Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

α-Glucosidase Inhibition and Docking Studies of 5-Deoxyflavonols and Dihydroflavonols Isolated from Abutilon pakistanicum

Author(s): Munawar Hussain*, Zaheer Ahmed, Shamsun N. Khan, Syed A. A. Shah*, Rizwana Razi, Syahrul Imran, Muhammad Khalid, Bakhat Ali, Muhammad B. Irshad, Faisal Nawaz and Muhammad I. Chaudhry

Volume 23, Issue 17, 2019

Page: [1857 - 1866] Pages: 10

DOI: 10.2174/1385272823666191001224741

Price: $65

Abstract

Three new 5-deoxyflavonoid and dihydroflavonoids 2, 3 and 4 have been isolated from the methanolic extract of Abutioln pakistanicum aerial parts, for which structures were elucidated explicitly by extensive MS- and NMR-experiments. In addition to these, 3,7,4′-trihydroxy-3′-methoxy flavonol (1) is reported for the first time from Abutioln pakistanicum. Compound 2 and 4 are p-coumaric acid esters while compounds 2–4 exhibited α-glucosidase inhibitory activity. Docking studies indicated that the ability of flavonoids 2, 3 and 4 to form multiple hydrogen bonds with catalytically important residues is decisive hence is responsible for the inhibition activity. The docking results signified the observed in-vitro activity quite well which is in accordance with previously obtained conclusion that phenol moiety and hydroxyl group are critical for the inhibition of α-glucosidase enzyme.

Keywords: Abutilon, Abutilon pakistanicum, 5-deoxygenated, p-coumaric acid esters, α-glucosidase, docking.

Graphical Abstract
[1]
Nasir, E.; Ali, S.I. Flora of West Pakistan; Fakhri Printing Press: Karachi, Pakistan, 1972.
[2]
a) Baquer, S.R. Medicinal and poisonous plants of Pakistan; Karachi, 1989, pp. 2-3.
b) Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett., 2018, 413, 11-22.
[http://dx.doi.org/10.1016/j.canlet.2017.10.041] [PMID: 29097249]
c) Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem., 2017, 142, 213-228.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[3]
Manjunath, B.L. Wealth of India. Raw Mater., 1948, I, 3-4.
[4]
Ahmed, Z.; Kazmi, S.N.H.; Malik, A. A new pentacyclic triterpene from Abutllon paklstanlcum. J. Nat. Prod., 1990, 53, 1342-1344.
[http://dx.doi.org/10.1021/np50071a032]
[5]
a) Hussain, M.; Zahra, D.N.; Ali, D.; Malik, A.; Ahmed, Z. Chemical constituents from Abutilon species. J. Chem. Soc. Pak., 2005, 3, 327.
b) de-Melo, E.B.A. da-S. Gomesb, I. Carvalho. α- and β-glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron, 2006, 62, 10277-10302.
[http://dx.doi.org/10.1016/j.tet.2006.08.055]
c) Sou, S.; Mayumi, S.; Takahashi, H.; Yamasaki, R.; Kadoya, S.; Sodeoka, M.; Hashimoto, Y. Novel alpha-glucosidase inhibitors with a tetrachlorophthalimide skeleton. Bioorg. Med. Chem. Lett., 2000, 10(10), 1081-1084.
[http://dx.doi.org/10.1016/S0960-894X(00)00161-X] [PMID: 10843222]
d) Asano, N.; Nishida, M.; Kizu, H.; Matsui, K.; Watson, A.A.; Nash, R.J. Homonojirimycin isomers and glycosides from Aglaonema treubii. J. Nat. Prod., 1997, 60, 98-101.
[http://dx.doi.org/10.1021/np960577n]
[6]
Adinarayana, D.; Gunasekar, D.; Seligmann, O.; Wagner, H. Rhynchosin, a new 5deoxyflavonol from Rhynchosia beddomei. Phytochemistry, 1980, 19, 483.
[http://dx.doi.org/10.1016/0031-9422(80)83213-4]
[7]
Shirataki, Y.; Yoshida, S.; Sugita, Y.; Yokoe, I.; Komatsu, M.; Ohyama, M.; Tanaka, T.; Iinuma, M. isoflavanones in roots of Sophora secundiflora. Phtpchemistry, 1997, 44(4), 715-718.
[http://dx.doi.org/10.1016/S0031-9422(96)00582-1]
[8]
Hashimoto, F.; Nonaka, G.; Nishioka, I. Tannins and related compounds. LVI.1) isolation of four new acylated flavan-3-ols from Oolong tea. (1). Chem. Pharm. Bull. (Tokyo), 1987, 35(2), 611-616.
[http://dx.doi.org/10.1248/cpb.35.611]
[9]
Uddin, K.; Sayeed, A.; Islam, A.; Rahman, A.A.; Ali, A.; Khan, G.R.M.A.M.; Sadik, M.G. Purification, characterization and cytotoxic activity of two flavonoids from Oroxylum indivum Vent. (Bignoniaceae). Asian J. Plant Sci., 2003, 2(6), 515-518.
[http://dx.doi.org/10.3923/ajps.2003.515.518]
[10]
a) Itokawa, H.; Suto, K.; Takeya, K. Studies on novel p-coumaroyl glucoside of apigenin and on other flavonoids isolated from Patchouli (Labiatae). Chem. Pharm. Bull. (Tokyo), 1981, 29(1), 254-256.
[http://dx.doi.org/10.1248/cpb.29.254]
b) Nonaka, G.; Kawahara, O. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea Leaf. (1). Chem. Pharm. Bull. (Tokyo), 1983, 31(11), 3706.
[http://dx.doi.org/10.1248/cpb.31.3906]
[11]
a) Wenkert, E.; Gottlieb, H.E. Carbon-13 nuclear magnetic resonance spectroscopy of flavonoid and isoflavonoid compounds. Phytochemistry, 1977, 352(2), 1811-1816.
[http://dx.doi.org/10.1016/0031-9422(71)85095-1]
b) Blunder, M.; Orthaber, A.; Bauer, R.; Bucar, F.; Kunert, O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem., 2017, 218, 600-609.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.077] [PMID: 27719955]
c) Arora, S.; Itankar, P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J. Tradit. Complement. Med., 2018, 8(4), 476-482.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.002] [PMID: 30302328]
[12]
Hayashi, T.; Thomson, R.H. Isoflavones from Dipteryx odorata. Phytochemistry, 1974, 13, 1943-1946.
[http://dx.doi.org/10.1016/0031-9422(74)85121-6]
[13]
Gottlieb, O.R. The Flavonoids. 1975, 346-348.
[14]
a) Wu, W.; Liu, Z.; Song, F.; Liu, S. Structural analysis of selected characteristic flavones by electrospray tandem mass spectrometry. Anal. Sci., 2004, 20(7), 1103-1105.
[http://dx.doi.org/10.2116/analsci.20.1103] [PMID: 15293412]
b) Sánchez-Rabaneda, F.; Jáuregui, O.; Casals, I.; Andrés-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventós, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom., 2003, 38(1), 35-42.
[http://dx.doi.org/10.1002/jms.395] [PMID: 12526004]
[15]
Britto, J.D.; Manickam, V.S.; Gopalakrishnan, S.; Ushioda, T.; Tanaka, N. Determination of aglycone chirality in dihydroflavonol 3-O-α-L-Rhamnosides by H-NMR spectroscopy. Chem. Pharm. Bull. (Tokyo), 1995, 43(2), 338-339.
[http://dx.doi.org/10.1248/cpb.43.338]
[16]
Rashwan, O.A. New phenylpropanoid glucosides from eucalyptus maculat. Molecules, 2002, 7, 75-80.
[http://dx.doi.org/10.3390/70100075]
[17]
Wagner, A.E.; Piegholdt, S.; Rabe, D.; Baenas, N.; Schloesser, A.; Eggersdorfer, M.; Stocker, A.; Rimbach, G. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster. Oncotarget, 2015, 6(31), 30568-30578.
[http://dx.doi.org/10.18632/oncotarget.5215] [PMID: 26375250]
[18]
Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22, 195-201.
[http://dx.doi.org/10.1093/bioinformatics/bti770]
[19]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Hariono, M.; Yusuf, M.; Wahab, H. Synthesis of novel flavone hydrazones: in-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem., 2015, 105, 156-170.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.017] [PMID: 26491979]
[20]
a) Taha, M.; Ismail, N.H.; Lalani, S.; Fatmi, M.Q. Atia-Tul-Wahab.; Siddiqui, S.; Khan, K.M.; Imran, S.; Choudhary, M.I. Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur. J. Med. Chem., 2015, 92, 387-400.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.009] [PMID: 25585009]
b) Taha, M.; Ismail, N.H.; Javaid, K.; Imran, S.; Anouar, H.; Wadood, A. Atia-Tul-Wahab; Ali, M.; Khan, K.M.; Saad, S.M.; Rahim, F.; Choudhary, M.I. Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorg. Chem., 2015, 63, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.001] [PMID: 26398141]
c) Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Ali, M.; Rehman, A.U. Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors: in silico studies and SAR predictions. MedChemComm, 2015, 6, 1826-1836.
[http://dx.doi.org/10.1039/C5MD00280J]
[21]
Taha, M.; Ismail, N.H.; Imran, S.; Rokei, M.Q.; Saad, S.M.; Khan, K.M. Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem., 2015, 23, 4155-4162.
[http://dx.doi.org/10.1016/j.bmc.2015.06.060]
[22]
Halgren, T.A.; Nachbar, R.B. Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comput. Chem., 1996, 17, 587-615.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587:AID-JCC4>3.0.CO;2-Q]
[23]
Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom., 2004, 39(1), 1-15.
[http://dx.doi.org/10.1002/jms.585] [PMID: 14760608]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy