Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Same Target, Different Therapeutic Outcomes: The Case of CAY10471 and Fevipiprant on CRTh2 Receptor in Treatment of Allergic Rhinitis and Asthma

Author(s): Abdul R. Issahaku, Clement Agoni, Opeyemi S. Soremekun, Patrick A. Kubi, Ransford O. Kumi, Fisayo A. Olotu and Mahmoud E.S. Soliman*

Volume 22, Issue 8, 2019

Page: [521 - 533] Pages: 13

DOI: 10.2174/1386207322666190919113006

Price: $65

Abstract

Objective: Prostaglandin 2 (PGD2) mediated signalling of Chemoattractant Receptorhomologous molecule expressed on Th2 cells (CRTh2) receptor has been implicated in the recruitment of inflammatory cells. This explains the design of highly selective compounds with innate abilities to antagonize PGD2-CRTh2 interactions and prevent pro-inflammatory allergies such as rhinitis and uncontrolled asthma. The development of PGD2-competitive CRTh2 binders; CAY10471 and Fevipiprant represent remarkable therapeutic progress even though they elicit disparate pharmacological propensities despite utilizing the same binding pocket.

Methods & Results: In this study, we seek to pinpoint the underlying phenomenon associated with differential CRTh2 therapeutic inhibition by CAY10471 and Fevipiprant using membraneembedded molecular dynamics simulation. Findings revealed that the common carboxylate group of both compounds elicited strong attractive charges with active site Arg170 and Lys210. Interestingly, a distinctive feature was the steady occurrence of high-affinity salt-bridges and an Arg170-mediated pi-cation interaction with the tetrahydrocarbozole ring of CAY10471. Further investigations into the active site motions of both ligands revealed that CAY10471 was relatively more stable. Comparative binding analyses also revealed that CAY10471 exhibited higher ΔG, indicating the cruciality of the ring stabilization role mediated by Arg170. Moreover, conformational analyses revealed that the inhibitory activity of CAY10471 was more prominent on CRTh2 compared to Fevipiprant.

Conclusions: These findings could further advance the strategic design of novel CRTh2 binders in the treatment of diseases related to pro-inflammatory allergies.

Keywords: Chemoattractant Receptor-homologous molecule expressed on Th2 cells (CRTh2), allergic rhinitis, asthma, PGD2 antagonists, CAY10471, Fevipiprant, PGD2-CRTh2 signaling, type 2 inflammation.

[1]
Singh, D.; Ravi, A.; Southworth, T. CRTH2 antagonists in asthma: Current perspectives. Clin. Pharmacol., 2017, 9, 165-173.
[http://dx.doi.org/10.2147/CPAA.S119295] [PMID: 29276415]
[2]
Nagata, K.; Hirai, H. The second PGD(2) receptor CRTH2: structure, properties, and functions in leukocytes. Prostaglandins Leukot. Essent. Fatty Acids, 2003, 69(2-3), 169-177.
[http://dx.doi.org/10.1016/S0952-3278(03)00078-4] [PMID: 12895600]
[3]
Mathiesen, J.M.; Christopoulos, A.; Ulven, T.; Royer, J.F.; Campillo, M.; Heinemann, A.; Pardo, L.; Kostenis, E. On the mechanism of interaction of potent surmountable and insurmountable antagonists with the prostaglandin D2 receptor CRTH2. Mol. Pharmacol., 2006, 69(4), 1441 LP-1453.
[http://dx.doi.org/10.1124/mol.105.017681]
[4]
Pettipher, R.; Whittaker, M. Update on the development of antagonists of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). From lead optimization to clinical proof-of-concept in asthma and allergic rhinitis. J. Med. Chem., 2012, 55(7), 2915-2931.
[http://dx.doi.org/10.1021/jm2013997] [PMID: 22224640]
[5]
Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.; Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med., 2001, 193(2), 255-261.
[http://dx.doi.org/10.1084/jem.193.2.255] [PMID: 11208866]
[6]
O’Sullivan, S. On the role of PGD2 metabolites as markers of mast cell activation in asthma. Acta Physiol. Scand. Suppl., 1999, 644, 1-74.
[PMID: 10352758]
[7]
Urade, Y.; Ujihara, M.; Horiguchi, Y.; Ikai, K.; Hayaishi, O. The major source of endogenous prostaglandin D2 production is likely antigen-presenting cells. Localization of glutathione-requiring prostaglandin D synthetase in histiocytes, dendritic, and Kupffer cells in various rat tissues. J. Immunol., 1989, 143(9), 2982-2989.
[PMID: 2509561]
[8]
Luna-Gomes, T.; Magalhães, K.G.; Mesquita-Santos, F.P.; Bakker-Abreu, I.; Samico, R.F.; Molinaro, R.; Calheiros, A.S.; Diaz, B.L.; Bozza, P.T.; Weller, P.F.; Bandeira-Melo, C. Eosinophils as a novel cell source of prostaglandin D2: Autocrine role in allergic inflammation. J. Immunol., 2011, 187(12), 6518-6526.
[http://dx.doi.org/10.4049/jimmunol.1101806] [PMID: 22102725]
[9]
Tanaka, K.; Ogawa, K.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. Cutting edge: Differential production of prostaglandin D2 by human helper T cell subsets. J. Immunol., 2000, 164, 2277 LP-2280.
[http://dx.doi.org/10.4049/jimmunol.164.5.2277] [PMID: 10679060]
[10]
Wang, L.; Yao, D.; Deepak, R.N.V.K.; Liu, H.; Xiao, Q.; Fan, H.; Gong, W.; Wei, Z.; Zhang, C.; Gong, W.; Wei, Z. Structures of the human PGD2 receptor CRTH2 reveal novel mechanisms for ligand recognition. Mol. Cell, 2018, 72(1), 48-59.e4.
[http://dx.doi.org/10.1016/j.molcel.2018.08.009] [PMID: 30220562]
[11]
Kupczyk, M.; Kuna, P. Targeting the PGD2/CRTH2/DP1 signaling pathway in asthma and allergic disease: Current status and future perspectives. Drugs, 2017, 77(12), 1281-1294.
[http://dx.doi.org/10.1007/s40265-017-0777-2] [PMID: 28612233]
[12]
Saunders, R.M.; Kaul, H.; Berair, R.; Singapuri, A.; Chernyavsky, I.; Chachi, L.; Biddle, M.; Sutcliffe, A.; Laurencin, M.; Bacher, G.; Bourne, M.; Pavord, I.D.; Wardlaw, A.; Siddiqui, S.; Kay, R.; Brook, B.S.; Smallwood, R.; Brightling, C.E. Fevipiprant (QAW039) Reduces Airway Smooth Muscle Mass in Asthma Via Antagonism of the Prostaglandin D2 Receptor 2 (DP2). In: B101. Advances in Asthma; American Thoracic Society International Conference Abstracts. American Thoracic Society, 2017; pp. A4677-A4677.
[13]
Xue, L.; Gyles, S.L.; Wettey, F.R.; Gazi, L.; Townsend, E.; Hunter, M.G.; Pettipher, R. Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J. Immunol., 2005, 175(10), 6531-6536.
[http://dx.doi.org/10.4049/jimmunol.175.10.6531] [PMID: 16272307]
[14]
Monneret, G.; Gravel, S.; Diamond, M.; Rokach, J.; Powell, W.S. Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood, 2001, 98(6), 1942-1948.
[http://dx.doi.org/10.1182/blood.V98.6.1942] [PMID: 11535533]
[15]
Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol., 1994, 12, 593-633.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.003113] [PMID: 8011292]
[16]
Yokomizo, T.; Kato, K.; Terawaki, K.; Izumi, T.; Shimizu, T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med., 2000, 192(3), 421-432.
[http://dx.doi.org/10.1084/jem.192.3.421] [PMID: 10934230]
[17]
Abe, H.; Takeshita, T.; Nagata, K.; Arita, T.; Endo, Y.; Fujita, T.; Takayama, H.; Kubo, M.; Sugamura, K. Molecular cloning, chromosome mapping and characterization of the mouse CRTH2 gene, a putative member of the leukocyte chemoattractant receptor family. Gene, 1999, 227(1), 71-77.
[http://dx.doi.org/10.1016/S0378-1119(98)00599-X] [PMID: 9931443]
[18]
Izumi, T.; Yokomizo, T.; Obinata, H.; Ogasawara, H.; Shimizu, T. Leukotriene receptors: Classification, gene expression, and signal transduction. J. Biochem., 2002, 132(1), 1-6.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003185] [PMID: 12097153]
[19]
Chiba, T.; Ueki, S.; Ito, W.; Kato, H.; Kamada, R.; Takeda, M.; Kayaba, H.; Furue, M.; Chihara, J. The opposing role of two prostaglandin D2 receptors, DP and CRTH2, in human eosinophil migration. Ann. Allergy Asthma Immunol., 2011, 106(6), 511-517.
[http://dx.doi.org/10.1016/j.anai.2011.01.027] [PMID: 21624751]
[20]
Schuligoi, R.; Sturm, E.; Luschnig, P.; Konya, V.; Philipose, S.; Sedej, M.; Waldhoer, M.; Peskar, B.A.; Heinemann, A. CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases. Pharmacology, 2010, 85(6), 372-382.
[http://dx.doi.org/10.1159/000313836] [PMID: 20559016]
[21]
Ulven, T.; Kostenis, E. Minor structural modifications convert the dual TP/CRTH2 antagonist ramatroban into a highly selective and potent CRTH2 antagonist. J. Med. Chem., 2005, 48(4), 897-900.
[http://dx.doi.org/10.1021/jm049036i] [PMID: 15715457]
[22]
Royer, J.F.; Schratl, P.; Lorenz, S.; Kostenis, E.; Ulven, T.; Schuligoi, R.; Peskar, B.A.; Heinemann, A. A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst. Allergy, 2007, 62(12), 1401-1409.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01452.x] [PMID: 17714552]
[23]
White, C.; Wright, A.; Brightling, C. Fevipiprant in the treatment of asthma. Expert Opin. Investig. Drugs, 2018, 27(2), 199-207.
[http://dx.doi.org/10.1080/13543784.2018.1432592] [PMID: 29363343]
[24]
Bateman, E.D.; Guerreros, A.G.; Brockhaus, F.; Holzhauer, B.; Pethe, A.; Kay, R.A.; Townley, R.G. Fevipiprant, an oral prostaglandin DP2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur. Respir. J., 2017, 50(2)1700670
[http://dx.doi.org/10.1183/13993003.00670-2017] [PMID: 28838980]
[25]
Hirai, H.; Tanaka, K.; Takano, S.; Ichimasa, M.; Nakamura, M.; Nagata, K. Cutting edge: Agonistic effect of indomethacin on a prostaglandin D2 receptor, CRTH2. J. Immunol., 2002, 168, 981 LP-985.
[26]
Sugimoto, H.; Shichijo, M.; Iino, T.; Manabe, Y.; Watanabe, A.; Shimazaki, M.; Gantner, F.; Bacon, K.B. An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY U3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J. Pharmacol. Exp. Ther., 2003, 305, 347-352.
[27]
Santus, P.; Radovanovic, D. Prostaglandin D2 receptor antagonists in early development as potential therapeutic options for asthma. Expert Opin. Investig. Drugs, 2016, 25(9), 1083-1092.
[http://dx.doi.org/10.1080/13543784.2016.1212838] [PMID: 27409410]
[28]
Barnes, N.; Pavord, I.; Chuchalin, A.; Bell, J.; Hunter, M.; Lewis, T.; Parker, D.; Payton, M.; Collins, L.P.; Pettipher, R.; Steiner, J.; Perkins, C.M.A. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy, 2012, 42(1), 38-48.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03813.x] [PMID: 21762224]
[29]
Busse, W.W.; Wenzel, S.E.; Meltzer, E.O.; Kerwin, E.M.; Liu, M.C.; Zhang, N.; Chon, Y.; Budelsky, A.L.; Lin, J.; Lin, S-L. Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J. Allergy Clin. Immunol., 2013, 131(2), 339-345.
[http://dx.doi.org/10.1016/j.jaci.2012.10.013] [PMID: 23174659]
[30]
Miller, D.; Wood, C.; Bateman, E.; LaForce, C.; Blatchford, J.; Hilbert, J.; Gupta, A.; Fowler, A.; Gupta, A.; Fowler, A. A randomized study of BI 671800, a CRTH2 antagonist, as add-on therapy in poorly controlled asthma. Allergy Asthma Proc., 2017, 38(2), 157-164.
[http://dx.doi.org/10.2500/aap.2017.38.4034] [PMID: 28234053]
[31]
Kuna, P.; Bjermer, L.; Tornling, G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma. Drug Des. Devel. Ther., 2016, 10, 2759-2770.
[http://dx.doi.org/10.2147/DDDT.S105142] [PMID: 27621597]
[32]
Erpenbeck, V.J.; Popov, T.A.; Miller, D.; Weinstein, S.F.; Spector, S.; Magnusson, B.; Osuntokun, W.; Goldsmith, P.; Weiss, M.; Beier, J. The oral CRTh2 antagonist QAW039 (fevipiprant): A phase II study in uncontrolled allergic asthma. Pulm. Pharmacol. Ther., 2016, 39, 54-63.
[http://dx.doi.org/10.1016/j.pupt.2016.06.005] [PMID: 27354118]
[33]
Pettipher, R.; Hunter, M.G.; Perkins, C.M.; Collins, L.P.; Lewis, T.; Baillet, M.; Steiner, J.; Bell, J.; Payton, M.A. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy, 2014, 69(9), 1223-1232.
[http://dx.doi.org/10.1111/all.12451] [PMID: 24866478]
[34]
Sykes, D.A.; Bradley, M.E.; Riddy, D.M.; Willard, E.; Reilly, J.; Miah, A.; Bauer, C.; Watson, S.J.; Sandham, D.A.; Dubois, G.; Charlton, S.J.; Institutes, N.; Sussex, W.; Uk, D.A.S. Fevipiprant (QAW039), a slowly dissociating CRTh2 antagonist with the potential for improved clinical efficacy. Mol. Pharmacol., 2016, 89(5), 593-605.
[http://dx.doi.org/10.1124/mol.115.101832] [PMID: 26916831]
[35]
Sandham, D.A.; Barker, L.; Brown, L.; Brown, Z.; Budd, D.; Charlton, S.J.; Chatterjee, D.; Cox, B.; Dubois, G.; Duggan, N.; Hall, E.; Hatto, J.; Maas, J.; Manini, J.; Profit, R.; Riddy, D.; Ritchie, C.; Sohal, B.; Shaw, D.; Stringer, R.; Sykes, D.A.; Thomas, M.; Turner, K.L.; Watson, S.J.; West, R.; Willard, E.; Williams, G.; Willis, J.; Brown, L.; Brown, Z.; Budd, D.; Charlton, S.J.; Chatterjee, D.; Cox, B.; Dubois, G.; Duggan, N.; Hall, E.; Hatto, J.; Maas, J.; Manini, J.; Profit, R.; Riddy, D.; Ritchie, C.; Sohal, B.; Stringer, R.; Sykes, D.A.; Thomas, M.; Turner, K.L.; Watson, S.J.; West, R.; Willard, E.; Williams, G.; Willis, J. Discovery of fevipiprant (NVP-QAW039), a potent and selective DP2 receptor antagonist for treatment of asthma. ACS Med. Chem. Lett., 2017, 8(5), 582-586.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00157] [PMID: 28523115]
[36]
Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: Orientations of proteins in membranes database. Bioinformatics, 2006, 22(5), 623-625.
[http://dx.doi.org/10.1093/bioinformatics/btk023] [PMID: 16397007]
[37]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, 926-935.
[http://dx.doi.org/10.1063/1.445869]
[38]
Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; Gohlke, H.; Goetz, A.W.; Greene, D.; Harris, R.; Homeyer, N.; Izadi, S.; Kovalenko, A.; Kurtzman, T.; Lee, T.S.; LeGrand, S.; Li, P.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Mermelstein, D.J.; Merz, K.M.; Miao, Y.; Monard, G.; Nguyen, C.; Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D.R.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shen, J.; Simmerling, C.L.; Smith, J.; Salomon-Ferrer, R.; Swails, J.; Walker, R.C.; Wang, J.; Wei, H.; Wolf, R.M.; Wu, X.; Xiao, L.; York, D.M.; Kollman, P.A. AMBER, University of California, San Francisco. , 2018.
[39]
Sprenger, K.G.; Jaeger, V.W.; Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B, 2015, 119(18), 5882-5895.
[http://dx.doi.org/10.1021/acs.jpcb.5b00689] [PMID: 25853313]
[40]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[41]
Dickson, C.J.; Madej, B.D.; Skjevik, Å.A.; Betz, R.M.; Teigen, K.; Gould, I.R.; Walker, R.C. Lipid14: The amber lipid force field. J. Chem. Theory Comput., 2014, 10(2), 865-879.
[http://dx.doi.org/10.1021/ct4010307] [PMID: 24803855]
[42]
Larini, L.; Mannella, R.; Leporini, D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J. Chem. Phys., 2007, 126(10)104101
[http://dx.doi.org/10.1063/1.2464095] [PMID: 17362055]
[43]
Kao, C.C.; Parulekar, A.D. Spotlight on fevipiprant and its potential in the treatment of asthma: Evidence to date. J. Asthma Allergy, 2019, 12, 1-5.
[http://dx.doi.org/10.2147/JAA.S167973] [PMID: 30662272]
[44]
BIOVIA, D.S. Discovery Studio. 2017.
[45]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[46]
Wang, C.; Greene, D.; Xiao, L.; Qi, R.; Luo, R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci., 2018, 4, 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[47]
Badichi Akher, F.; Farrokhzadeh, A.; Olotu, F.A.; Agoni, C.; Soliman, M.E.S. The irony of chirality - unveiling the distinct mechanistic binding and activities of 1-(3-(4-amino-5-(7-methoxy-5-methylbenzo[b]thiophen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl) pyrrolidin-1-yl)prop-2-en-1-one enantiomers as irreversible covalent FGFR4 inhibitors. Org. Biomol. Chem., 2019, 17(5), 1176-1190.
[http://dx.doi.org/10.1039/C8OB02811G] [PMID: 30644960]
[48]
Agoni, C.; Ramharack, P.; Soliman, M.E. Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights. Future Med. Chem., 2018, 10(14), 1665-1675.
[http://dx.doi.org/10.4155/fmc-2017-0197] [PMID: 29957065]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy