Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Protective Effects of Incretin Against Age-Related Diseases

Author(s): Di Zhang, Mingzhu Ma and Yueze Liu*

Volume 16, Issue 9, 2019

Page: [793 - 806] Pages: 14

DOI: 10.2174/1567201816666191010145029

Price: $65

Abstract

Incretin contains two peptides named glucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Drug therapy using incretin has become a new strategy for diabetic treatments due to its significant effects on improving insulin receptors and promoting insulinotropic secretion. Considering the fact that diabetes millitus is a key risk factor for almost all age-related diseases, the extensive protective roles of incretin in chronic diseases have received great attention. Based on the evidence from animal experiments, where incretin can protect against the pathophysiological processes of neurodegenerative diseases, clinical trials for the treatments of Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients are currently ongoing. Moreover, the protective effect of incretin on heart has been observed in cardiac myocytes, smooth muscle cells and endothelial cells of vessels. Meanwhile, incretin can also inhibit the proliferation of aortic vascular smooth muscle cells, which can induce atherosclerogenesis. Incretin is also beneficial for diabetic microvascular complications, including nephropathy, retinopathy and gastric ulcer, as well as the hepatic-related diseases such as NAFLD and NASH. Besides, the anti-tumor properties of incretin have been proven in diverse cancers including ovarian cancer, pancreas cancer, prostate cancer and breast cancer.

Keywords: Incretin, diabetes, GLP-1, GIP, aging, age-related diseases.

Graphical Abstract
[1]
Wang, F.; Guo, X.; Shen, X.; Kream, R.M.; Mantione, K.J.; Stefano, G.B. Vascular dysfunction associated with type 2 diabetes and Alzheimer’s disease: A potential etiological linkage. Med. Sci. Monit. Basic Res., 2014, 20, 118-129.
[http://dx.doi.org/10.12659/MSMBR.891278] [PMID: 25082505]
[2]
James, L.M.; Dolan, S.; Leuthold, A.C.; Engdahl, B.E.; Georgopoulos, A.; Georgopoulos, A.P. The effects of human leukocyte antigen DRB1*13 and apolipoprotein E on age-related variability of synchronous neural interactions in healthy women. EBioMedicine, 2018, 35, 288-294.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.026] [PMID: 30139626]
[3]
Orozco-Solis, R.; Sassone-Corsi, P. Circadian clock: Linking epigenetics to aging. Curr. Opin. Genet. Dev., 2014, 26, 66-72.
[http://dx.doi.org/10.1016/j.gde.2014.06.003] [PMID: 25033025]
[4]
Barzilai, N.; Huffman, D.M.; Muzumdar, R.H.; Bartke, A. The critical role of metabolic pathways in aging. Diabetes, 2012, 61(6), 1315-1322.
[http://dx.doi.org/10.2337/db11-1300] [PMID: 22618766]
[5]
Brewer, R.A.; Gibbs, V.K.; Smith, D.L., Jr Targeting glucose metabolism for healthy aging. Nutr. Healthy Aging, 2016, 4(1), 31-46.
[http://dx.doi.org/10.3233/NHA-160007] [PMID: 28035340]
[6]
Li, Y.; Li, L.; Hölscher, C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev. Neurosci., 2016, 27(7), 689-711.
[http://dx.doi.org/10.1515/revneuro-2016-0018] [PMID: 27276528]
[7]
Irwin, N.; Flatt, P.R. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J. Diabetes, 2015, 6(15), 1285-1295.
[http://dx.doi.org/10.4239/wjd.v6.i15.1285] [PMID: 26557956]
[8]
Kielgast, U.; Holst, J.J.; Madsbad, S. Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual β-cell function. Diabetes, 2011, 60(5), 1599-1607.
[http://dx.doi.org/10.2337/db10-1790] [PMID: 21441444]
[9]
Selis, F.; Schrepfer, R.; Sanna, R.; Scaramuzza, S.; Tonon, G.; Dedoni, S.; Onali, P.; Orsini, G.; Genovese, S. Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes. Results Pharma Sci., 2012, 2, 58-65.
[http://dx.doi.org/10.1016/j.rinphs.2012.09.001] [PMID: 25755995]
[10]
Zhong, J.; Maiseyeu, A.; Davis, S.N.; Rajagopalan, S. DPP4 in cardiometabolic disease: Recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ. Res., 2015, 116(8), 1491-1504.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305665] [PMID: 25858071]
[11]
Hölscher, C.; Li, L. New roles for insulin-like hormones in neuronal signalling and protection: New hopes for novel treatments of Alzheimer’s disease? Neurobiol. Aging, 2010, 31(9), 1495-1502.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.023] [PMID: 18930564]
[12]
Hölscher, C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology, 2018, 136(Pt B), 251-259.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.040] [PMID: 29402504]
[13]
Deacon, C.F.; Nauck, M.A.; Meier, J.; Hücking, K.; Holst, J.J. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J. Clin. Endocrinol. Metab., 2000, 85(10), 3575-3581.
[PMID: 11061504]
[14]
Srivastava, S.; Shree, P.; Pandey, H.; Tripathi, Y.B. Incretin hormones receptor signaling plays the key role in antidiabetic potential of PTY-2 against STZ-induced pancreatitis. Biomed. Pharmacother., 2018, 97, 330-338.
[http://dx.doi.org/10.1016/j.biopha.2017.10.071] [PMID: 29091882]
[15]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[16]
Trümper, A.; Trümper, K.; Trusheim, H.; Arnold, R.; Göke, B.; Hörsch, D. Glucose-dependent insulinotropic polypeptide is a growth factor for β (INS-1) cells by pleiotropic signaling. Mol. Endocrinol., 2001, 15(9), 1559-1570.
[http://dx.doi.org/10.1210/me.15.9.1559] [PMID: 11518806]
[17]
Trümper, A.; Trümper, K.; Hörsch, D. Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in β(INS-1)-cells. J. Endocrinol., 2002, 174(2), 233-246.
[http://dx.doi.org/10.1677/joe.0.1740233] [PMID: 12176662]
[18]
Marenah, L.; McCluskey, J.T.; Abdel-Wahab, Y.H.; O’Harte, F.P.; McClenaghan, N.H.; Flatt, P.R. A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biol. Chem., 2006, 387(7), 941-947.
[http://dx.doi.org/10.1515/BC.2006.118] [PMID: 16913844]
[19]
Seino, Y.; Yabe, D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J. Diabetes Investig., 2013, 4(2), 108-130.
[http://dx.doi.org/10.1111/jdi.12065] [PMID: 24843641]
[20]
Gasbjerg, L.S.; Gabe, M.B.N.; Hartmann, B.; Christensen, M.B.; Knop, F.K.; Holst, J.J.; Rosenkilde, M.M. Glucose-dependent Insulinotropic Polypeptide (GIP) receptor antagonists as anti-diabetic agents. Peptides, 2018, 100, 173-181.
[http://dx.doi.org/10.1016/j.peptides.2017.11.021] [PMID: 29412817]
[21]
Asmar, M.; Asmar, A.; Simonsen, L.; Gasbjerg, L.S.; Sparre-Ulrich, A.H.; Rosenkilde, M.M.; Hartmann, B.; Dela, F.; Holst, J.J.; Bülow, J. The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes, 2017, 66(9), 2363-2371.
[http://dx.doi.org/10.2337/db17-0480] [PMID: 28667118]
[22]
Nissen, A.; Christensen, M.; Knop, F.K.; Vilsbøll, T.; Holst, J.J.; Hartmann, B. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J. Clin. Endocrinol. Metab., 2014, 99(11), E2325-E2329.
[http://dx.doi.org/10.1210/jc.2014-2547] [PMID: 25144635]
[23]
Combettes, M.M. GLP-1 and type 2 diabetes: Physiology and new clinical advances. Curr. Opin. Pharmacol., 2006, 6(6), 598-605.
[http://dx.doi.org/10.1016/j.coph.2006.08.003] [PMID: 16987706]
[24]
Chen, X.W.; He, Z.X.; Zhou, Z.W.; Yang, T.; Zhang, X.; Yang, Y.X.; Duan, W.; Zhou, S.F. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2015, 42(10), 999-1024.
[http://dx.doi.org/10.1111/1440-1681.12455] [PMID: 26173919]
[25]
Finan, B.; Yang, B.; Ottaway, N.; Smiley, D.L.; Ma, T.; Clemmensen, C.; Chabenne, J.; Zhang, L.; Habegger, K.M.; Fischer, K.; Campbell, J.E.; Sandoval, D.; Seeley, R.J.; Bleicher, K.; Uhles, S.; Riboulet, W.; Funk, J.; Hertel, C.; Belli, S.; Sebokova, E.; Conde-Knape, K.; Konkar, A.; Drucker, D.J.; Gelfanov, V.; Pfluger, P.T.; Müller, T.D.; Perez-Tilve, D.; DiMarchi, R.D.; Tschöp, M.H. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med., 2015, 21(1), 27-36.
[http://dx.doi.org/10.1038/nm.3761] [PMID: 25485909]
[26]
Hoerger, T.J.; Segel, J.E.; Gregg, E.W.; Saaddine, J.B. Is glycemic control improving in U.S. adults? Diabetes Care, 2008, 31(1), 81-86.
[http://dx.doi.org/10.2337/dc07-1572] [PMID: 17934153]
[27]
Drucker, D.J.; Sherman, S.I.; Gorelick, F.S.; Bergenstal, R.M.; Sherwin, R.S.; Buse, J.B. Incretin-based therapies for the treatment of type 2 diabetes: Evaluation of the risks and benefits. Diabetes Care, 2010, 33(2), 428-433.
[http://dx.doi.org/10.2337/dc09-1499] [PMID: 20103558]
[28]
Verspohl, E.J. Novel therapeutics for type 2 diabetes: Incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol. Ther., 2009, 124(1), 113-138.
[http://dx.doi.org/10.1016/j.pharmthera.2009.06.002] [PMID: 19545590]
[29]
Canadian Diabetes Association. Clinical practice guidelines for the prevention and management of diabetes in Canada; Canadian Diabetes Association, 2008.
[30]
Al Tulaihi, B.; Alhabib, S. Uncertainties around incretin-based therapies: A literature review. Saudi Pharm. J., 2017, 25(1), 1-7.
[http://dx.doi.org/10.1016/j.jsps.2015.06.009] [PMID: 28223856]
[31]
Parkes, D.; Jodka, C.; Smith, P. Pharmacokinetic actions of exendin-4 in the rat: Comparison with glucagon-like peptide-1. Drug Dev. Res., 2001, 53, 260-267.
[http://dx.doi.org/10.1002/ddr.1195]
[32]
Knop, F.K.; Vilsbøll, T.; Holst, J.J. Incretin-based therapy of type 2 diabetes mellitus. Curr. Protein Pept. Sci., 2009, 10(1), 46-55.
[http://dx.doi.org/10.2174/138920309787315158] [PMID: 19275672]
[33]
Al Tulaihi, B.; Alhabib, S. Uncertainties around incretin-based therapies: A literature review. Saudi Pharm. J., 2017, 25(1), 1-7.
[http://dx.doi.org/10.1016/j.jsps.2015.06.009] [PMID: 28223856]
[34]
Schweizer, A.; Dejager, S.; Foley, J.E.; Shao, Q.; Kothny, W. Clinical experience with vildagliptin in the management of type 2 diabetes in a patient population ≥75 years: A pooled analysis from a database of clinical trials. Diabetes Obes. Metab., 2011, 13(1), 55-64.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01325.x] [PMID: 21114604]
[35]
Kim, W.; Egan, J.M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev., 2008, 60(4), 470-512.
[http://dx.doi.org/10.1124/pr.108.000604] [PMID: 19074620]
[36]
Hölscher, C. Insulin, incretins and other growth factors as potential novel treatments for Alzheimer’s and Parkinson’s diseases. Biochem. Soc. Trans., 2014, 42(2), 593-599.
[http://dx.doi.org/10.1042/BST20140016] [PMID: 24646283]
[37]
Arakawa, M.; Mita, T.; Azuma, K.; Ebato, C.; Goto, H.; Nomiyama, T.; Fujitani, Y.; Hirose, T.; Kawamori, R.; Watada, H. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes, 2010, 59(4), 1030-1037.
[http://dx.doi.org/10.2337/db09-1694] [PMID: 20068138]
[38]
Dozier, K.C.; Cureton, E.L.; Kwan, R.O.; Curran, B.; Sadjadi, J.; Victorino, G.P. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides, 2009, 30(9), 1735-1741.
[http://dx.doi.org/10.1016/j.peptides.2009.06.019] [PMID: 19560500]
[39]
Solmaz, V.; Çınar, B.P.; Yiğittürk, G.; Çavuşoğlu, T.; Taşkıran, D.; Erbaş, O. Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur. J. Pharmacol., 2015, 765, 482-487.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.024] [PMID: 26386291]
[40]
Darsalia, V.; Hua, S.; Larsson, M.; Mallard, C.; Nathanson, D.; Nyström, T.; Sjöholm, Å.; Johansson, M.E.; Patrone, C. Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One, 2014, 9(8)e103114
[http://dx.doi.org/10.1371/journal.pone.0103114] [PMID: 25101679]
[41]
Kim, S.; Moon, M.; Park, S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J. Endocrinol., 2009, 202(3), 431-439.
[http://dx.doi.org/10.1677/JOE-09-0132] [PMID: 19570816]
[42]
Parthsarathy, V.; Hölscher, C. The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur. J. Pharmacol., 2013, 700(1-3), 42-50.
[http://dx.doi.org/10.1016/j.ejphar.2012.12.012] [PMID: 23276669]
[43]
Li, Y.; Perry, T.; Kindy, M.S.; Harvey, B.K.; Tweedie, D.; Holloway, H.W.; Powers, K.; Shen, H.; Egan, J.M.; Sambamurti, K.; Brossi, A.; Lahiri, D.K.; Mattson, M.P.; Hoffer, B.J.; Wang, Y.; Greig, N.H. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1285-1290.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[44]
McClean, P.L.; Parthsarathy, V.; Faivre, E.; Hölscher, C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci., 2011, 31(17), 6587-6594.
[http://dx.doi.org/10.1523/JNEUROSCI.0529-11.2011] [PMID: 21525299]
[45]
Hölscher, C. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases. J. Endocrinol., 2014, 221(1), T31-T41.
[http://dx.doi.org/10.1530/JOE-13-0221] [PMID: 23999914]
[46]
Aviles-Olmos, I.; Dickson, J.; Kefalopoulou, Z.; Djamshidian, A.; Ell, P.; Soderlund, T.; Whitton, P.; Wyse, R.; Isaacs, T.; Lees, A.; Limousin, P.; Foltynie, T. Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Invest., 2013, 123(6), 2730-2736.
[http://dx.doi.org/10.1172/JCI68295] [PMID: 23728174]
[47]
Aviles-Olmos, I.; Dickson, J.; Kefalopoulou, Z.; Djamshidian, A.; Kahan, J.; Ell, P.; Whitton, P.; Wyse, R.; Isaacs, T.; Lees, A.; Limousin, P.; Foltynie, T. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J. Parkinsons Dis., 2014, 4(3), 337-344.
[http://dx.doi.org/10.3233/JPD-140364] [PMID: 24662192]
[48]
Gejl, M.; Gjedde, A.; Egefjord, L.; Møller, A.; Hansen, S.B.; Vang, K.; Rodell, A.; Brændgaard, H.; Gottrup, H.; Schacht, A.; Møller, N.; Brock, B.; Rungby, J. Alzheimer’s disease, six-month treatment with GLP-1analogue prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front. Aging Neurosci., 2016, 8, 108-117.
[http://dx.doi.org/10.3389/fnagi.2016.00108] [PMID: 27252647]
[49]
Hölscher, C. The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. Alzheimers Dement., 2014, 10(1)(Suppl.), S47-S54.
[http://dx.doi.org/10.1016/j.jalz.2013.12.009] [PMID: 24529525]
[50]
Ji, C.; Xue, G.F.; Li, G.; Li, D.; Hölscher, C. Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer’s disease. Rev. Neurosci., 2016, 27(1), 61-70.
[http://dx.doi.org/10.1515/revneuro-2015-0021] [PMID: 26351802]
[51]
Long-Smith, C.M.; Manning, S.; McClean, P.L.; Coakley, M.F.; O’Halloran, D.J.; Holscher, C.; O’Neill, C. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med., 2013, 15(1), 102-114.
[http://dx.doi.org/10.1007/s12017-012-8199-5] [PMID: 23011726]
[52]
McClean, P.L.; Holscher, C. Lixisenatide shows neuroprotective effects in a mouse model of AD. Neuropharmacology, 2014, 86C, 241-258.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.015] [PMID: 25107586]
[53]
Li, H.; Lam, A.; Xu, A.M.; Lam, K.S.; Chung, S.K. High dosage of Exendin-4 increased early insulin secretion in differentiated beta cells from mouse embryonic stem cells. Acta Pharmacol. Sin., 2010, 31(5), 570-577.
[http://dx.doi.org/10.1038/aps.2010.38] [PMID: 20418895]
[54]
Gengler, S.; McClean, P.L.; McCurtin, R.; Gault, V.A.; Hölscher, C. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol. Aging, 2012, 33(2), 265-276.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.02.014] [PMID: 20359773]
[55]
Zhang, Y.; Yin, F.; Liu, J.; Liu, Z.; Guo, L.; Xia, Z.; Zidichouski, J. Geniposide attenuates insulin-deficiency-induced acceleration of β-amyloidosis in an APP/PS1 transgenic model of Alzheimer’s disease. Neurochem. Int., 2015, 89, 7-16.
[http://dx.doi.org/10.1016/j.neuint.2015.04.002] [PMID: 25882165]
[56]
Hölscher, C. Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem. Soc. Trans., 2011, 39(4), 891-897.
[http://dx.doi.org/10.1042/BST0390891] [PMID: 21787319]
[57]
Feng, P.; Zhang, X.; Li, D.; Ji, C.; Yuan, Z.; Wang, R.; Xue, G.; Li, G.; Hölscher, C. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. Neuropharmacology, 2018, 133, 385-394.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.012] [PMID: 29462693]
[58]
Bertilsson, G.; Patrone, C.; Zachrisson, O.; Andersson, A.; Dannaeus, K.; Heidrich, J.; Kortesmaa, J.; Mercer, A.; Nielsen, E.; Rönnholm, H.; Wikström, L. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J. Neurosci. Res., 2008, 86(2), 326-338.
[http://dx.doi.org/10.1002/jnr.21483] [PMID: 17803225]
[59]
Rampersaud, N.; Harkavyi, A.; Giordano, G.; Lever, R.; Whitton, J.; Whitton, P.S. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson’s disease with combined noradrenergic and serotonergic lesions. Neuropeptides, 2012, 46(5), 183-193.
[http://dx.doi.org/10.1016/j.npep.2012.07.004] [PMID: 22921965]
[60]
Rampersaud, N.; Harkavyi, A.; Giordano, G.; Lever, R.; Whitton, J.; Whitton, P.S. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson’s disease with combined noradrenergic and serotonergic lesions. Neuropeptides, 2012, 46(5), 183-193.
[http://dx.doi.org/10.1016/j.npep.2012.07.004] [PMID: 22921965]
[61]
Zhang, Y.; Chen, Y.; Li, L.; Hölscher, C. Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson’s disease mouse model. Behav. Brain Res., 2015, 293, 107-113.
[http://dx.doi.org/10.1016/j.bbr.2015.07.021] [PMID: 26187689]
[62]
Liu, W.; Jalewa, J.; Sharma, M.; Li, G.; Li, L.; Hölscher, C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience, 2015, 303, 42-50.
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.054] [PMID: 26141845]
[63]
Chen, Y.; Zhang, Y.; Li, L.; Hölscher, C. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol., 2015, 768, 21-27.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.029] [PMID: 26409043]
[64]
Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; Li, Y.; Aviles-Olmos, I.; Warner, T.T.; Limousin, P.; Lees, A.J.; Greig, N.H.; Tebbs, S.; Foltynie, T. Exenatide once weekly versus placebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet, 2017, 390(10103), 1664-1675.
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[65]
Pradat, P.F.; Bruneteau, G.; Gordon, P.H.; Dupuis, L.; Bonnefont-Rousselot, D.; Simon, D.; Salachas, F.; Corcia, P.; Frochot, V.; Lacorte, J.M.; Jardel, C.; Coussieu, C.; Le Forestier, N.; Lacomblez, L.; Loeffler, J.P.; Meininger, V. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler., 2010, 11(1-2), 166-171.
[http://dx.doi.org/10.3109/17482960902822960] [PMID: 20184518]
[66]
Harris, M.D.; Davidson, M.B.; Rosenberg, C.S. Insulin antagonism is not a primary abnormality of ALS but is related to disease severity. J. Clin. Endocrinol. Metab., 1986, 63, 41-46.
[http://dx.doi.org/10.1210/jcem-63-1-41] [PMID: 3519649]
[67]
Lekoubou, A.; Matsha, T.E.; Sobngwi, E.; Kengne, A.P. Effects of diabetes mellitus on amyotrophic lateral sclerosis: A systematic review. BMC Res. Notes, 2014, 7, 171-178.
[http://dx.doi.org/10.1186/1756-0500-7-171] [PMID: 24661645]
[68]
Li, Y.; Chigurupati, S.; Holloway, H.W.; Mughal, M.; Tweedie, D.; Bruestle, D.A.; Mattson, M.P.; Wang, Y.; Harvey, B.K.; Ray, B.; Lahiri, D.K.; Greig, N.H. Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One, 2012, 7(2)e32008
[http://dx.doi.org/10.1371/journal.pone.0032008] [PMID: 22384126]
[69]
Lim, J.G.; Lee, J.J.; Park, S.H.; Park, J.H.; Kim, S.J.; Cho, H.C.; Baek, W.K.; Kim, D.K.; Song, D.K. Glucagon-like peptide-1 protects NSC-34 motor neurons against glucosamine through Epac-mediated glucose uptake enhancement. Neurosci. Lett., 2010, 479(1), 13-17.
[http://dx.doi.org/10.1016/j.neulet.2010.05.017] [PMID: 20471453]
[70]
Sun, H.; Knippenberg, S.; Thau, N.; Ragancokova, D.; Körner, S.; Huang, D.; Dengler, R.; Döhler, K.; Petri, S. Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS mice. Cell. Mol. Neurobiol., 2013, 33(3), 347-357.
[http://dx.doi.org/10.1007/s10571-012-9900-9] [PMID: 23271639]
[71]
Aziz, N.A.; Swaab, D.F.; Pijl, H.; Roos, R.A. Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: Clinical consequences and therapeutic implications. Rev. Neurosci., 2007, 18(3-4), 223-251.
[http://dx.doi.org/10.1515/REVNEURO.2007.18.3-4.223] [PMID: 18019608]
[72]
Aziz, N.A.; Pijl, H.; Frölich, M.; Snel, M.; Streefland, T.C.; Roelfsema, F.; Roos, R.A. Systemic energy homeostasis in Huntington’s disease patients. J. Neurol. Neurosurg. Psychiatry, 2010, 81(11), 1233-1237.
[http://dx.doi.org/10.1136/jnnp.2009.191833] [PMID: 20710011]
[73]
Hu, Y.; Liang, J. High, Yu S High High prevalence of diabetes mellitus in a five-generation Chinese family with Huntingtong’s disease. J. Alzheimers Dis., 2014, 40, 863-868.
[74]
Martin, B.; Golden, E.; Carlson, O.D.; Pistell, P.; Zhou, J.; Kim, W.; Frank, B.P.; Thomas, S.; Chadwick, W.A.; Greig, N.H.; Bates, G.P.; Sathasivam, K.; Bernier, M.; Maudsley, S.; Mattson, M.P.; Egan, J.M. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes, 2009, 58(2), 318-328.
[http://dx.doi.org/10.2337/db08-0799] [PMID: 18984744]
[75]
Martin, B.; Chadwick, W.; Cong, W.N.; Pantaleo, N.; Daimon, C.M.; Golden, E.J.; Becker, K.G.; Wood, W.H., III; Carlson, O.D.; Egan, J.M.; Maudsley, S. Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy. J. Biol. Chem., 2012, 287(38), 31766-31782.
[http://dx.doi.org/10.1074/jbc.M112.387316] [PMID: 22822065]
[76]
Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; Terawaki, Y.; Tanabe, M.; Nabeshima, K.; Iwasaki, A.; Yanase, T. Exendin-4, a glucagon like peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting GF-κB activation. Endocrinology, 2017, 158(12), 4218-4232.
[http://dx.doi.org/10.1210/en.2017-00461] [PMID: 29045658]
[77]
Avogaro, A.; Vigili de Kreutzenberg, S.; Fadini, G.P. Cardiovascular actions of GLP-1 and incretin-based pharmacotherapy. Curr. Diab. Rep., 2014, 14(5), 483-493.
[http://dx.doi.org/10.1007/s11892-014-0483-3] [PMID: 24676508]
[78]
Yamamoto, H.; Lee, C.E.; Marcus, J.N.; Williams, T.D.; Overton, J.M.; Lopez, M.E.; Hollenberg, A.N.; Baggio, L.; Saper, C.B.; Drucker, D.J.; Elmquist, J.K. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J. Clin. Invest., 2002, 110(1), 43-52.
[http://dx.doi.org/10.1172/JCI0215595] [PMID: 12093887]
[79]
Nikolaidis, L.A.; Doverspike, A.; Hentosz, T.; Zourelias, L.; Shen, Y.T.; Elahi, D.; Shannon, R.P. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J. Pharmacol. Exp. Ther., 2005, 312(1), 303-308.
[http://dx.doi.org/10.1124/jpet.104.073890] [PMID: 15356213]
[80]
Zhong, J.; Maiseyeu, A.; Davis, S.N.; Rajagopalan, S. DPP4 in cardiometabolic disease: Recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ. Res., 2015, 116(8), 1491-1504.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305665] [PMID: 25858071]
[81]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[82]
Suda, M.; Shimizu, I.; Yoshida, Y.; Hayashi, Y.; Ikegami, R.; Katsuumi, G.; Wakasugi, T.; Yoshida, Y.; Okuda, S.; Soga, T.; Minamino, T. Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS One, 2017, 12(8)e0182422
[http://dx.doi.org/10.1371/journal.pone.0182422] [PMID: 28771625]
[83]
dos Santos, L.; Salles, T.A.; Arruda-Junior, D.F.; Campos, L.C.; Pereira, A.C.; Barreto, A.L.; Antonio, E.L.; Mansur, A.J.; Tucci, P.J.; Krieger, J.E.; Girardi, A.C. Circulating dipeptidyl peptidase IV activity correlates with cardiac dysfunction in human and experimental heart failure. Circ Heart Fail, 2013, 6(5), 1029-1038.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000057] [PMID: 23894014]
[84]
Jeong, E.M.; Chung, J.; Liu, H.; Go, Y.; Gladstein, S.; Farzaneh-Far, A.; Lewandowski, E.D.; Dudley, S.C., Jr Role of mitochondrial oxidative stress in glucose tolerance, insulin resistance, and cardiac diastolic dysfunction. J. Am. Heart Assoc., 2016, 5(5), 1-17.
[http://dx.doi.org/10.1161/JAHA.115.003046] [PMID: 27151515]
[85]
Shimizu, I.; Yoshida, Y.; Katsuno, T.; Tateno, K.; Okada, S.; Moriya, J.; Yokoyama, M.; Nojima, A.; Ito, T.; Zechner, R.; Komuro, I.; Kobayashi, Y.; Minamino, T. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab., 2012, 15(1), 51-64.
[http://dx.doi.org/10.1016/j.cmet.2011.12.006] [PMID: 22225876]
[86]
Warren, J.S.; Oka, S.I. Zablocki, D Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. Am. J. Phy. Siol. Heart Physiol., 2017, 313, H584-H596.
[87]
Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res., 2013, 113(6), 709-724.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300376] [PMID: 23989714]
[88]
Bostick, B.; Habibi, J.; Ma, L.; Aroor, A.; Rehmer, N.; Hayden, M.R.; Sowers, J.R. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of western diet induced obesity. Metabolism, 2014, 63(8), 1000-1011.
[http://dx.doi.org/10.1016/j.metabol.2014.04.002] [PMID: 24933400]
[89]
Gilbert, R.E.; Krum, H. Heart failure in diabetes: Effects of anti-hyperglycaemic drug therapy. Lancet, 2015, 385(9982), 2107-2117.
[http://dx.doi.org/10.1016/S0140-6736(14)61402-1] [PMID: 26009231]
[90]
Zannad, F.; Cannon, C.P.; Cushman, W.C.; Bakris, G.L.; Menon, V.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; Wilson, C.; Lam, H.; White, W.B. EXAMINE Investigators. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: A multicentre, randomised, double-blind trial. Lancet, 2015, 385(9982), 2067-2076.
[http://dx.doi.org/10.1016/S0140-6736(14)62225-X] [PMID: 25765696]
[91]
Filion, K.B.; Azoulay, L.; Platt, R.W.; Dahl, M.; Dormuth, C.R.; Clemens, K.K.; Hu, N.; Paterson, J.M.; Targownik, L.; Turin, T.C.; Udell, J.A.; Ernst, P. CNODES investigators. A multicenter observational study of incretin-based drugs and heart failure. N. Engl. J. Med., 2016, 374(12), 1145-1154.
[http://dx.doi.org/10.1056/NEJMoa1506115] [PMID: 27007958]
[92]
Suda, M.; Shimizu, I.; Yoshida, Y.; Hayashi, Y.; Ikegami, R.; Katsuumi, G.; Wakasugi, T.; Yoshida, Y.; Okuda, S.; Soga, T.; Minamino, T. Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS One, 2017, 12(8)e0182422
[http://dx.doi.org/10.1371/journal.pone.0182422] [PMID: 28771625]
[93]
Morita, M.; Hayashi, T.; Ochiai, M.; Maeda, M.; Yamaguchi, T.; Ina, K.; Kuzuya, M. Oral supplementation with a combination of L-citrulline and L-arginine rapidly increases plasma L-arginine concentration and enhances NO bioavailability. Biochem. Biophys. Res. Commun., 2014, 454(1), 53-57.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.029] [PMID: 25445598]
[94]
Baumgardt, S.L.; Paterson, M.; Leucker, T.M.; Fang, J.; Zhang, D.X.; Bosnjak, Z.J.; Warltier, D.C.; Kersten, J.R.; Ge, Z.D. Chronic co-administration of sepiapterin and L-citrulline ameliorates diabetic cardiomyopathy and myocardial ischemia/reperfusion injury in obese type 2 diabetic mice. Circ Heart Fail, 2016, 9(1), e002424-e002431.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002424] [PMID: 26763290]
[95]
Lygate, C.A.; Fischer, A.; Sebag-Montefiore, L.; Wallis, J.; ten Hove, M.; Neubauer, S. The creatine kinase energy transport system in the failing mouse heart. J. Mol. Cell. Cardiol., 2007, 42(6), 1129-1136.
[http://dx.doi.org/10.1016/j.yjmcc.2007.03.899] [PMID: 17481652]
[96]
Lindbom, M.; Ramunddal, T.; Camejo, G.; Waagstein, F.; Omerovic, E. In vivo effects of myocardial creatine depletion on left ventricular function morphology and lipid metabolism: Study in a mouse model. J. Card. Fail., 2008, 14(2), 161-166.
[http://dx.doi.org/10.1016/j.cardfail.2007.10.020] [PMID: 18325464]
[97]
Lygate, C.A.; Bohl, S.; ten Hove, M.; Faller, K.M.; Ostrowski, P.J.; Zervou, S.; Medway, D.J.; Aksentijevic, D.; Sebag-Montefiore, L.; Wallis, J.; Clarke, K.; Watkins, H.; Schneider, J.E.; Neubauer, S. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc. Res., 2012, 96(3), 466-475.
[http://dx.doi.org/10.1093/cvr/cvs272] [PMID: 22915766]
[98]
Yajima, S.; Ishikawa, M.; Kubota, T.; Moroi, M.; Sugi, K.; Namiki, A. Intramyocardial injection of fibroblast growth factor-2 plus heparin suppresses cardiac failure progression in rats with hypertensive heart disease. Int. Heart J., 2005, 46(2), 289-301.
[http://dx.doi.org/10.1536/ihj.46.289] [PMID: 15876812]
[99]
Arakawa, M.; Mita, T.; Azuma, K.; Ebato, C.; Goto, H.; Nomiyama, T.; Fujitani, Y.; Hirose, T.; Kawamori, R.; Watada, H. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes, 2010, 59(4), 1030-1037.
[http://dx.doi.org/10.2337/db09-1694] [PMID: 20068138]
[100]
Goto, H.; Nomiyama, T.; Mita, T.; Yasunari, E.; Azuma, K.; Komiya, K.; Arakawa, M.; Jin, W.L.; Kanazawa, A.; Kawamori, R.; Fujitani, Y.; Hirose, T.; Watada, H. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury. Biochem. Biophys. Res. Commun., 2011, 405(1), 79-84.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.131] [PMID: 21215253]
[101]
Kang, Y.M.; Jung, C.H. Effects of incretin-based therapies on diabetic microvascular complications. Endocrinol. Metab. (Seoul), 2017, 32(3), 316-325.
[http://dx.doi.org/10.3803/EnM.2017.32.3.316] [PMID: 28956360]
[102]
Silva Júnior, W.S.; Godoy-Matos, A.F.; Kraemer-Aguiar, L.G. Dipeptidyl peptidase 4: A new link between diabetes mellitus and atherosclerosis? BioMed Res. Int., 2015. 2015816164
[http://dx.doi.org/10.1155/2015/816164] [PMID: 26146634]
[103]
Yamagishi, S.; Fukami, K.; Matsui, T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc. Diabetol., 2015, 14, 2-13.
[http://dx.doi.org/10.1186/s12933-015-0176-5] [PMID: 25582643]
[104]
Aroor, A.R.; Sowers, J.R.; Jia, G.; DeMarco, V.G. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(4), H477-H492.
[http://dx.doi.org/10.1152/ajpheart.00209.2014] [PMID: 24929856]
[105]
Kawanami, D.; Matoba, K.; Sango, K.; Utsunomiya, K. Incretin-based therapies for diabetic complications: Basic mechanisms and clinical evidence. Int. J. Mol. Sci., 2016, 17(8), E1223-E1239.
[http://dx.doi.org/10.3390/ijms17081223] [PMID: 27483245]
[106]
Hadjiyanni, I.; Siminovitch, K.A.; Danska, J.S.; Drucker, D.J. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia, 2010, 53(4), 730-740.
[http://dx.doi.org/10.1007/s00125-009-1643-x] [PMID: 20225396]
[107]
Hansen, L.B. GLP-2 and mesenteric blood flow. Dan. Med. J., 2013, 60(5), B4634.
[PMID: 23673268]
[108]
Harrison, D.G.; Marvar, P.J.; Titze, J.M. Vascular inflammatory cells in hypertension. Front. Physiol., 2012, 3, 128-135.
[http://dx.doi.org/10.3389/fphys.2012.00128] [PMID: 22586409]
[109]
Mima, A.; Hiraoka-Yamomoto, J.; Li, Q.; Kitada, M.; Li, C.; Geraldes, P.; Matsumoto, M.; Mizutani, K.; Park, K.; Cahill, C.; Nishikawa, S.; Rask-Madsen, C.; King, G.L. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes, 2012, 61(11), 2967-2979.
[http://dx.doi.org/10.2337/db11-1824] [PMID: 22826029]
[110]
Ishibashi, Y.; Nishino, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism, 2011, 60(9), 1271-1277.
[http://dx.doi.org/10.1016/j.metabol.2011.01.010] [PMID: 21388644]
[111]
Hendarto, H.; Inoguchi, T.; Maeda, Y.; Ikeda, N.; Zheng, J.; Takei, R.; Yokomizo, H.; Hirata, E.; Sonoda, N.; Takayanagi, R. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism, 2012, 61(10), 1422-1434.
[http://dx.doi.org/10.1016/j.metabol.2012.03.002] [PMID: 22554832]
[112]
Zhang, Z.; Yang, L.; Lei, L.; Chen, R.; Chen, H.; Zhang, H. Glucagon-like peptide-1 attenuates advanced oxidation protein product-mediated damage in islet microvascular endothelial cells partly through the RAGE pathway. Int. J. Mol. Med., 2016, 38(4), 1161-1169.
[http://dx.doi.org/10.3892/ijmm.2016.2711] [PMID: 27574116]
[113]
Zhang, H.; Zhang, X.; Hu, C.; Lu, W. Exenatide reduces urinary transforming growth factor-β1 and type IV collagen excretion in patients with type 2 diabetes and microalbuminuria. Kidney Blood Press. Res., 2012, 35(6), 483-488.
[http://dx.doi.org/10.1159/000337929] [PMID: 22687869]
[114]
von Scholten, B.J.; Lajer, M.; Goetze, J.P.; Persson, F.; Rossing, P. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet. Med., 2015, 32(3), 343-352.
[http://dx.doi.org/10.1111/dme.12594] [PMID: 25251901]
[115]
von Scholten, B.J.; Hansen, T.W.; Goetze, J.P.; Persson, F.; Rossing, P. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): Long-term effect on kidney function in patients with type 2 diabetes. J. Diabetes Complications, 2015, 29(5), 670-674.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.04.004] [PMID: 25935863]
[116]
Kodera, R.; Shikata, K.; Takatsuka, T. DPP-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem. Biophys. Res. Commun., 2014, 443, 828-833.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.049] [PMID: 24342619]
[117]
Hattori, S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr. J., 2011, 58(1), 69-73.
[http://dx.doi.org/10.1507/endocrj.K10E-382] [PMID: 21206136]
[118]
Fujita, H.; Taniai, H.; Murayama, H.; Ohshiro, H.; Hayashi, H.; Sato, S.; Kikuchi, N.; Komatsu, T.; Komatsu, K.; Komatsu, K.; Narita, T.; Yamada, Y. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1α in type 2 diabetic patients with incipient nephropathy. Endocr. J., 2014, 61(2), 159-166.
[http://dx.doi.org/10.1507/endocrj.EJ13-0305] [PMID: 24225429]
[119]
Tani, S.; Nagao, K.; Hirayama, A. Association between urinary albumin excretion and low-density lipoprotein heterogeneity following treatment of type 2 diabetes patients with the dipeptidyl peptidase-4 inhibitor, vildagliptin: A pilot study. Am. J. Cardiovasc. Drugs, 2013, 13(6), 443-450.
[http://dx.doi.org/10.1007/s40256-013-0043-2] [PMID: 23990203]
[120]
Groop, P.H.; Cooper, M.E.; Perkovic, V.; Emser, A.; Woerle, H.J.; von Eynatten, M. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care, 2013, 36(11), 3460-3468.
[http://dx.doi.org/10.2337/dc13-0323] [PMID: 24026560]
[121]
Hernández, C.; Bogdanov, P.; Corraliza, L.; García-Ramírez, M.; Solà-Adell, C.; Arranz, J.A.; Arroba, A.I.; Valverde, A.M.; Simó, R. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes, 2016, 65(1), 172-187.
[PMID: 26384381]
[122]
Fan, Y.; Liu, K.; Wang, Q.; Ruan, Y.; Ye, W.; Zhang, Y. Exendin-4 alleviates retinal vascular leakage by protecting the blood-retinal barrier and reducing retinal vascular permeability in diabetic Goto-Kakizaki rats. Exp. Eye Res., 2014, 127, 104-116.
[http://dx.doi.org/10.1016/j.exer.2014.05.004] [PMID: 24910901]
[123]
Gonçalves, A.; Leal, E.; Paiva, A.; Teixeira Lemos, E.; Teixeira, F.; Ribeiro, C.F.; Reis, F.; Ambrósio, A.F.; Fernandes, R. Protective effects of the dipeptidyl peptidase IV inhibitor sitagliptin in the blood-retinal barrier in a type 2 diabetes animal model. Diabetes Obes. Metab., 2012, 14(5), 454-463.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01548.x] [PMID: 22151893]
[124]
Goncalves, A; Marques, C; Leal, E. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Biochim Bio¬phys Acta, 2014, 1842, 1454-1463.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.013]
[125]
Ott, C.; Raff, U.; Schmidt, S.; Kistner, I.; Friedrich, S.; Bramlage, P.; Harazny, J.M.; Schmieder, R.E. Effects of saxagliptin on early microvascular changes in patients with type 2 diabetes. Cardiovasc. Diabetol., 2014, 13, 19-27.
[http://dx.doi.org/10.1186/1475-2840-13-19] [PMID: 24423149]
[126]
Armstrong, M.J.; Hull, D.; Guo, K.; Barton, D.; Hazlehurst, J.M.; Gathercole, L.L.; Nasiri, M.; Yu, J.; Gough, S.C.; Newsome, P.N.; Tomlinson, J.W. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J. Hepatol., 2016, 64(2), 399-408.
[http://dx.doi.org/10.1016/j.jhep.2015.08.038] [PMID: 26394161]
[127]
Khoo, J.; Hsiang, J.; Taneja, R.; Law, N.M.; Ang, T.L. Comparative effects of liraglutide 3 mg vs structured lifestyle modification on body weight, liver fat and liver function in obese patients with non-alcoholic fatty liver disease: A pilot randomized trial. Diabetes Obes. Metab., 2017, 19(12), 1814-1817.
[http://dx.doi.org/10.1111/dom.13007] [PMID: 28503750]
[128]
de Mesquita, F.C.; Guixé-Muntet, S.; Fernández-Iglesias, A.; Maeso-Díaz, R.; Vila, S.; Hide, D.; Ortega-Ribera, M.; Rosa, J.L.; García-Pagán, J.C.; Bosch, J.; de Oliveira, J.R.; Gracia-Sancho, J. Liraglutide improves liver microvascular dysfunction in cirrhosis: Evidence from translational studies. Sci. Rep., 2017, 7(1), 3255-3264.
[http://dx.doi.org/10.1038/s41598-017-02866-y] [PMID: 28607430]
[129]
Iyengar, N.M.; Hudis, C.A.; Dannenberg, A.J. Obesity and cancer: Local and systemic mechanisms. Annu. Rev. Med., 2015, 66, 297-309.
[http://dx.doi.org/10.1146/annurev-med-050913-022228] [PMID: 25587653]
[130]
Baldassano, S.; Accardi, G.; Vasto, S. Beta-glucans and cancer: The influence of inflammation and gut peptide. Eur. J. Med. Chem., 2017, 142, 486-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.013] [PMID: 28964548]
[131]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[http://dx.doi.org/10.1210/er.2002-0007] [PMID: 12920149]
[132]
Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: Molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(5), 781-793.
[http://dx.doi.org/10.1007/s00259-003-1184-3] [PMID: 12707737]
[133]
Körner, M.; Stöckli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med., 2007, 48(5), 736-743.
[http://dx.doi.org/10.2967/jnumed.106.038679] [PMID: 17475961]
[134]
Wicki, A.; Wild, D.; Storch, D.; Seemayer, C.; Gotthardt, M.; Behe, M.; Kneifel, S.; Mihatsch, M.J.; Reubi, J.C.; Mäcke, H.R.; Christofori, G. [Lys40(Ahx-DTPA-111In)NH2]-Exendin-4 is a highly efficient radiotherapeutic for glucagon-like peptide-1 receptor-targeted therapy for insulinoma. Clin. Cancer Res., 2007, 13(12), 3696-3705.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2965] [PMID: 17575235]
[135]
Luciani, P.; Deledda, C.; Benvenuti, S.; Squecco, R.; Cellai, I.; Fibbi, B.; Marone, I.M.; Giuliani, C.; Modi, G.; Francini, F.; Vannelli, G.B.; Peri, A. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells. PLoS One, 2013, 8(8)e71716
[http://dx.doi.org/10.1371/journal.pone.0071716] [PMID: 23990978]
[136]
Koehler, J.A.; Kain, T.; Drucker, D.J. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology, 2011, 152(9), 3362-3372.
[http://dx.doi.org/10.1210/en.2011-1201] [PMID: 21771884]
[137]
Ligumsky, H.; Wolf, I.; Israeli, S.; Haimsohn, M.; Ferber, S.; Karasik, A.; Kaufman, B.; Rubinek, T. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res. Treat., 2012, 132(2), 449-461.
[http://dx.doi.org/10.1007/s10549-011-1585-0] [PMID: 21638053]
[138]
Noto, H.; Goto, A.; Tsujimoto, T.; Osame, K.; Noda, M. Latest insights into the risk of cancer in diabetes. J. Diabetes Investig., 2013, 4(3), 225-232.
[http://dx.doi.org/10.1111/jdi.12068] [PMID: 24843658]
[139]
Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; Terawaki, Y.; Tanabe, M.; Nabeshima, K.; Iwasaki, A.; Yanase, T. Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation. Endocrinology, 2017, 158(12), 4218-4232.
[http://dx.doi.org/10.1210/en.2017-00461] [PMID: 29045658]
[140]
Nomiyama, T.; Kawanami, T.; Irie, S.; Hamaguchi, Y.; Terawaki, Y.; Murase, K.; Tsutsumi, Y.; Nagaishi, R.; Tanabe, M.; Morinaga, H.; Tanaka, T.; Mizoguchi, M.; Nabeshima, K.; Tanaka, M.; Yanase, T. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes, 2014, 63(11), 3891-3905.
[http://dx.doi.org/10.2337/db13-1169] [PMID: 24879833]
[141]
Tsutsumi, Y.; Nomiyama, T.; Kawanami, T.; Hamaguchi, Y.; Terawaki, Y.; Tanaka, T.; Murase, K.; Motonaga, R.; Tanabe, M.; Yanase, T. Combined treatment with exendin-4 and metformin attenuates prostate cancer growth. PLoS One, 2015, 10(10)e0139709
[http://dx.doi.org/10.1371/journal.pone.0139709] [PMID: 26439622]
[142]
Elashoff, M.; Matveyenko, A.V.; Gier, B.; Elashoff, R.; Butler, P.C. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology, 2011, 141(1), 150-156.
[http://dx.doi.org/10.1053/j.gastro.2011.02.018] [PMID: 21334333]
[143]
Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; Cavender, M.A.; Udell, J.A.; Desai, N.R.; Mosenzon, O.; McGuire, D.K.; Ray, K.K.; Leiter, L.A.; Raz, I. SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med., 2013, 369(14), 1317-1326.
[http://dx.doi.org/10.1056/NEJMoa1307684] [PMID: 23992601]
[144]
White, W.B.; Cannon, C.P.; Heller, S.R.; Nissen, S.E.; Bergenstal, R.M.; Bakris, G.L.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; Wilson, C.; Cushman, W.C.; Zannad, F. EXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med., 2013, 369(14), 1327-1335.
[http://dx.doi.org/10.1056/NEJMoa1305889] [PMID: 23992602]
[145]
Zhao, H.; Wei, R.; Wang, L.; Tian, Q.; Tao, M.; Ke, J.; Liu, Y.; Hou, W.; Zhang, L.; Yang, J.; Hong, T. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am. J. Physiol. Endocrinol. Metab., 2014, 306(12), E1431-E1441.
[http://dx.doi.org/10.1152/ajpendo.00017.2014] [PMID: 24801389]
[146]
Kosowska, A.; Gallego-Colon, E.; Garczorz, W.; Kłych-Ratuszny, A.; Aghdam, M.R.F.; Woz, N.M.; Witek, A.; Wróblewska-Czech, A.; Cygal, A.; Wojnar, J.; Francuz, T. Exenatide modulates tumor-endothelial cell interactions in human ovarian cancer cells. Endocr. Connect., 2017, 6(8), 856-865.
[http://dx.doi.org/10.1530/EC-17-0294] [PMID: 29042458]
[147]
Tseng, P.H.; Lee, Y.C.; Chiu, H.M.; Chen, C.C.; Liao, W.C.; Tu, C.H.; Yang, W.S.; Wu, M.S. Association of diabetes and HbA1c levels with gastrointestinal manifestations. Diabetes Care, 2012, 35(5), 1053-1060.
[http://dx.doi.org/10.2337/dc11-1596] [PMID: 22410812]
[148]
Chen, Y.C.; Ho, C.C.; Yi, C.H.; Liu, X.Z.; Cheng, T.T.; Lam, C.F. Exendin-4, a glucagon-like peptide-1 analogue accelerates healing of chronic gastric ulcer in diabetic rats. PLoS One, 2017, 12(11)e0187434
[http://dx.doi.org/10.1371/journal.pone.0187434] [PMID: 29095895]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy