Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

First Synthesis for Bis-Spirothiazolidine Derivatives as a Novel Heterocyclic Framework and Their Biological Activity

Author(s): Eman M. Flefel, Walaa I. El-Sofany*, Hanem M. Awad and Mahmoud El-Shahat

Volume 20, Issue 2, 2020

Page: [152 - 160] Pages: 9

DOI: 10.2174/1389557519666190920114852

Price: $65

Abstract

Background: Spirothiazolidines are versatile synthetic scaffold possessing wide spectrum of biological interests involving potential anticancer activity.

Objective: To report the first synthesis of Bis Spiro-thiazolidine as a novel heterocyclic ring system.

Methods: One-pot three-component reaction including condensation of p-phenyllene diamine; cyclohexanone and thioglycolic acid produced Spiro-thiazolidine 4, which underwent further condensation with cyclohexanone and thioglycolic acid with equimolar ratio to introduce Bis-Spiothiazolidine 5 as the first synthesis. Also, bis spiro-thiazolidine arylidene derivatives 6-13 were synthesized by the reaction of Bis-Spiothiazolidine 5 with different aromatic benzaldehydes.

Results: Four compounds 13, 12, 9 and 11 have shown highly significant anticancer activity compared to Doxorubicin® (positive control) against Human liver carcinoma (HepG2) and Human Normal Retina pigmented epithelium (RPE-1) cell lines.

Conclusion: The novel bis-spirothiazolidine deriviatives have been synthesized for the first time and showed excellent anticancer activities compare with the corresponding spirothiazolidine derivatives.

Keywords: Azaspiro[4.5]decan-3-one, arylidene, antimicrobial activity, anticancer activity, HepG2, RPE-1.

Graphical Abstract
[1]
Pires, I.M.; Olcina, M.M.; Anbalagan, S.; Pollard, J.R.; Reaper, P.M.; Charlton, P.A.; McKenna, W.G.; Hammond, E.M. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br. J. Cancer, 2012, 107(2), 291-299.
[http://dx.doi.org/10.1038/bjc.2012.265] [PMID: 22713662]
[2]
Fink, A.K.; German, R.R.; Heron, M.; Stewart, S.L.; Johnson, C.J.; Finch, J.L.; Yin, D.; Schaeffer, P.E. Accuracy of cancer mortality working group. Impact of using multiple causes of death codes to compute site-specific, death certificate-based cancer mortality statistics in the United States. Cancer Epidemiol., 2012, 36(1), 22-28.
[http://dx.doi.org/10.1016/j.canep.2011.07.004] [PMID: 21907006]
[3]
Rudat, V.; Brune-Erbe, I.; Noureldin, A.; Bushnag, Z.; Almuraikhi, N.; Altuwaijri, S. Epidemiology of breast cancer patients at a tertiary care center in the Eastern Province of Saudi Arabia. Gulf J. Oncolog., 2012, 1(11), 45-49.
[PMID: 22227545]
[4]
Lara, L.A.; de Andrade, J.M.; Consolo, F.D.; Romão, A.P. Women’s poorer satisfaction with their sex lives following gynecologic cancer treatment. Clin. J. Oncol. Nurs., 2012, 16(3), 273-277.
[http://dx.doi.org/10.1188/12.CJON.273-277] [PMID: 22641319]
[5]
Thomas, M. Molecular targeted therapy for hepatocellular carcinoma. J. Gastroenterol., 2009, 44(Suppl. 19), 136-141.
[http://dx.doi.org/10.1007/s00535-008-2252-z] [PMID: 19148808]
[6]
Johnson, K.A.; Brown, P.H. Drug development for cancer chemoprevention: focus on molecular targets. Semin. Oncol., 2010, 37(4), 345-358.
[http://dx.doi.org/10.1053/j.seminoncol.2010.05.012] [PMID: 20816505]
[7]
Upadhyay, A.; Srivastava, S.K.; Srivastava, S.D. Conventional and microwave assisted synthesis of some new N-[(4-oxo-2-substituted aryl -1, 3-thiazolidine)-acetamidyl]-5-nitroindazoles and its antimicrobial activity. Eur. J. Med. Chem., 2010, 45(9), 3541-3548.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.029] [PMID: 20570024]
[8]
Ban, J.O.; Kwak, D.H.; Oh, J.H.; Park, E.J.; Cho, M.C.; Song, H.S.; Song, M.J.; Han, S.B.; Moon, D.C.; Kang, K.W.; Hong, J.T. Suppression of NF-kappaB and GSK-3β is involved in colon cancer cell growth inhibition by the PPAR agonist troglitazone. Chem. Biol. Interact., 2010, 188(1), 75-85.
[http://dx.doi.org/10.1016/j.cbi.2010.06.001] [PMID: 20540935]
[9]
Taranalli, A.D.; Thimmaiah, N.V.; Srinivas, S.; Saravanan, E.; Bhat, A.R. Anti-inflammatory, analgesic and anti-ulcer activity of certain thiazolidinones. Asian J. Pharm. Clin. Res., 2009, 2, 209-211.
[10]
Kumar, A.; Rajput, C.S.; Bhati, S.K. Synthesis of 3-[4′-(p-chloro phenyl) thiazol-2′-yl]-2 [(substituted azetidinone/thiazolidinone) –amino methyl]-6-bromo quinazolin-4-ones. Bioorg. Med. Chem., 2007, 15, 3089-3096.
[http://dx.doi.org/10.1016/j.bmc.2007.01.042] [PMID: 17317192]
[11]
Kamila, S.; Ankati, H.; Biehl, E.R. An efficient microwave assisted synthesis of novel class of Rhodanine derivatives as potential HIV-1 and JSP-1 inhibitors. Tetrahedron Lett., 2011, 52(34), 4375-4377.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.114] [PMID: 21804651]
[12]
Solomon, V.R.; Haq, W.; Srivastava, K.; Puri, S.K.; Katti, S.B. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J. Med. Chem., 2007, 50(2), 394-398.
[http://dx.doi.org/10.1021/jm061002i] [PMID: 17228883]
[13]
Amin, K.M.; Rahman, D.E.; Al-Eryani, Y.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorg. Med. Chem., 2008, 16(10), 5377-5388.
[http://dx.doi.org/10.1016/j.bmc.2008.04.021] [PMID: 18467106]
[14]
Shih, M.H.; Ke, F.Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg. Med. Chem., 2004, 12(17), 4633-4643.
[http://dx.doi.org/10.1016/j.bmc.2004.06.033] [PMID: 15358290]
[15]
Gressier, B.; Lebegue, N.; Brunet, C.; Luyckx, M.; Dine, T.; Cazin, M.; Cazin, J.C. Scavenging of reactive oxygen species by letosteine, a molecule with two blocked-SH groups. Comparison with free-SH drugs. Pharm. World Sci., 1995, 17(3), 76-80.
[http://dx.doi.org/10.1007/BF01875435] [PMID: 7550053]
[16]
Zhang, Q.; Zhou, H.; Zhai, S.; Yan, B. Natural product-inspired synthesis of thiazolidine and thiazolidinone compounds and their anticancer activities. Curr. Pharm. Des., 2010, 16(16), 1826-1842.
[http://dx.doi.org/10.2174/138161210791208983] [PMID: 20337578]
[17]
Tomasić, T.; Masic, L.P. Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem., 2009, 16(13), 1596-1629.
[http://dx.doi.org/10.2174/092986709788186200] [PMID: 19442136]
[18]
Sharma, S.R.; Sharma, N. Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: An Indian perspective. Ann. Indian Acad. Neurol., 2008, 11(4), 231-235.
[http://dx.doi.org/10.4103/0972-2327.44558] [PMID: 19893679]
[19]
Rizzo, S. Clinical trial with arginine tidiacicate in symptomatic chronic persistent hepatitis. Int. J. Clin. Pharmacol. Res., 1986, 6(3), 225-230.
[PMID: 3527997]
[20]
Missbach, M.; Jagher, B.; Sigg, I.; Nayeri, S.; Carlberg, C.; Wiesenberg, I. Thiazolidine diones, specific ligands of the nuclear receptor retinoid Z receptor/retinoid acid receptor-related orphan receptor α with potent antiarthritic activity. J. Biol. Chem., 1996, 271(23), 13515-13522.
[http://dx.doi.org/10.1074/jbc.271.23.13515] [PMID: 8662835]
[21]
Gonzalez-Estrada, A.; Radojicic, C. Penicillin allergy: A practical guide for clinicians. Cleve. Clin. J. Med., 2015, 82(5), 295-300.
[http://dx.doi.org/10.3949/ccjm.82a.14111] [PMID: 25973877]
[22]
Menchikov, L.G.; Nefedov, O.M. Spiro [2.4] hepta-4,6-dienes: synthesis and chemical reactions. Russ. Chem. Rev., 1994, 63, 449-470.
[http://dx.doi.org/10.1070/RC1994v063n06ABEH000097]
[23]
Brandi, A.; Cicchi, S.; Cordero, F.M.; Goti, A. Heterocycles from alkylidenecyclopropanes. Chem. Rev., 2003, 103(4), 1213-1269.
[http://dx.doi.org/10.1021/cr010005u] [PMID: 12683782]
[24]
Carreńo, M.C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev., 1995, 95, 1717-1760.
[http://dx.doi.org/10.1021/cr00038a002]
[25]
Kholmanskii, A.S.; Dyumaev, K.M. The Photochemistry and Photophysics of Spiropyrans. Russ. Chem. Rev., 1987, 56, 136-151.
[http://dx.doi.org/10.1070/RC1987v056n02ABEH003262]
[26]
Aldoshin, S.M. Spiropyrans: Structural features and photochemical properties. Russ. Chem. Rev., 1990, 59, 663-685.
[http://dx.doi.org/10.1070/RC1990v059n07ABEH003549]
[27]
Lokshin, V.; Samat, A.; Metelitsa, A.V. Spirooxazines: Synthesis, structure, spectral and photochromic properties. Russ. Chem. Rev., 2002, 71, 893-916.
[http://dx.doi.org/10.1070/RC2002v071n11ABEH000763]
[28]
Flefel, E.M.; El-Sayed, W.A.; Mohamed, A.M.; El-Sofany, W.I.; Awad, H.M. Synthesis and anticancer activity of new 1-Thia-4-azaspiro[4.5]decane, their derived thiazolo pyrimidine and 1,3,4-thiadiazole thioglycosides. Molecules, 2017, 22, 1-13.
[http://dx.doi.org/10.3390/molecules22010170]
[29]
Flefel, E.M.; Sayed, H.H.; Hashem, A.I.; Saleh, D.O.; El-Sofany, W.; Abdel-Megeid, F.M.E. Hyperglycedemia and hypertriglyceridemia activities of newly synthesized compounds derived from 3′-(4-halophenyl) -5′-arylidene spiro(cyclohexane-(1,2′)-thiazolidin)-4′-one. Der Pharma Chem., 2015, 7, 142-157.
[30]
Flefel, E.M.; Sayed, H.H.; Hashem, A.I.; Shalaby, E.A.; El-Sofany, W.; Abdel-Megeid, F.M.E. Pharmacological evaluation of some novel synthesized compounds derived from spiro(cyclohexane-1,2′-thiazolidines). Med. Chem. Res., 2014, 23, 2515-2527.
[http://dx.doi.org/10.1007/s00044-013-0830-y]
[31]
Burkhard, J.A.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.; Carreira, E.M. Synthesis of azaspirocycles and their evaluation in drug discovery. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3524-3527.
[http://dx.doi.org/10.1002/anie.200907108] [PMID: 20544904]
[32]
Kouznetsov, V.V. Quinolines spiro annulated at heterocyclic fragment: Synthesis and properties. J. Heterocycl. Chem., 2005, 42, 39-59.
[http://dx.doi.org/10.1002/jhet.5570420107]
[33]
Cannon, J.G. Burger’s Medicinal Chemistry and Drug Discovery, 6th ed; John Wiley & Sons: New York, 2003, p. 696.
[34]
Martinez, G.R.; Grieco, P.A.; Williams, E.; Kanai, K.; Srinivasan, C.V. Stereocontrolled total synthesis of Antibiotic A-23187 (calcimycin). J. Am. Chem. Soc., 1982, 104, 1436-1438.
[http://dx.doi.org/10.1021/ja00369a054]
[35]
Rønnest, M.H.; Rebacz, B.; Markworth, L.; Terp, A.H.; Larsen, T.O.; Krämer, A.; Clausen, M.H. Synthesis and structure-activity relationship of griseofulvin analogues as inhibitors of centrosomal clustering in cancer cells. J. Med. Chem., 2009, 52(10), 3342-3347.
[http://dx.doi.org/10.1021/jm801517j] [PMID: 19402668]
[36]
McMorris, T.C.; Chimmani, R.; Alisala, K.; Staake, M.D.; Banda, G.; Kelner, M.J. Structure-activity studies of urea, carbamate, and sulfonamide derivatives of acylfulvene. J. Med. Chem., 2010, 53(3), 1109-1116.
[http://dx.doi.org/10.1021/jm901384s] [PMID: 20067264]
[37]
Poss, A.J.; Belter, R.K. The total synthesis of delesserine, leucodrin, and dilaspirolactone aglycone. Tetrahedron Lett., 1987, 28, 2555-2558.
[http://dx.doi.org/10.1016/S0040-4039(00)96146-X]
[38]
Franke, K.; Porzel, A.; Schmidt, J. Flavone-coumarin hybrids from Gnidia socotrana. Phytochemistry, 2002, 61(7), 873-878.
[http://dx.doi.org/10.1016/S0031-9422(02)00358-8] [PMID: 12453582]
[39]
Budavari, S. The Merk Index; 12th Edition, Merck & Co, INC Whitehouse station, NJ, 2001, p. 68.
[40]
Carmignani, M.; Volpe, A.R.; Monache, F.D.; Botta, B.; Espinal, R.; Bonnevaux, S.C.D.; Luca, C.D.; Botta, M.; Corelli, F.; Tafi, A.; Ripanti, G.; Monache, G.D. Novel Hypotensive Agents from Verbesina ca racasana. 6. Synthesis and Pharmacology of Caracasandiamide. J. Med. Chem., 1999, 42, 3116-3125.
[http://dx.doi.org/10.1021/jm991004l] [PMID: 10447956]
[41]
Smith, E.M.; Swiss, G.F.; Neustadt, B.R.; McNamara, P.; Gold, E.H.; Sybertz, E.J.; Baum, T. Angiotensin converting enzyme inhibitors: Spirapril and related compounds. J. Med. Chem., 1989, 32(7), 1600-1606.
[http://dx.doi.org/10.1021/jm00127a033] [PMID: 2544729]
[42]
Sarges, R.; Bordner, J.; Dominy, B.W.; Peterson, M.J.; Whipple, E.B. Synthesis, absolute configuration, and conformation of the aldose reductase inhibitor sorbinil. J. Med. Chem., 1985, 28(11), 1716-1720.
[http://dx.doi.org/10.1021/jm00149a030] [PMID: 3934383]
[43]
Inatomi, N.; Satoh, H.; Inada, I.; Hirata, T.; Nagaya, H.; Maki, Y. Gastric mucosal protection by spizofurone. Eur. J. Pharmacol., 1985, 112(1), 81-87.
[http://dx.doi.org/10.1016/0014-2999(85)90241-9] [PMID: 3860385]
[44]
Flefel, E.M.; El-Sofany, W.I.; El-Shahat, M.; Naqvi, A.; Assirey, E. Synthesis, molecular docking and in vitro screening of some newly synthesized triazolopyridine, pyridotriazine and pyridine pyrazole hybrid derivatives. Molecules, 2018, 23(10), 2548.
[http://dx.doi.org/10.3390/molecules23102548] [PMID: 30301217]
[45]
Soliman, H.A.; El-Shahat, M.; Soliman, A. Silica-supported Zinc Chloride (ZnCl2/SiO2)-induced efficient protocol for the synthesis of N-sulfonyl imines and 2-Arylbenzothiazole. Lett. Org. Chem., 2019, 16, 584-591.
[46]
Abdelhameed, R.M.; El-Sayed, H.A.; El-Shahat, M.; El-Sayed, A.A.; Darwesh, O.M. Novel triazolothiadiazole and triazolothiadiazine derivatives containing pyridine moiety: Design, synthesis, bactericidal and fungicidal activities. Curr. Bioact. Compd., 2018, 14, 169-179.
[http://dx.doi.org/10.2174/1573407213666170127095158]
[47]
Flefel, E.M.; Tantawy, W.A.; El-Sofany, W.I.; El-Shahat, M.; El-Sayed, A.A.; Abd-Elshafy, D.N. Synthesis of Some New Pyridazine Derivatives for Anti-HAV Evaluation. Molecules, 2017, 22(1), 1-15.
[http://dx.doi.org/10.3390/molecules22010148] [PMID: 28106751]
[48]
Qiao, X.; El-Shahat, M.; Ullah, B.; Bao, Z.; Xing, H.; Xiao, L.; Ren, Q.; Zhang, Z. Cyclopentadiene-based Brønsted acid as a new generation of organocatalyst for transfer hydrogenation of 2-substituted quinoline derivatives. Tetrahedron Lett., 2017, 58, 2050-2053.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.038]
[49]
Rashad, A.E.; Shamroukh, A.H.; El‐Hashash, M.A.; El‐Farargy, A.F.; Yousif, N.M.; Salama, M.A.; Mostafa, A.; El‐Shahat, M. Synthesis and anti‐avian influenza virus (H5N1) evaluation of some novel nicotinonitriles and their N‐acylic nucleosides. J. Heterocycl. Chem., 2012, 49, 1130-1135.
[http://dx.doi.org/10.1002/jhet.966]
[50]
El-Sayed, A.A.; Khalil, A.M.; El-Shahat, M.; Khaireldin, N.Y.; Rabie, S.T. Antimicrobial activity of PVC-pyrazolone-silver nanocomposites. J. Macromol. Sci. Part A Pure Appl. Chem., 2016, 53, 346-353.
[http://dx.doi.org/10.1080/10601325.2016.1166000]
[51]
El-Sayed, A.A.; Khaireldin, N.Y.; El-Shahat, M.; El-Hefny, E.A.; El-Saidi, M.M.T.; Ali, M.M.; Mahmoud, A.E. Antiproliferative activity for newly heterofunctionalized pyridine analogues. Ponte, 2016, 72, 106-118.
[52]
El-Sayed, A.A.; El-Shahat, M.; Rabie, S.T.; Flefel, E.M. Abd- Elshafy, D.N. New pyrimidine and fused pyrimidine derivatives: synthesis and anti-hepatitis a virus (HAV) evaluation. Int. J. Pharm., 2015, 5, 69-79.
[53]
Abdelhameed, R.M.; El-Shahat, M. Fabrication of ZIF-67@ MIL-125-NH2 nanocomposite with enhanced visible light photoreduction activity. J. Environ. Chem. Eng., 2019, 7, 103-194.
[54]
Shamroukh, A.H.; El-Shahat, M.; Drabowicz, J.; Ali, M.M.; Rashad, A.E.; Ali, H.S. Anticancer evaluation of some newly synthesized N-nicotinonitrile derivative. Eur. J. Med. Chem., 2013, 69, 521-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.005] [PMID: 24095746]
[55]
Rashad, A.E.; Shamroukh, A.H.; El-Hashash, M.A.; El-Farargy, A.F.; Yousif, N.M.; Salama, M.A.; Abdelwahed, N.M.A.; El-Shahat, M. 1,3-Bis(4-chlorophenyl)-2,3-epoxypropanone as synthons in synthesis of some interesting potential antimicrobial agents. Org. Chem.: Indian J., 2013, 9, 287-294.
[56]
Rashad, A.E.; Shamroukh, A.H.; Yousif, N.M.; Salama, M.A.; Ali, H.S.; Ali, M.M.; Mahmoud, A.E.; El-Shahat, M. New pyrimidinone and fused pyrimidinone derivatives as potential anticancer chemotherapeutics. Arch. Pharm. (Weinheim), 2012, 345(9), 729-738.
[http://dx.doi.org/10.1002/ardp.201200119] [PMID: 22674829]
[57]
Sayed, H.H.; Flefel, E.M.; Abd El-Fatah, A.M.; El-Sofany, W.I. Focus on the synthesis and reactions of some new pyridine carbonitrile derivatives as antimicrobial and antioxidant agents. Egypt. J. Chem., 2010, 53, 17-35.
[http://dx.doi.org/10.21608/ejchem.2010.1202]
[58]
El-Sayed, W.A.; El-Sofany, W.I.; Hussein, H.A.R.; Fathy, N.M. Synthesis and anticancer activity of new [(Indolyl)pyrazolyl]-1,3,4-oxadiazole thioglycosides and acyclic nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2017, 36(7), 474-495.
[http://dx.doi.org/10.1080/15257770.2017.1327665] [PMID: 28613111]
[59]
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[60]
Pfaller, M.A.; Burmeister, L.; Bartlett, M.S.; Rinaldi, M.G. Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol., 1988, 26(8), 1437-1441.
[PMID: 3049651]
[61]
National Committee for Clinical Laboratory Standards. 1998, 41, Performance antimicrobial susceptibility of Flavobacteria.
[62]
ational Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3; National Committee for Clinical Laboratory Standards: Villanova, PA, USA, 1993.
[63]
National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium- Forming Filamentous Fungi: Proposed Standard M38-A; NCCLS: Wayne, PA, USA, 2002.
[64]
National Committee for Clinical Laboratory Standards. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeast: Proposed Guideline M44-P; NCCLS: Wayne, PA, USA, 2003.
[65]
Liebowitz, L.D.; Ashbee, H.R.; Evans, E.G.V.; Chong, Y.; Mallatova, N.; Zaidi, M.; Gibbs, D. Global Antifungal Surveillance Group two-year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn. Microbiol. Infect. Dis., 2001, 40(1-2), 27-33.
[http://dx.doi.org/10.1016/S0732-8893(01)00243-7] [PMID: 11448560]
[66]
Matar, M.J.; Ostrosky-Zeichner, L.; Paetznick, V.L.; Rodriguez, J.R.; Chen, E.; Rex, J.H. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob. Agents Chemother., 2003, 47(5), 1647-1651.
[http://dx.doi.org/10.1128/AAC.47.5.1647-1651.2003] [PMID: 12709335]
[67]
Hamdy, N.A.; Anwar, M.M.; Abu-Zied, K.M.; Awad, H.M. Synthesis, tumor inhibitory and antioxidant activity of new polyfunctionally 2-substituted 5,6,7,8-tetrahydronaphthalene derivatives containing pyridine, thioxopyridine and pyrazolopyridine moieties. Acta Pol. Pharm., 2013, 70(6), 987-1001.
[PMID: 24383322]
[68]
Almajhdi, F.N.; Fouad, H.; Khalil, K.A.; Awad, H.M.; Mohamed, S.H.S.; Elsarnagawy, T.; Albarrag, A.M.; Al-Jassir, F.F.; Abdo, H.S. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J. Mater. Sci. Mater. Med., 2014, 25(4), 1045-1053.
[http://dx.doi.org/10.1007/s10856-013-5131-y] [PMID: 24375170]
[69]
Flefel, E.M.; El-Sofany, W.I.; Al-Harbi, R.A.; El-Shahat, M. Development of a novel series of anticancer and antidiabetic: Spirothiazolidines analogs. Molecules, 2019, 24, 2511.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy