Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Dietary Melatonin Protects Against Behavioural, Metabolic, Oxidative, and Organ Morphological Changes in Mice that are Fed High-Fat, High- Sugar Diet

Author(s): Adejoke Yetunde Onaolapo, Ebenezer Oladimeji Adebisi, Adegbayi Emmanuel Adeleye, Anthony Tope Olofinnade and Olakunle James Onaolapo*

Volume 20, Issue 4, 2020

Page: [570 - 583] Pages: 14

DOI: 10.2174/1871530319666191009161228

Price: $65

Abstract

Background: Metabolic syndrome is a complex pattern of disorders that occur jointly and is associated with an increased risk of cardiovascular and cerebrovascular disease. Therefore the need for more-efficient options of treatment has become imperative.

Objective: This study examined the effect of dietary-melatonin in the management of behavioural, metabolic, antioxidant, and organ changes due to high-fat/high-sugar (HFHS) diet-induced metabolic syndrome in mice.

Methods: Mice were randomly assigned into five groups of ten animals each. Groups were normal control [fed standard diet (SD)], HFHS control, and 3 groups of melatonin incorporated into HFHS at 2.5, 5, and 10 mg/kg of feed. Mice were fed for seven weeks, and body weight was assessed weekly. Open-field behaviours, radial-arm, and Y-maze spatial memory were scored at the end of the experimental period. Twenty-four hours after the last behavioural test, blood was taken for estimation of blood glucose levels after an overnight fast. Animals were then euthanised, and blood was taken for estimation of plasma insulin, leptin, and adiponectin levels, and serum lipid profile. The liver, kidneys, and brain were excised and processed for general histology, while homogenates of the liver and whole brain were used to assess oxidative stress parameters.

Results: Results showed that dietary melatonin (compared to HFHS diet) was associated with a decrease in body weight, food intake, and novelty-induced behaviours; and an increase in spatial-working memory scores. A decrease in glucose, insulin, leptin, and malondialdehyde levels; and an increase in adiponectin levels and superoxide dismutase activity were also observed. Histomorphological/ histomorphometric examination revealed evidence of organ injury with HFHS diet, and varying degrees of amelioration with melatonin-supplemented diet.

Conclusion: In conclusion, dietary melatonin supplementation may have beneficial effects in the management of the metabolic syndrome.

Keywords: Brain, dysmetabolism, diet, neurobehaviour, melatonergic, glucose.

Graphical Abstract
[1]
Grundy, S.M.; Brewer, H.B., Jr; Cleeman, J.I.; Smith, S.C., Jr; Lenfant, C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation, 2004, 109(3), 433-438.
[http://dx.doi.org/10.1161/01.CIR.0000111245.75752.C6] [PMID: 14744958]
[2]
Aydin, S.; Aksoy, A.; Aydin, S.; Kalayci, M.; Yilmaz, M.; Kuloglu, T. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition, 2014, 30, 1-9.
[3]
Saklayen, M. G. The Global Epidemic of the Metabolic Syndrome., 2018.
[http://dx.doi.org/10.1007/s11906-018-0812-z]
[4]
Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care, 2010, 33(11), 2477-2483.
[http://dx.doi.org/10.2337/dc10-1079] [PMID: 20693348]
[5]
Di Lorenzo, C.; Dell’agli, M.; Colombo, E.; Sangiovanni, E.; Restani, P. Metabolic syndrome and inflammation: a critical review of in vitro and clinical approaches for benefit assessment of plant food supplements. Evid. Based Complement. Alternat. Med., 2013, 2013 782461
[http://dx.doi.org/10.1155/2013/782461] [PMID: 23533519]
[6]
Gatta-Cherifi, B.; Cota, D. Endocannabinoids and metabolic disorders. Handb. Exp. Pharmacol., 2015, 231, 367-391.
[http://dx.doi.org/10.1007/978-3-319-20825-1_13] [PMID: 26408168]
[7]
Kozirog, M.; Poliwczak, A.R.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Broncel, M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res., 2011, 50, 261-266.
[8]
Srinivasan, V.; Ohta, Y.; Espino, J.; Pariente, J.A.; Rodriguez, A.B.; Mohamed, M.; Zakaria, R. Metabolic syndrome, its pathophysiology and the role of melatonin. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7(1), 11-25.
[http://dx.doi.org/10.2174/187221413804660953] [PMID: 22946959]
[9]
Kim, S.; Song, Y.; Lee, J.E.; Jun, S.; Shin, S.; Wie, G.A. Total antioxidant capacity from dietary supplement decreases the likelihood of having metabolic syndrome in Korean adults. Nutrients, 2017, 9(10) pii: E1055
[http://dx.doi.org/10.3390/nu9101055]
[10]
Onaolapo, O.J.; Onaolapo, A.Y.; Abiola, A.A.; Lillian, E.A. Central depressant and nootropic effects of daytime melatonin in mice. Ann. Neurosci., 2014, 21(3), 90-96.
[http://dx.doi.org/10.5214/ans.0972.7531.210304] [PMID: 25206072]
[11]
Onaolapo, O.J.; Onaolapo, A.Y. Melatonin, adolescence, and the brain: An insight into the period-specific influences of a multifunctional signaling molecule. Birth Defects Res., 2017, 109(20), 1659-1671.
[http://dx.doi.org/10.1002/bdr2.1171] [PMID: 29251845]
[12]
Goyal, A.; Terry, P.D.; Superak, H.M.; Nell-Dybdahl, C.L.; Chowdhury, R.; Phillips, L.S.; Kutner, M.H. Melatonin supplementation to treat the metabolic syndrome: a randomized controlled trial. Diabetol. Metab. Syndr., 2014, 6, 124.
[http://dx.doi.org/10.1186/1758-5996-6-124] [PMID: 25937837]
[13]
Onaolapo, A.Y.; Aina, O.A.; Onaolapo, O.J. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed. Pharmacother., 2017, 92, 373-383.
[http://dx.doi.org/10.1016/j.biopha.2017.05.094] [PMID: 28554133]
[14]
Cardinali, D.P.; Bernasconi, P.A.S.; Reynoso, R.; Toso, C.F.; Scacchi, P. Melatonin may curtail the metabolic syndrome: studies on initial and fully established fructose-induced metabolic syndrome in rats. Int. J. Mol. Sci., 2013, 14(2), 2502-2514.
[http://dx.doi.org/10.3390/ijms14022502] [PMID: 23354480]
[15]
Lipman, R.D.; Bronson, R.T.; Wu, D.; Smith, D.E.; Prior, R.; Cao, G.; Han, S.N.; Martin, K.R.; Meydani, S.N.; Meydani, M. Disease incidence and longevity are unaltered by dietary antioxidant supplementation initiated during middle age in C57BL/6 mice. Mech. Ageing Dev., 1998, 103(3), 269-284.
[http://dx.doi.org/10.1016/S0047-6374(98)00048-7] [PMID: 9723903]
[16]
Onaolapo, A.Y.; Adebayo, A.N.; Onaolapo, O.J. Exogenous daytime melatonin modulates response of adolescent mice in a repeated unpredictable stress paradigm. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(2), 149-161.
[http://dx.doi.org/10.1007/s00210-016-1314-7] [PMID: 27844092]
[17]
Onaolapo, O.J.; Adekola, M.A.; Azeez, T.O.; Salami, K.; Onaolapo, A.Y. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex. Biomed. Pharmacother., 2017, 85, 323-333.
[http://dx.doi.org/10.1016/j.biopha.2016.11.033] [PMID: 27889232]
[18]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Changes in spontaneous working-memory, memory-recall and approach-avoidance following “low dose” monosodium glutamate in mice. AIMS Neurosci., 2016, 3
[http://dx.doi.org/10.3934/Neuroscience.2016.3.317]
[19]
Onaolapo, A.Y.; Onaolapo, O.J.; Adewole, S.A. Ethanolic extract of ocimum grattissimum leaves (linn.) rapidly lowers blood glucose levels in diabetic wistar rats. Maced. J. Med. Sci., 2011, 4
[http://dx.doi.org/10.3889/MJMS.1857-5773.2011.0172]
[20]
Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Bellagamba, G.; Onaolapo, O.; Onaolapo, A.; Azeez, F.; Ayileka, A.; Novellino, E. An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food Chem. Toxicol., 2017, 107(Pt B), 554-564.
[http://dx.doi.org/10.1016/j.fct.2017.03.056] [PMID: 28366844]
[21]
Onaolapo, A.Y.; Ayeni, O.J.; Ogundeji, M.O.; Ajao, A.; Onaolapo, O.J.; Owolabi, A.R. Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase-3-mediated apoptosis. J. Chem. Neuroanat., 2019, 96, 22-33.
[http://dx.doi.org/10.1016/j.jchemneu.2018.12.002] [PMID: 30529750]
[22]
Onaolapo, A.Y.; Onaolapo, O.J. Nevirapine mitigates monosodium glutamate induced neurotoxicity and oxidative stress changes in prepubertal mice. Ann Med Res, 2018, 25, 518-524.
[http://dx.doi.org/10.5455/annalsmedres.2018.06.118]
[23]
White, P.A.; Cercato, L.M.; Araújo, J.M.D.; Souza, L.A.; Soares, A.F.; Barbosa, A.P.; Neto, J.M.; Marçal, A.C.; Machado, U.F.; Camargo, E.A.; Santos, M.R.; Brito, L.C. Modelo de obesidade induzida por dieta hiperlipídica e associada à resistência à ação da insulina e intolerância à glicose. Arq. Bras. Endocrinol. Metabol, 2013, 57(5), 339-345.
[http://dx.doi.org/10.1590/S0004-27302013000500002] [PMID: 23896799]
[24]
Martin, L.J.; Mahaney, M.C.; Almasy, L.; MacCluer, J.W.; Blangero, J.; Jaquish, C.E.; Comuzzie, A.G. Leptin’s sexual dimorphism results from genotype by sex interactions mediated by testosterone. Obes. Res., 2002, 10(1), 14-21.
[http://dx.doi.org/10.1038/oby.2002.3] [PMID: 11786597]
[25]
Panchal, S.K.; Poudyal, H.; Iyer, A.; Nazer, R.; Alam, M.A.; Diwan, V.; Kauter, K.; Sernia, C.; Campbell, F.; Ward, L.; Gobe, G.; Fenning, A.; Brown, L. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol., 2011, 57(5), 611-624.
[http://dx.doi.org/10.1097/FJC.0b013e3181feb90a] [PMID: 21572266]
[26]
Moreno-Fernández, S.; Garcés-Rimón, M.; Vera, G.; Astier, J.; Landrier, J.F.; Miguel, M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients, 2018, 10(10), 10.
[http://dx.doi.org/10.3390/nu10101502] [PMID: 30322196]
[27]
Prunet-Marcassus, B.; Desbazeille, M.; Bros, A.; Louche, K.; Delagrange, P.; Renard, P.; Casteilla, L.; Pénicaud, L. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology, 2003, 144(12), 5347-5352.
[http://dx.doi.org/10.1210/en.2003-0693] [PMID: 12970162]
[28]
Puchalski, S.S.; Green, J.N.; Rasmussen, D.D. Melatonin effect on rat body weight regulation in response to high-fat diet at middle age. Endocrine, 2003, 21(2), 163-167.
[http://dx.doi.org/10.1385/ENDO:21:2:163] [PMID: 12897381]
[29]
Terrón, M.P.; Delgado-Adámez, J.; Pariente, J.A.; Barriga, C.; Paredes, S.D.; Rodríguez, A.B. Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats. Physiol. Behav., 2013, 118, 8-13.
[http://dx.doi.org/10.1016/j.physbeh.2013.04.006] [PMID: 23643827]
[30]
Keleher, M.R.; Zaidi, R.; Patel, K.; Ahmed, A.; Bettler, C.; Pavlatos, C.; Shah, S.; Cheverud, J.M. The effect of dietary fat on behavior in mice. J. Diabetes Metab. Disord., 2018, 17(2), 297-307.
[http://dx.doi.org/10.1007/s40200-018-0373-3] [PMID: 30918865]
[31]
Gainey, S.J.; Kwakwa, K.A.; Bray, J.K.; Pillote, M.M.; Tir, V.L.; Towers, A.E.; Freund, G.G. Short-term high-fat diet (HFD) induced anxiety-like behaviors and cognitive impairment are improved with treatment by glyburide. Front. Behav. Neurosci., 2016, 10, 156.
[http://dx.doi.org/10.3389/fnbeh.2016.00156] [PMID: 27563288]
[32]
Stewart, L.S. Endogenous melatonin and epileptogenesis: facts and hypothesis. Int. J. Neurosci., 2001, 107(1-2), 77-85.
[http://dx.doi.org/10.3109/00207450109149758] [PMID: 11328683]
[33]
Wang, F.; Li, J.; Wu, C.; Yang, J.; Xu, F.; Zhao, Q. The GABA(A) receptor mediates the hypnotic activity of melatonin in rats. Pharmacol. Biochem. Behav., 2003, 74(3), 573-578.
[http://dx.doi.org/10.1016/S0091-3057(02)01045-6] [PMID: 12543221]
[34]
Banach, M.; Gurdziel, E.; Jędrych, M.; Borowicz, K.K. Melatonin in experimental seizures and epilepsy. Pharmacol. Rep., 2011, 63(1), 1-11.
[http://dx.doi.org/10.1016/S1734-1140(11)70393-0] [PMID: 21441606]
[35]
Underwood, E.L.; Thompson, L.T. A high-fat diet causes impairment in hippocampal memory and sex-dependent alterations in peripheral metabolism. Neural Plast., 2016, 2016 7385314
[http://dx.doi.org/10.1155/2016/7385314] [PMID: 26819773]
[36]
Wang, Q.; Yuan, J.; Yu, Z.; Lin, L.; Jiang, Y.; Cao, Z.; Zhuang, P.; Whalen, M.J.; Song, B.; Wang, X.J.; Li, X.; Lo, E.H.; Xu, Y.; Wang, X. FGF21 Attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol. Neurobiol., 2018, 55(6), 4702-4717.
[http://dx.doi.org/10.1007/s12035-017-0663-7] [PMID: 28712011]
[37]
Luengo, E.; Buendia, I.; Fernández-Mendívil, C.; Trigo-Alonso, P.; Negredo, P.; Michalska, P. Pharmacological doses of melatonin impedes cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J. Pineal Res., 2019.
[38]
Ran, D.; Xie, B.; Gan, Z.; Sun, X.; Gu, H.; Yang, J. Melatonin attenuates hLRRK2-induced long-term memory deficit in a Drosophila model of Parkinson’s disease. Biomed. Rep., 2018, 9(3), 221-226.
[http://dx.doi.org/10.3892/br.2018.1125] [PMID: 30271597]
[39]
Buettner, R.; Parhofer, K.G.; Woenckhaus, M.; Wrede, C.E.; Kunz-Schughart, L.A.; Schölmerich, J.; Bollheimer, L.C. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J. Mol. Endocrinol., 2006, 485-501.
[40]
Tran, L.T.; Yuen, V.G.; McNeill, J.H.; Cao, Z. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol. Cell. Biochem., 2009, 332(1-2), 145-159.
[http://dx.doi.org/10.1007/s11010-009-0184-4] [PMID: 19536638]
[41]
Massiera, F.; Barbry, P.; Guesnet, P.; Joly, A.; Luquet, S.; Moreilhon-Brest, C.; Mohsen-Kanson, T.; Amri, E.Z.; Ailhaud, G. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J. Lipid Res., 2010, 51(8), 2352-2361.
[http://dx.doi.org/10.1194/jlr.M006866] [PMID: 20410018]
[42]
Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.M.; Lustig, R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(5), 251-264.
[http://dx.doi.org/10.1038/nrgastro.2010.41] [PMID: 20368739]
[43]
Bibak, B.; Khalili, M.; Rajaei, Z.; Soukhtanloo, M.; Hadjzadeh, M.A.H.P.; Hayatdavoudi, P. Effects of melatonin on biochemical factors and food and water consumption in diabetic rats. Adv. Biomed. Res., 2014, 3, 173.
[http://dx.doi.org/10.4103/2277-9175.139191] [PMID: 25250287]
[44]
Salmanoglu, D.S.; Gurpinar, T.; Vural, K.; Ekerbicer, N.; Darıverenli, E.; Var, A. Melatonin and L-carnitin improves endothelial disfunction and oxidative stress in Type 2 diabetic rats. Redox Biol., 2016, 8, 199-204.
[http://dx.doi.org/10.1016/j.redox.2015.11.007] [PMID: 26803481]
[45]
Vural, H.; Sabuncu, T.; Arslan, S.O.; Aksoy, N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J. Pineal Res., 2001, 31(3), 193-198.
[http://dx.doi.org/10.1034/j.1600-079X.2001.310301.x] [PMID: 11589752]
[46]
Lo, C.C.; Lin, S.H.; Chang, J.S.; Chien, Y.W. Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia. Nutrients, 2017, 9(11) E1187
[http://dx.doi.org/10.3390/nu9111187] [PMID: 29109369]
[47]
Diaz, B.; Blázquez, E. Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm. Metab. Res., 1986, 18(4), 225-229.
[http://dx.doi.org/10.1055/s-2007-1012279] [PMID: 3519410]
[48]
Yavuz, O.; Cam, M.; Bukan, N.; Guven, A.; Silan, F. Protective effect of melatonin on beta-cell damage in streptozotocin-induced diabetes in rats. Acta Histochem., 2003, 105(3), 261-266.
[http://dx.doi.org/10.1078/0065-1281-00711] [PMID: 13677620]
[49]
Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta, 2013, 417, 80-84.
[http://dx.doi.org/10.1016/j.cca.2012.12.007] [PMID: 23266767]
[50]
Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; Ezaki, O.; Akanuma, Y.; Gavrilova, O.; Vinson, C.; Reitman, M.L.; Kagechika, H.; Shudo, K.; Yoda, M.; Nakano, Y.; Tobe, K.; Nagai, R.; Kimura, S.; Tomita, M.; Froguel, P.; Kadowaki, T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med., 2001, 7(8), 941-946.
[http://dx.doi.org/10.1038/90984] [PMID: 11479627]
[51]
Kus, I.; Sarsilmaz, M.; Colakoglu, N.; Kukne, A.; Ozen, O.A.; Yilmaz, B.; Kelestimur, H. Pinealectomy increases and exogenous melatonin decreases leptin production in rat anterior pituitary cells: an immunohistochemical study. Physiol. Res., 2004, 53(4), 403-408.
[PMID: 15311999]
[52]
Mohammadi-Sartang, M.; Ghorbani, M.; Mazloom, Z. Effects of melatonin supplementation on blood lipid concentrations: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr., 2018, 37(6 Pt. A), 1943-1954.
[http://dx.doi.org/10.1016/j.clnu.2017.11.003] [PMID: 29191493]
[53]
Mozaffari, S.; Hasani-Ranjbar, S.; Abdollahi, M. The mechanisms of positive effects of melatonin in dyslipidemia: A systematic review of animal and human studies. Int. J. Pharmacol., 2012, 8, 496-509.
[http://dx.doi.org/10.3923/ijp.2012.496.509]
[54]
Aksoy, N.; Vural, H.; Sabuncu, T.; Aksoy, S.; Yu, Z. Effects of melatonin on oxidative-antioxidative status of tissues in streptozotocin-induced diabetic rats. Cell Biochem. Funct., 2003, 21(2), 121-125.
[http://dx.doi.org/10.1002/cbf.1006] [PMID: 12736900]
[55]
Akcay, Y.D.; Yalcin, A.; Sozmen, E.Y. The effect of melatonin on lipid peroxidation and nitrite/nitrate levels, and on superoxide dismutase and catalase activities in kainic acid-induced injury. Cell. Mol. Biol. Lett., 2005, 10(2), 321-329.
[PMID: 16010296]
[56]
Abadi, S.H.M.H.; Shirazi, A.; Alizadeh, A.M.; Changizi, V.; Najafi, M.; Khalighfard, S.; Nosrati, H. The Effect of Melatonin on Superoxide Dismutase and Glutathione Peroxidase Activity, and Malondialdehyde Levels in the Targeted and the Non-targeted Lung and Heart Tissues after Irradiation in Xenograft Mice Colon Cancer. Curr. Mol. Pharmacol., 2018, 11(4), 326-335.
[http://dx.doi.org/10.2174/1874467211666180830150154] [PMID: 30173656]
[57]
Altunkaynak, M.E.; Özbek, E.; Altunkaynak, B.Z.; Can, I.; Unal, D.; Unal, B. The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. J. Anat., 2008, 212(6), 845-852.
[http://dx.doi.org/10.1111/j.1469-7580.2008.00902.x] [PMID: 18510511]
[58]
Li, L.; Zhao, Z.; Xia, J.; Xin, L.; Chen, Y.; Yang, S.; Li, K. A Long-Term High-Fat/High-Sucrose Diet Promotes Kidney Lipid Deposition and Causes Apoptosis and Glomerular Hypertrophy in Bama Minipigs. PLoS One, 2015, 10(11) e0142884
[http://dx.doi.org/10.1371/journal.pone.0142884] [PMID: 26571016]
[59]
Freeman, L.R.; Haley-Zitlin, V.; Rosenberger, D.S.; Granholm, A-C. Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutr. Neurosci., 2014, 17(6), 241-251.
[http://dx.doi.org/10.1179/1476830513Y.0000000092] [PMID: 24192577]
[60]
Lizarbe, B.; Cherix, A.; Duarte, J.M.N.; Cardinaux, J.R.; Gruetter, R. High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int. J. Obes., 2019, 43(6), 1295-1304.
[http://dx.doi.org/10.1038/s41366-018-0224-9] [PMID: 30301962]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy