2001, 60(6), 2351-2359.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00051.x ] [PMID: 11737610]
[75]
Thornalley, P.J. Advances in glyoxalase research.Glyoxalase expression in malignancy, anti-proliferative effects of methylglyoxal, glyoxalase I inhibitor diesters and S-D-lactoylglutathione, and methylglyoxal-modified protein binding and endocytosis by advanced glycation endproduct receptor. Critical Reviews in Oncology/ Hematology. 1995, 20(1-1), 99-128.
[76]
Thornalley, P.J. Glutathione-dependent detoxification of α-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem. Biol. Interact., 1998, 111-112, 137-151.
[http://dx.doi.org/10.1016/S0009-2797(97)00157-9 ] [PMID: 9679550]
[77]
Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes, 2008, 26(2), 77-82.
[http://dx.doi.org/10.2337/diaclin.26.2.77]
[78]
Khan, M.W.A.; Qadrie, Z.L.; Khan, W.A. Antibodies against gluco-oxidative modified HSA-detected in diabetes associated complications. Int. Arch. Allergy Immunol., 2010, 153, 207-214.
[http://dx.doi.org/10.1159/000312639 ] [PMID: 20413989]
[79]
Alouffi, S.; Sherwani, S.; Al-Mogbel, M.S.; Sherwani, M.K.A.; Ali Khan, M.W. Depression and smoking augment the production of circulating autoantibodies against glycated-HSA in rheumatoid arthritis patients. Int. Arch. Allergy Immunol., 2018, 177(2), 170-180.
[http://dx.doi.org/10.1159/000489896 ] [PMID: 29961060]
[80]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a ] [PMID: 11742414]
[81]
Voziyan, P.; Brown, K.L.; Chetyrkin, S.; Hudson, B. Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin. Chem. Lab. Med., 2014, 52(1), 39-45.
[http://dx.doi.org/10.1515/cclm-2012-0818 ] [PMID: 23492568]
[82]
Hanssen, N.M.J.; Scheijen, J.L.J.M.; Jorsal, A.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D.A.; Schalkwijk, C.G. Higher plasma methylglyoxal levels are associated with incident cardiovascular disease in individuals with type 1 diabetes: A 12-Year Follow-up Study. Diabetes, 2017, 66(8), 2278-2283.
[http://dx.doi.org/10.2337/db16-1578 ] [PMID: 28588100]
[83]
Hanssen, N.M.J.; Westerink, J.; Scheijen, J.L.J.M.; van der Graaf, Y.; Stehouwer, C.D.A.; Schalkwijk, C.G. SMART Study Group. Higher plasma methylglyoxal levels are associated with incident cardiovascular disease and mortality in individuals with type 2 diabetes. Diabetes Care, 2018, 41(8), 1689-1695.
[http://dx.doi.org/10.2337/dc18-0159 ] [PMID: 29784769]
[84]
Kalapos, M.P. Where does plasma methylglyoxal originate from? Diabetes Res. Clin. Pract., 2013, 99(3), 260-271.
[http://dx.doi.org/10.1016/j.diabres.2012.11.003 ] [PMID: 23206674]
[85]
Brings, S.; Fleming, T.; Freichel, M.; Muckenthaler, M.U.; Herzig, S.; Nawroth, P.P. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int. J. Mol. Sci., 2017, 18(5), 984.
[http://dx.doi.org/10.3390/ijms18050984 ] [PMID: 28475116]
[86]
Bellier, J.; Nokin, M.J.; Lardé, E.; Karoyan, P.; Peulen, O.; Castronovo, V.; Bellahcène, A. Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res. Clin. Pract., 2019, 148, 200-211.
[http://dx.doi.org/10.1016/j.diabres.2019.01.002 ] [PMID: 30664892]
[87]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93(1), 137-188.
[http://dx.doi.org/10.1152/physrev.00045.2011 ] [PMID: 23303908]
[88]
Tezuka, Y.; Nakaya, I.; Nakayama, K.; Nakayama, M.; Yahata, M.; Soma, J. Methylglyoxal as a prognostic factor in patients with chronic kidney disease. Nephrology (Carlton), 2018, 8, 5.
[PMID: 30407693]
[89]
Khan, M.Y.; Alouffi, S.; Ahmad, S. Immunochemical studies on native and glycated LDL - An approach to uncover the structural perturbations. Int. J. Biol. Macromol., 2018, 115, 287-299.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.016 ] [PMID: 29634967]
[90]
Hanssen, N.M.J.; Stehouwer, C.D.A.; Schalkwijk, C.G. Methylglyoxal stress, the glyoxalase system, and diabetic chronic kidney disease. Curr. Opin. Nephrol. Hypertens., 2019, 28(1), 26-33.
[http://dx.doi.org/10.1097/MNH.0000000000000465 ] [PMID: 30320620]
[91]
Jensen, T.M.; Vistisen, D.; Fleming, T.; Nawroth, P.P.; Rossing, P.; Jørgensen, M.E.; Lauritzen, T.; Sandbaek, A.; Witte, D.R. Methylglyoxal is associated with changes in kidney function among individuals with screen-detected Type 2 diabetes mellitus. Diabet. Med., 2016, 33(12), 1625-1631.
[http://dx.doi.org/10.1111/dme.13201 ] [PMID: 27504739]
[92]
Beisswenger, P.J.; Howell, S.K.; Russell, G.B.; Miller, M.E.; Rich, S.S.; Mauer, M. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care, 2013, 36(10), 3234-3239.
[http://dx.doi.org/10.2337/dc12-2689 ] [PMID: 23780945]
[93]
Bierhaus, A.; Fleming, T.; Stoyanov, S.; Leffler, A.; Babes, A.; Neacsu, C.; Sauer, S.K.; Eberhardt, M.; Schnölzer, M.; Lasitschka, F.; Neuhuber, W.L.; Kichko, T.I.; Konrade, I.; Elvert, R.; Mier, W.; Pirags, V.; Lukic, I.K.; Morcos, M.; Dehmer, T.; Rabbani, N.; Thornalley, P.J.; Edelstein, D.; Nau, C.; Forbes, J.; Humpert, P.M.; Schwaninger, M.; Ziegler, D.; Stern, D.M.; Cooper, M.E.; Haberkorn, U.; Brownlee, M.; Reeh, P.W.; Nawroth, P.P. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med., 2012, 18(6), 926-933.
[http://dx.doi.org/10.1038/nm.2750 ] [PMID: 22581285]
[94]
Maessen, D.E.M.; Stehouwer, C.D.A.; Schalkwijk, C.G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci. (Lond.), 2015, 128(12), 839-861.
[http://dx.doi.org/10.1042/CS20140683 ] [PMID: 25818485]
[95]
Kim, K.M.; Kim, Y.S.; Jung, D.H.; Lee, J.; Kim, J.S. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp. Cell Res., 2012, 318(2), 152-159.
[http://dx.doi.org/10.1016/j.yexcr.2011.10.013 ] [PMID: 22036650]
[96]
Federico, A.; Cardaioli, E.; Da Pozzo, P.; Formichi, P.; Gallus, G.N.; Radi, E. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci., 2012, 322(1-2), 254-262.
[http://dx.doi.org/10.1016/j.jns.2012.05.030 ] [PMID: 22669122]
[97]
Chaudhuri, J.; Bose, N.; Gong, J.; Hall, D.; Rifkind, A.; Bhaumik, D.; Peiris, T.H.; Chamoli, M.; Le, C.H.; Liu, J.; Lithgow, G.J.; Ramanathan, A.; Xu, X.Z.S.; Kapahi, P. A Caenorhabditis elegans model elucidates a conserved role for TRPA1-Nrf signaling in reactive α-dicarbonyl detoxification. Curr. Biol., 2016, 26(22), 3014-3025.
[http://dx.doi.org/10.1016/j.cub.2016.09.024 ] [PMID: 27773573]
[98]
Moraru, A.; Wiederstein, J.; Pfaff, D.; Fleming, T.; Miller, A.K.; Nawroth, P.; Teleman, A.A. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell Metab., 2018, 27(4), 926-934.e8.
[http://dx.doi.org/10.1016/j.cmet.2018.02.003 ] [PMID: 29551588]
[99]
Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The role of advanced glycation end products in aging and metabolic diseases: Bridging Association and Causality. Cell Metab., 2018, 28(3), 337-352.
[http://dx.doi.org/10.1016/j.cmet.2018.08.014] [PMID: 30184484]
[100]
Khan, M.W.A.; Banga, K.; Khan, W.A. Gluco-oxidation of proteins in etiology of diabetic retinopathy Diabetic Retinopathy, Mohammad Shamsul Ola, (Ed); InTech,. 2012.
[101]
Fosmark, D.S.; Berg, J.P.; Jensen, A.B.; Sandvik, L.; Agardh, E.; Agardh, C.D.; Hanssen, K.F. Increased retinopathy occurrence in type 1 diabetes patients with increased serum levels of the advanced glycation endproduct hydroimidazolone. Acta Ophthalmol., 2009, 87(5), 498-500.
[http://dx.doi.org/10.1111/j.1755-3768.2008.01300.x ] [PMID: 18631328]
[102]
Kilhovd, B.K.; Giardino, I.; Torjesen, P.A.; Birkeland, K.I.; Berg, T.J.; Thornalley, P.J.; Brownlee, M.; Hanssen, K.F. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism, 2003, 52(2), 163-167.
[http://dx.doi.org/10.1053/meta.2003.50035 ] [PMID: 12601626]
[103]
Bento, C.F.; Fernandes, R.; Matafome, P.; Sena, C.; Seiça, R.; Pereira, P. Methylglyoxal-induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Exp. Physiol., 2010, 95(9), 955-970.
[http://dx.doi.org/10.1113/expphysiol.2010.053561 ] [PMID: 20562294]
[104]
Sampath, C.; Zhu, Y.; Sang, S.; Ahmedna, M. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells. Phytomedicine, 2016, 23(2), 200-213.
[http://dx.doi.org/10.1016/j.phymed.2015.12.013 ] [PMID: 26926182]
[105]
Berner, A.K.; Brouwers, O.; Pringle, R.; Klaassen, I.; Colhoun, L.; McVicar, C.; Brockbank, S.; Curry, J.W.; Miyata, T.; Brownlee, M.; Schlingemann, R.O.; Schalkwijk, C.; Stitt, A.W. Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia, 2012, 55(3), 845-854.
[http://dx.doi.org/10.1007/s00125-011-2393-0 ] [PMID: 22143324]
[106]
Gale, C.P.; Futers, T.S.; Summers, L.K.M. Common polymorphisms in the glyoxalase-1 gene and their association with pro-thrombotic factors. Diab. Vasc. Dis. Res., 2004, 1(1), 34-39.
[http://dx.doi.org/10.3132/dvdr.2004.004 ] [PMID: 16305054]
[107]
Wu, J.C.; Li, X.H.; Peng, Y.D.; Wang, J.B.; Tang, J.F.; Wang, Y.F. Association of two glyoxalase I gene polymorphisms with nephropathy and retinopathy in Type 2 diabetes. J. Endocrinol. Invest., 2011, 34(10), e343-e348.
[PMID: 21738003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy