Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Rhodiola and salidroside in the treatment of metabolic disorders

Author(s): Xiang-Li Bai, Xiu-Ling Deng, Guang-Jie Wu, Wen-Jing Li and Si Jin*

Volume 19, Issue 19, 2019

Page: [1611 - 1626] Pages: 16

DOI: 10.2174/1389557519666190903115424

Price: $65

Abstract

Over the past three decades, the knowledge gained about the mechanisms that underpin the potential use of Rhodiola in stress- and ageing-associated disorders has increased, and provided a universal framework for studies that focused on the use of Rhodiola in preventing or curing metabolic diseases. Of particular interest is the emerging role of Rhodiola in the maintenance of energy homeostasis. Moreover, over the last two decades, great efforts have been undertaken to unravel the underlying mechanisms of action of Rhodiola in the treatment of metabolic disorders. Extracts of Rhodiola and salidroside, the most abundant active compound in Rhodiola, are suggested to provide a beneficial effect in mental, behavioral, and metabolic disorders. Both in vivo and ex vivo studies, Rhodiola extracts and salidroside ameliorate metabolic disorders when administered acutely or prior to experimental injury. The mechanism involved includes multi-target effects by modulating various synergistic pathways that control oxidative stress, inflammation, mitochondria, autophagy, and cell death, as well as AMPK signaling that is associated with possible beneficial effects on metabolic disorders. However, evidence-based data supporting the effectiveness of Rhodiola or salidroside in treating metabolic disorders is limited. Therefore, a comprehensive review of available trials showing putative treatment strategies of metabolic disorders that include both clinical effective perspectives and fundamental molecular mechanisms is warranted. This review highlights studies that focus on the potential role of Rhodiola extracts and salidroside in type 2 diabetes and atherosclerosis, the two most common metabolic diseases.

Keywords: AMPK, autophagy, metabolic disorders, mitochondria, Rhodiola, Salidroside.

Graphical Abstract
[1]
Rohloff, J. Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry, 2002, 59(6), 655-661.
[2]
Panossian, A.; Wagner, H. Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration. Phytother. Res., 2005, 19(10), 819-838.
[3]
Kelly, G.S. Rhodiola rosea: A possible plant adaptogen. Altern. Med. Rev., 2001, 6(3), 293-302.
[4]
Brown, R.; Gerbarg, P.; Ramazanov, Z. Rhodiola rosea; a phytomedicinal overview. HerbalGram, 2002, 56, 40-52.
[5]
Ming, D.S.; Hillhouse, B.J.; Guns, E.S.; Eberding, A.; Xie, S.; Vimalanathan, S.; Towers, G.N. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytother. Res., 2005, 19(9), 740-743.
[6]
Aksenova, R.; Zotova, M.; Nekhoda, M.; Cherdintsev, S. Comparative characteristics of the stimulating and adaptogenic effects of Rhodiola rosea preparations. Stimul. Central Nervous Syst., 1968, 2(1), 3-12.
[7]
Hung, S.K.; Perry, R.; Ernst, E. The effectiveness and efficacy of Rhodiola rosea L.: A systematic review of randomized clinical trials. Phytomedicine, 2011, 18(4), 235-244.
[8]
Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 2010, 17(7), 481-493.
[9]
Panossian, A.; Hamm, R.; Wikman, G.; Efferth, T. Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: An interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine, 2014, 21(11), 1325-1348.
[10]
Khanum, F.; Bawa, A.S.; Singh, B. Rhodiola rosea: A versatile adaptogen. Compr. Rev. Food Sci. Food Saf., 2005, 4(3), 55-62.
[11]
Jafari, M.; Felgner, J.S. Bussel, II; Hutchili, T.; Khodayari, B.; Rose, M.R.; Vince-Cruz, C.; Mueller, L.D. Rhodiola: A promising anti-aging Chinese herb. Rejuvenation Res., 2007, 10(4), 587-602.
[12]
Panossian, A.G. Adaptogens: Tonic herbs for fatigue and stress. Altern. Complement. Ther., 2003, 9(6), 327-331.
[13]
Nabavi, S.F.; Braidy, N.; Orhan, I.E.; Badiee, A.; Daglia, M.; Nabavi, S.M. Rhodiola rosea L. and Alzheimer’s Disease: From farm to pharmacy. Phytother. Res., 2016, 30(4), 532-539.
[14]
Amsterdam, J.D.; Panossian, A.G. Rhodiola rosea L. as a putative botanical antidepressant. Phytomedicine, 2016, 23(7), 770-783.
[15]
Panossian, A.; Nikoyan, N.; Ohanyan, N.; Hovhannisyan, A.; Abrahamyan, H.; Gabrielyan, E.; Wikman, G. Comparative study of Rhodiola preparations on behavioral despair of rats. Phytomedicine, 2008, 15(1-2), 84-91.
[16]
Bystritsky, A.; Kerwin, L.; Feusner, J.D. A pilot study of Rhodiola rosea (Rhodax) for generalized anxiety disorder (GAD). J. Altern. Complement. Med., 2008, 14(2), 175-180.
[17]
Darbinyan, V.; Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Malmstrom, C.; Panossian, A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord. J. Psychiatry, 2007, 61(5), 343-348.
[18]
Darbinyan, V.; Kteyan, A.; Panossian, A.; Gabrielian, E.; Wikman, G.; Wagner, H. Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine, 2000, 7(5), 365-371.
[19]
Olsson, E.M.; von Scheele, B.; Panossian, A.G. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med., 2009, 75(2), 105-112.
[20]
Spasov, A.A.; Wikman, G.K.; Mandrikov, V.B.; Mironova, I.A.; Neumoin, V.V. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine, 2000, 7(2), 85-89.
[21]
Petkov, V.D.; Yonkov, D.; Mosharoff, A.; Kambourova, T.; Alova, L.; Petkov, V.V.; Todorov, I. Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory. Acta Physiol. Pharmacol. Bulg., 1986, 12(1), 3-16.
[22]
Shevtsov, V.A.; Zholus, B.I.; Shervarly, V.I.; Vol’skij, V.B.; Korovin, Y.P.; Khristich, M.P.; Roslyakova, N.A.; Wikman, G. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine, 2003, 10(2-3), 95-105.
[23]
Huang, S.C.; Lee, F.T.; Kuo, T.Y.; Yang, J.H.; Chien, C.T. Attenuation of long-term Rhodiola rosea supplementation on exhaustive swimming-evoked oxidative stress in the rat. Chin. J. Physiol., 2009, 52(5), 316-324.
[24]
Wing, S.L.; Askew, E.W.; Luetkemeier, M.J.; Ryujin, D.T.; Kamimori, G.H.; Grissom, C.K. Lack of effect of Rhodiola or oxygenated water supplementation on hypoxemia and oxidative stress. Wilderness Environ. Med., 2003, 14(1), 9-16.
[25]
Xu, M.C.; Shi, H.M.; Wang, H.; Gao, X.F. Salidroside protects against hydrogen peroxide-induced injury in HUVECs via the regulation of REDD1 and mTOR activation. Mol. Med. Rep., 2013, 8(1), 147-153.
[26]
Maslova, L.V.; Kondrat’ev, B.; Maslov, L.N.; Lishmanov Iu, B. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksp. Klin. Farmakol., 1994, 57(6), 61-63.
[27]
Alameddine, A.; Fajloun, Z.; Bourreau, J.; Gauquelin-Koch, G.; Yuan, M.; Gauguier, D.; Derbre, S.; Ayer, A.; Custaud, M.A.; Navasiolava, N. The cardiovascular effects of salidroside in the Goto-Kakizaki diabetic rat model. J. Physiol. Pharmacol., 2015, 66(2), 249-257.
[28]
Wang, X.L.; Wang, X.; Xiong, L.L.; Zhu, Y.; Chen, H.L.; Chen, J.X.; Wang, X.X.; Li, R.L.; Guo, Z.Y.; Li, P.; Jiang, W. Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis. J. Cardiovasc. Pharmacol., 2013, 62(6), 512-523.
[29]
Xu, Z-W.; Chen, X.; Jin, X-H.; Meng, X-Y.; Zhou, X.; Fan, F-X.; Mao, S-Y.; Wang, Y.; Zhang, W-C.; Shan, N-N. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J. Proteomics, 2016, 130(1), 211-220.
[30]
Hu, X.; Lin, S.; Yu, D.; Qiu, S.; Zhang, X.; Mei, R. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol. Toxicol., 2010, 26(6), 499-507.
[31]
Gao, D.; Li, Q.; Liu, Z.; Feng, J.; Li, J.; Han, Z.; Duan, Y. Antidiabetic potential of Rhodiola sachalinensis root extract in streptozotocin-induced diabetic rats. Methods Find. Exp. Clin. Pharmacol., 2009, 31(6), 375-381.
[32]
Li, F.; Tang, H.; Xiao, F.; Gong, J.; Peng, Y.; Meng, X. Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules, 2011, 16(12), 9912-9924.
[33]
Niu, C.S.; Chen, L.J.; Niu, H.S. Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats. BMC Complement. Altern. Med., 2014, 14(1), 20.
[34]
Zhang, X.R.; Fu, X.J.; Zhu, D.S.; Zhang, C.Z.; Hou, S.; Li, M.; Yang, X.H. Salidroside-regulated lipid metabolism with down-regulation of miR-370 in type 2 diabetic mice. Eur. J. Pharmacol., 2016, 779(1), 46-52.
[35]
Arora, R.; Chawla, R.; Sagar, R.; Prasad, J.; Singh, S.; Kumar, R.; Sharma, A.; Singh, S.; Sharma, R.K. Evaluation of radioprotective activities of Rhodiola imbricata Edgew - A high altitude plant. Mol. Cell. Biochem., 2005, 273(1-2), 209-223.
[36]
Ahmed, M.; Henson, D.A.; Sanderson, M.C.; Nieman, D.C.; Zubeldia, J.M.; Shanely, R.A. Rhodiola rosea Exerts antiviral activity in athletes following a competitive marathon race. Front. Nutr., 2015, 2(1), 24.
[37]
Déciga-Campos, M.; González-Trujano, M.E.; Ventura‐Martínez, R.; Montiel-Ruiz, R.M.; Ángeles-López, G.E.; Brindis, F. Antihyperalgesic activity of Rhodiola Rosea in a diabetic rat model. Drug Res., 2016, 77(1), 29-36.
[38]
Panossian, A.; Hamm, R.; Kadioglu, O.; Wikman, G.; Efferth, T. Synergy and antagonism of active constituents of ADAPT-232 on transcriptional level of metabolic regulation of isolated neuroglial cells. Front. Neurosci., 2013, 7, 16.
[39]
Raffaitin, C.; Gin, H.; Empana, J.P.; Helmer, C.; Berr, C.; Tzourio, C.; Portet, F.; Dartigues, J.F.; Alperovitch, A.; Barberger-Gateau, P. Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: The Three-City Study. Diabetes Care, 2009, 32(1), 169-174.
[40]
Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Altern. Med. Rev., 2009, 14(4), 373.
[41]
Lakka, H.M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA, 2002, 288(21), 2709-2716.
[42]
Alberti, K.G.; Zimmet, P.; Shaw, J.; Group, I.D.F.E.T.F.C. The metabolic syndrome--a new worldwide definition. Lancet, 2005, 366(9491), 1059-1062.
[43]
Libby, P.; Bornfeldt, K.E.; Tall, A.R. Atherosclerosis successes, surprises, and future challenges. Circ. Res., 2016, 118(4), 531-534.
[44]
Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res., 2016, 118(4), 535-546.
[45]
Nanditha, A.; Ma, R.C.; Ramachandran, A.; Snehalatha, C.; Chan, J.C.; Chia, K.S.; Shaw, J.E.; Zimmet, P.Z. Diabetes in Asia and the Pacific: Implications for the global epidemic. Diabetes Care, 2016, 39(3), 472-485.
[46]
Bremer, A.A.; Mietus-Snyder, M.; Lustig, R.H. Toward a unifying hypothesis of metabolic syndrome. Pediatrics, 2012, 129(3), 557-570.
[47]
Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech., 2009, 2(5-6), 231-237.
[48]
Davies, M.J.; Lawrence, I.G. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction): Theory and practice. Diabetes Obes. Metab., 2002, 4(5), 289-295.
[49]
Cartee, G.D.; Wojtaszewski, J.F. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl. Physiol. Nutr. Metab., 2007, 32(3), 557-566.
[50]
Saltiel, A.R. Series introduction: The molecular and physiological basis of insulin resistance: Emerging implications for metabolic and cardiovascular diseases. J. Clin. Invest., 2000, 106(2), 163-164.
[51]
Eckel, R.H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N. Engl. J. Med., 1989, 320(16), 1060-1068.
[52]
Glass, C.K.; Olefsky, J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab., 2012, 15(5), 635-645.
[53]
Jornayvaz, F.R.; Shulman, G.I. Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab., 2012, 15(5), 574-584.
[54]
Matthaei, S.; Stumvoll, M.; Kellerer, M.; Haring, H.U. Pathophysiology and pharmacological treatment of insulin resistance. Endocr. Rev., 2000, 21(6), 585-618.
[55]
Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med., 2011, 51(5), 993-999.
[56]
Basaranoglu, M.; Basaranoglu, G. Pathophysiology of insulin resistance and steatosis in patients with chronic viral hepatitis. World J. Gastroenterol., 2011, 17(36), 4055-4062.
[57]
Taniguchi, A.; Fukushima, M.; Kuroe, A.; Sakaguchi, K.; Hashimoto, H.; Yoshioka, I.; Kitatani, N.; Tsuji, T.; Ohya, M.; Ohgushi, M.; Nagasaka, S.; Isogai, O.; Nakai, Y.; Inagaki, N.; Seino, Y. Metabolic syndrome, insulin resistance, and atherosclerosis in Japanese type 2 diabetic patients. Metabolism, 2007, 56(8), 1099-1103.
[58]
Nigro, J.; Osman, N.; Dart, A.M.; Little, P.J. Insulin resistance and atherosclerosis. Endocr. Rev., 2006, 27(3), 242-259.
[59]
Semenkovich, C.F. Insulin resistance and atherosclerosis. J. Clin. Invest., 2006, 116(7), 1813-1822.
[60]
Barac, A.; Campia, U.; Panza, J.A. Methods for evaluating endothelial function in humans. Hypertension, 2007, 49(4), 748-760.
[61]
Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord., 2013, 14(1), 5-12.
[62]
Hardie, D.G. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol., 2015, 33(1), 1-7.
[63]
Ou, T.; Hou, X.; Guan, S.; Dai, J.; Han, W.; Li, R.; Wang, W.; Qu, X.; Zhang, M. Targeting AMPK signalling pathway with natural medicines for atherosclerosis therapy: An integration of in silico screening and in vitro assay. Nat. Prod. Res., 2015, 30(11), 1-8.
[64]
Zhang, B.B.; Zhou, G.; Li, C. AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metab., 2009, 9(5), 407-416.
[65]
Sanders, M.J.; Grondin, P.O.; Hegarty, B.D.; Snowden, M.A.; Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J., 2007, 403(1), 139-148.
[66]
Ruderman, N.B.; Carling, D.; Prentki, M.; Cacicedo, J.M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest., 2013, 123(7), 2764-2772.
[67]
Barhwal, K.; Das, S.K.; Kumar, A.; Hota, S.K.; Srivastava, R.B. Insulin receptor A and Sirtuin 1 synergistically improve learning and spatial memory following chronic salidroside treatment during hypoxia. J. Neurochem., 2015, 135(2), 332-346.
[68]
Lee, S.Y.; Lai, F.Y.; Shi, L.S.; Chou, Y.C.; Yen, I.C.; Chang, T.C. Rhodiola crenulata extract suppresses hepatic gluconeogenesis via activation of the AMPK pathway. Phytomedicine, 2015, 22(4), 477-486.
[69]
Lin, K-T.; Hsu, S-W.; Lai, F-Y.; Chang, T-C.; Shi, L-S.; Lee, S-Y. Rhodiola crenulata extract regulates hepatic glycogen and lipid metabolism via activation of the AMPK pathway. BMC Complement. Altern. Med., 2016, 16(1), 127.
[70]
Li, H.B.; Ge, Y.K.; Zheng, X.X.; Zhang, L. Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase. Eur. J. Pharmacol., 2008, 588(2-3), 165-169.
[71]
Zheng, T.; Yang, X.Y.; Wu, D.; Xing, S.S.; Bian, F.; Li, W.J.; Chi, J.Y.; Bai, X.L.; Wu, G.J.; Chen, X.Q.; Zhang, Y.H.; Jin, S. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3 pathway. Br. J. Pharmacol., 2015, 172(13), 3284-3301.
[72]
Wang, M.; Luo, L.; Yao, L.; Wang, C.; Jiang, K.; Liu, X.; Xu, M.; Shen, N.; Guo, S.; Sun, C.; Yang, Y. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus. Sci. Rep., 2016, 6(1), 25399.
[73]
Li, H.; Ying, H.; Hu, A.; Li, D.; Hu, Y. Salidroside Modulates insulin signaling in a rat model of nonalcoholic steatohepatitis. Evid. Based Complement. Alternat. Med., 2017, 20179651371
[74]
Wu, D.; Yang, X.; Zheng, T.; Xing, S.; Wang, J.; Chi, J.; Bian, F.; Li, W.; Xu, G.; Bai, X.; Wu, G.; Jin, S. A novel mechanism of action for salidroside to alleviate diabetic albuminuria: Effects on albumin transcytosis across glomerular endothelial cells. Am. J. Physiol. Endocrinol. Metab, 2015, ajpendo 00391, 2015.
[75]
Ouchi, N.; Kobayashi, H.; Kihara, S.; Kumada, M.; Sato, K.; Inoue, T.; Funahashi, T.; Walsh, K. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem., 2004, 279(2), 1304-1309.
[76]
Shen, W.; Fan, W.H.; Shi, H.M. Effects of rhodiola on expression of vascular endothelial cell growth factor and angiogenesis in aortic atherosclerotic plaque of rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2008, 28(11), 1022-1025.
[77]
Zhang, B.C.; Li, W.M.; Guo, R.; Xu, Y.W. Salidroside decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice. Evid. Based Complement. Alternat. Med., 2012, 2012607508
[78]
Leung, S.B.; Zhang, H.N.; Lau, C.W.; Huang, Y.; Lin, Z.X. Salidroside improves homocysteine-Induced endothelial dysfunction by reducing oxidative stress. Evid. Based Complement. Alternat. Med, 2013, 2013
[79]
Xing, S.S.; Yang, X.Y.; Zheng, T.; Li, W.J.; Wu, D.; Chi, J.Y.; Bian, F.; Bai, X.L.; Wu, G.J.; Zhang, Y.Z.; Zhang, C.T.; Zhang, Y.H.; Li, Y.S.; Jin, S. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul. Pharmacol., 2015, 72(1), 141-152.
[80]
Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol., 2015, 33(1), 111-118.
[81]
Kim, J.A.; Wei, Y.; Sowers, J.R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res., 2008, 102(4), 401-414.
[82]
Ren, J.; Pulakat, L.; Whaley-Connell, A.; Sowers, J.R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. (Berl.), 2010, 88(10), 993-1001.
[83]
Chattopadhyay, M.; Khemka, V.K.; Chatterjee, G.; Ganguly, A.; Mukhopadhyay, S.; Chakrabarti, S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol. Cell. Biochem., 2015, 399(1-2), 95-103.
[84]
Du Toit, A. Protein degradation: An alternative route for mitochondrial quality control. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 150-151.
[85]
Andreux, P.A.; Houtkooper, R.H.; Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov., 2013, 12(6), 465-483.
[86]
Bray, N. Metabolic disorders: Pumping up muscle mitochondria. Nat. Rev. Drug Discov., 2014, 13(7), 496.
[87]
Litvinova, L.; Atochin, D.N.; Fattakhov, N.; Vasilenko, M.; Zatolokin, P.; Kirienkova, E. Nitric oxide and mitochondria in metabolic syndrome. Front. Physiol., 2015, 6(1), 20.
[88]
Sorriento, D.; Pascale, A.V.; Finelli, R.; Carillo, A.L.; Annunziata, R.; Trimarco, B.; Iaccarino, G. Targeting mitochondria as therapeutic strategy for metabolic disorders. Scientif. World J., 2014, 2014604685
[89]
Xing, S.; Yang, X.; Li, W.; Bian, F.; Wu, D.; Chi, J.; Xu, G.; Zhang, Y.; Jin, S. Salidroside stimulates mitochondrial biogenesis and protects against H(2)O(2)-induced endothelial dysfunction. Oxid. Med. Cell. Longev., 2014, 2014904834
[90]
Abidov, M.; Crendal, F.; Grachev, S.; Seifulla, R.; Ziegenfuss, T. Effect of extracts from Rhodiola rosea and Rhodiola crenulata (Crassulaceae) roots on ATP content in mitochondria of skeletal muscles. Bull. Exp. Biol. Med., 2003, 136(6), 585-587.
[91]
Ping, Z.; Zhang, L.-f.; Cui, Y.-j.; Chang, Y.-m.; Jiang, C.-w.; Meng, Z.-z.; Xu, P.; Liu, H.-y.; Wang, D.-y.; Cao, X.-b. The protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1α–NRF1/NRF2 pathway and mitochondrial respiratory function in rats. Oxid. Med. Cell. Longev, 2015, 2015.
[92]
Patten, I.S.; Arany, Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol. Metab., 2012, 23(2), 90-97.
[93]
Scarpulla, R.C. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann. N. Y. Acad. Sci., 2008, 1147, 321-334.
[94]
Kadowaki, D.; Sakaguchi, S.; Miyamoto, Y.; Taguchi, K.; Muraya, N.; Narita, Y.; Sato, K.; Chuang, V.T.; Maruyama, T.; Otagiri, M.; Hirata, S. Direct radical scavenging activity of benzbromarone provides beneficial antioxidant properties for hyperuricemia treatment. Biol. Pharm. Bull., 2015, 38(3), 487-492.
[95]
Widlansky, M.E.; Gutterman, D.D. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid. Redox Signal., 2011, 15(6), 1517-1530.
[96]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[97]
Chen, D.; Fan, J.; Wang, P.; Zhu, L.; Jin, Y.; Peng, Y.; Du, S. Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem., 2012, 134(4), 2126-2133.
[98]
Ohsugi, M.; Fan, W.; Hase, K.; Xiong, Q.; Tezuka, Y.; Komatsu, K.; Namba, T.; Saitoh, T.; Tazawa, K.; Kadota, S. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra. J. Ethnopharmacol., 1999, 67(1), 111-119.
[99]
Lee, M.W.; Lee, Y.A.; Park, H.M.; Toh, S.H.; Lee, E.J.; Jang, H.D.; Kim, Y.H. Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor. Arch. Pharm. Res., 2000, 23(5), 455-458.
[100]
Schriner, S.E.; Avanesian, A.; Liu, Y.; Luesch, H.; Jafari, M. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses. Free Radic. Biol. Med., 2009, 47(5), 577-584.
[101]
Calcabrini, C.; De Bellis, R.; Mancini, U.; Cucchiarini, L.; Potenza, L.; De Sanctis, R.; Patrone, V.; Scesa, C.; Dacha, M. Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes. Arch. Dermatol. Res., 2010, 302(3), 191-200.
[102]
Qu, Z.Q.; Zhou, Y.; Zeng, Y.S.; Li, Y.; Chung, P. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects. Biomed. Environ. Sci., 2009, 22(4), 318-326.
[103]
Senthilkumar, R.; Parimelazhagan, T.; Chaurasia, O.P.; Srivastava, R.B. Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells. Asian Pac. J. Trop. Med., 2013, 6(1), 11-19.
[104]
Chen, C.H.C. H.C.; Chu, Y.T.; Ho, H.Y.; Chen, P.Y.; Lee, T.H.; Lee, C.K. Antioxidant activity of some plant extracts towards xanthine oxidase, lipoxygenase and tyrosinase. Molecule, 2009, 14(8), 12.
[105]
Kim, S.H.; Hyun, S.H.; Choung, S.Y. Antioxidative effects of Cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice. Biofactors, 2006, 26(3), 209-219.
[106]
Wang, Y.; Xu, P.; Wang, Y.; Liu, H.; Zhou, Y.; Cao, X. The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. Oxid. Med. Cell. Longev., 2013, 2013507832
[107]
Zhang, J.; Zhen, Y.F.; Pu, B.C. R.; Song, L.G.; Kong, W.N.; Shao, T.M.; Li, X.; Chai, X.Q. Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav. Brain Res., 2013, 244(1), 70-81.
[108]
Mao, G.X.; Wang, Y.; Qiu, Q.; Deng, H.B.; Yuan, L.G.; Li, R.G.; Song, D.Q.; Li, Y.Y.; Li, D.D.; Wang, Z. Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech. Ageing Dev., 2010, 131(11-12), 723-731.
[109]
Shi, K.; Wang, X.; Zhu, J.; Cao, G.; Zhang, K.; Su, Z. Salidroside protects retinal endothelial cells against hydrogen peroxide-induced injury via modulating oxidative status and apoptosis. Biosci. Biotechnol. Biochem., 2015, 79(9), 1406-1413.
[110]
Burkle, A.; Virag, L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med., 2013, 34(6), 1046-1065.
[111]
Li, X.; Erden, O.; Li, L.; Ye, Q.; Wilson, A.; Du, W. Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress. Antioxid. Redox Signal., 2014, 20(12), 1853-1865.
[112]
Li, X.; Sipple, J.; Pang, Q.; Du, W. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance. Blood, 2012, 119(18), 4162-4173.
[113]
Lee, Y.; Jung, J.C.; Jang, S.; Kim, J.; Ali, Z.; Khan, I.A.; Oh, S. Anti-Inflammatory and neuroprotective effects of constituents isolated from Rhodiola rosea. Evid. Based Complement. Alternat. Med., 2013, 2013514049
[114]
Pooja; Bawa, A.S.; Khanum, F. Anti-inflammatory activity of Rhodiola rosea--”a second-generation adaptogen. Phytother. Res., 2009, 23(8), 1099-1102.
[115]
Skopnska-Rozewska, E.; Wojcik, R.; Siwicki, A.K.; Sommer, E.; Wasiutynski, A.; Furmanowa, M.; Malinowski, M.; Mazurkiewicz, M. The effect of Rhodiola quadrifida extracts on cellular immunity in mice and rats. Pol. J. Vet. Sci., 2008, 11(2), 105-111.
[116]
Abidov, M.; Grachev, S.; Seifulla, R.D.; Ziegenfuss, T.N. Extract of Rhodiola rosea radix reduces the level of C-reactive protein and creatinine kinase in the blood. Bull. Exp. Biol. Med., 2004, 138(1), 63-64.
[117]
Dehghan, A.; Kardys, I.; de Maat, M.P.; Uitterlinden, A.G.; Sijbrands, E.J.; Bootsma, A.H.; Stijnen, T.; Hofman, A.; Schram, M.T.; Witteman, J.C. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes, 2007, 56(3), 872-878.
[118]
Bian, F.; Yang, X.; Zhou, F.; Wu, P.H.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zhang, Y.; Xiong, B.; Li, Y.; Zheng, T.; Wu, D.; Chen, X.; Jin, S. C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br. J. Pharmacol., 2014, 171(10), 2671-2684.
[119]
Zhang, Y.; Yang, X.; Bian, F.; Wu, P.; Xing, S.; Xu, G.; Li, W.; Chi, J.; Ouyang, C.; Zheng, T.; Wu, D.; Zhang, Y.; Li, Y.; Jin, S. TNF-alpha promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-kappaB and PPAR-gamma. J. Mol. Cell. Cardiol., 2014, 72(1), 85-94.
[120]
Zhu, L.; Wei, T.; Chang, X.; He, H.; Gao, J.; Wen, Z.; Yan, T. Effects of Salidroside on Myocardial Injury in vivo in vitro via Regulation of Nox/NF-kappaB/AP1 Pathway. Inflammation, 2015, 38(4), 1589-1598.
[121]
Guan, S.; Feng, H.; Song, B.; Guo, W.; Xiong, Y.; Huang, G.; Zhong, W.; Huo, M.; Chen, N.; Lu, J.; Deng, X. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int. Immunopharmacol., 2011, 11(12), 2194-2199.
[122]
Hu, H.; Li, Z.; Zhu, X.; Lin, R.; Chen, L. Salidroside reduces cell mobility via NF- kappa B and MAPK signaling in LPS-Induced BV2 microglial cells. Evid. Based Complement. Alternat. Med., 2014, 2014383821
[123]
Hong, Wu.; Wang, T.W Jun-ying Qi, Ya-qi Wang, Xiao-ping Luo, Qin Ning, Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrophages through down-regulation of MAPK/ NF-kB signaling pathways. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2013, 33(4), 7.
[124]
Perreault, M.; Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med., 2001, 7(10), 1138-1143.
[125]
Wu, D.; Yuan, P.; Ke, C.; Xiong, H.; Chen, J.; Guo, J.; Lu, M.; Ding, Y.; Fan, X.; Duan, Q. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2. Oncotarget, 2016, 7(18), 25971.
[126]
Kim, K.H.; Lee, M.S. Autophagy--a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10(6), 322-337.
[127]
Choi, A.M.K.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med., 2013, 368(7), 651-662.
[128]
De Meyer, G.R.; Grootaert, M.O.; Michiels, C.F.; Kurdi, A.; Schrijvers, D.M.; Martinet, W. Autophagy in vascular disease. Circ. Res., 2015, 116(3), 468-479.
[129]
Meijer, A.J.; Codogno, P. Autophagy: A sweet process in diabetes. Cell Metab., 2008, 8(4), 275-276.
[130]
Vindis, C. Autophagy: An emerging therapeutic target in vascular diseases. Br. J. Pharmacol., 2015, 172(9), 2167-2178.
[131]
Cuervo, A.M. Chaperone-mediated autophagy: Dice’s ‘wild’ idea about lysosomal selectivity. Nat. Rev. Mol. Cell Biol., 2011, 12(8), 535-541.
[132]
Lamb, C.A.; Yoshimori, T.; Tooze, S.A. The autophagosome: Origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol., 2013, 14(12), 759-774.
[133]
Tomic, T.; Botton, T.; Cerezo, M.; Robert, G.; Luciano, F.; Puissant, A.; Gounon, P.; Allegra, M.; Bertolotto, C.; Bereder, J.M.; Tartare-Deckert, S.; Bahadoran, P.; Auberger, P.; Ballotti, R.; Rocchi, S. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis., 2011, 2.
[134]
Kalender, A.; Selvaraj, A.; Kim, S.Y.; Gulati, P.; Brule, S.; Viollet, B.; Kemp, B.E.; Bardeesy, N.; Dennis, P.; Schlager, J.J.; Marette, A.; Kozma, S.C.; Thomas, G. Metformin, Independent of AMPK, Inhibits mTORC1 in a Rag GTPase-Dependent Manner. Cell Metab., 2010, 11(5), 390-401.
[135]
Fang, Y.M.; Westbrook, R.; Hill, C.; Boparai, R.K.; Arum, O.; Spong, A.; Wang, F.Y.; Javors, M.A.; Chen, J.; Sun, L.Y.; Bartke, A. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab., 2013, 17(3), 456-462.
[136]
Kim, K.H.; Jeong, Y.T.; Oh, H.; Kim, S.H.; Cho, J.M.; Kim, Y.N.; Kim, S.S.; Kim, D.H.; Hur, K.Y.; Kim, H.K.; Ko, T.; Han, J.; Kim, H.L.; Kim, J.; Back, S.H.; Komatsu, M.; Chen, H.C.; Chan, D.C.; Konishi, M.; Itoh, N.; Choi, C.S.; Lee, M.S. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med., 2013, 19(1), 83-92.
[137]
Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell, 2003, 115(5), 577-590.
[138]
Miyazaki, M.; McCarthy, J.J.; Esser, K.A. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J., 2010, 277(9), 2180-2191.
[139]
Liu, Z.; Li, X.; Simoneau, A.R.; Jafari, M.; Zi, X. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol. Carcinog., 2012, 51(3), 257-267.
[140]
Mizushima, N.; Yoshimori, T. How to interpret LC3 immunoblotting. Autophagy, 2007, 3(6), 542-545.
[141]
Torello, C.O.; Joao, M-N.; Karla, P.V.; Maso, V.; Calgarotto, A.; Franchi-Junior, G.C.; Lazarini, M.; Queiroz, M.L.S.; Teresinha, S. Rhodiola Rosea extract reduces autophagy in acute myeloid leukemia transformed from myelodysplastic syndromes tumor xenograft model. Blood, 2013, 122(21), 1.
[142]
Galluzzi, L.; Aaronson, S.A.; Abrams, J.; Alnemri, E.S.; Andrews, D.W.; Baehrecke, E.H.; Bazan, N.G.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Bredesen, D.E.; Brenner, C.; Castedo, M.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; De Laurenzi, V.; De Maria, R.; Deshmukh, M.; Dynlacht, B.D.; El-Deiry, W.S.; Flavell, R.A.; Fulda, S.; Garrido, C.; Golstein, P.; Gougeon, M.L.; Green, D.R.; Gronemeyer, H.; Hajnoczky, G.; Hardwick, J.M.; Hengartner, M.O.; Ichijo, H.; Jaattela, M.; Kepp, O.; Kimchi, A.; Klionsky, D.J.; Knight, R.A.; Kornbluth, S.; Kumar, S.; Levine, B.; Lipton, S.A.; Lugli, E.; Madeo, F.; Malorni, W.; Marine, J.C.W.; Martin, S.J.; Medema, J.P.; Mehlen, P.; Melino, G.; Moll, U.M.; Morselli, E.; Nagata, S.; Nicholson, D.W.; Nicotera, P.; Nunez, G.; Oren, M.; Penninger, J.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Scorrano, L.; Simon, H.U.; Steller, H.; Tschopp, J.; Tsujimoto, Y.; Vandenabeele, P.; Vitale, I.; Vousden, K.H.; Youle, R.J.; Yuan, J.; Zhivotovsky, B.; Kroemer, G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ., 2009, 16(8), 1093-1107.
[143]
Majewska, A.; Mirosława, F.; Natalia, U.; Agnieszka, P.; Alicja, Z.; Kuraś, M. Antiproliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells. J. Ethnopharmacol., 2006, 103(1), 43-52.
[144]
Tu, Y.; Roberts, L.; Shetty, K.; Schneider, S.S. Rhodiola crenulata induces death and inhibits growth of breast cancer cell lines. J. Med. Food, 2008, 11(3), 413-423.
[145]
Hu, X.; Zhang, X.; Qiu, S.; Yu, D.; Lin, S. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun., 2010, 398(1), 62-67.
[146]
Zhang, L.; Yu, H.; Sun, Y.; Lin, X.; Chen, B.; Tan, C.; Cao, G.; Wang, Z. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol., 2007, 564(1), 18-25.
[147]
Cai, L.; Wang, H.; Li, Q.; Qian, Y.; Yao, W. Salidroside inhibits H2O2‐induced apoptosis in PC 12 cells by preventing cytochrome c release and inactivating of caspase cascade. Acta Biochim. Biophys. Sin., 2008, 40(9), 796-802.
[148]
Chen, X.; Zhang, Q.; Cheng, Q.; Ding, F. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol. Cell. Biochem., 2009, 332(1-2), 85-93.
[149]
Qu, Z-q.; Zhou, Y.; Zeng, Y-s.; Lin, Y-k.; Li, Y.; Zhong, Z-q.; Chan, W.Y. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One, 2012, 7e29641
[150]
Palumbo, D.R.; Occhiuto, F.; Spadaro, F.; Circosta, C. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res., 2012, 26(6), 878-883.
[151]
Chen, X.; Liu, J.; Gu, X.; Ding, F. Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res., 2008, 1238, 189-198.
[152]
Qian, E.W.; Ge, D.T.; Kong, S-K. Salidroside protects human erythrocytes against hydrogen peroxide-induced apoptosis. J. Nat. Prod., 2012, 75(4), 531-537.
[153]
Liu, M-W.; Su, M-X.; Zhang, W.; Zhang, L-M.; Wang, Y-H.; Qian, C-Y. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein 8-like-2 in septic rats. Int. J. Mol. Med., 2015, 36(2), 386-398.
[154]
Palumbo, D.R.; Occhiuto, F.; Spadaro, F.; Circosta, C. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res., 2012, 26(6), 878-883.
[155]
Uyeturk, U.; Terzi, E.H.; Kemahli, E.; Gucuk, A.; Tosun, M.; Cetinkaya, A. Alleviation of kidney damage induced by unilateral ureter obstruction in rats by Rhodiola rosea. J. Endourol., 2013, 27(10), 1272-1276.
[156]
Tan, C.B.; Gao, M.; Xu, W.R.; Yang, X.Y.; Zhu, X.M.; Du, G.H. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol. Pharm. Bull., 2009, 32(8), 1359-1363.
[157]
Sun, L.; Isaak, C.K.; Zhou, Y.; Petkau, J.C.; Karmin, O.; Liu, Y.; Siow, Y.L. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci., 2012, 91(5), 151-158.
[158]
Lai, M.C.; Lin, J.G.; Pai, P.Y.; Lai, M.H.; Lin, Y.M.; Yeh, Y.L.; Cheng, S.M.; Liu, Y.F.; Huang, C.Y.; Lee, S.D. Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int. J. Cardiol., 2014, 174(3), 565-573.
[159]
Zhong, H.; Xin, H.; Wu, L.X.; Zhu, Y.Z. Salidroside attenuates apoptosis in ischemic cardiomyocytes: A mechanism through a mitochondria-dependent pathway. J. Pharmacol. Sci., 2010, 114(4), 399-408.
[160]
Tang, Y.; Vater, C.; Jacobi, A.; Liebers, C.; Zou, X.; Stiehler, M. Salidroside exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/ p70S6K and MAPK signalling pathways. Br. J. Pharmacol., 2014, 171(9), 2440-2456.
[161]
Zhang, L.; Yu, H.; Sun, Y.; Lin, X.; Chen, B.; Tan, C.; Cao, G.; Wang, Z. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol., 2007, 564(1-3), 18-25.
[162]
Zhao, C-h.; Zhu, Z-h.; Wang, Y-l.; Reiser, G.; Tang, L. Protection of salidroside on primary astrocytes from cell death by attenuating oxidative stress. Chin. Herb. Med., 2015, 7(4), 303-309.
[163]
Chen, X.; Liu, J.; Gu, X.; Ding, F. Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res., 2008, 1238(1), 189-198.
[164]
Huang, X.; Zou, L.; Yu, X.; Chen, M.; Guo, R.; Cai, H.; Yao, D.; Xu, X.; Chen, Y.; Ding, C.; Cai, X.; Wang, L. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway. J. Mol. Cell. Cardiol., 2015, 82(1), 153-166.
[165]
Van Vre, E.A.; Ait-Oufella, H.; Tedgui, A.; Mallat, Z. Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 887-893.
[166]
Kockx, M.M.; Herman, A.G. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc. Res., 2000, 45(3), 736-746.
[167]
Marino, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 81-94.
[168]
Zhang, S.; Shang, G.; Li, Z.; Wang, A.; Cai, M. A new approach to synthesis of solidroside. Chin. J. Med. Chem., 1997, 48(16), 2881-2885.
[169]
Li, Y.; Kang, Y.; Qi, C.; Ji, Z. Synthesis of 2-(N-arylaminomethyl)-5-(E) Pentylidene cyclopentanoe derivatives and studies on their antiinflammatory activity. Chin. J. Med. Chem., 1996, 6(1), 136-138.
[170]
Troshchenko, A.T.; Yuodvirshis, A.M. Synthesis of glycosides of 2-(p-hydroxyphenyl)ethanol(tyrosol). Chem. Nat. Compd., 1969, 5(4), 217-220.
[171]
Shi, T.; Chen, H.; Jing, L.; Liu, X.; Sun, X.; Jiang, R. Development of a kilogram-scale synthesis of salidroside and its analogs. Synth. Commun., 2010, 41(17), 2594-2600.
[172]
Potocká, E.; Mastihubová, M.; Mastihuba, V. Enzymatic synthesis of tyrosol glycosides. J. Mol. Catal., B Enzym., 2015, 113, 23-28.
[173]
Zhao, Y.; Ling, Y.; Zhao, J.; Yuan, Y.; Guo, Y.; Liu, Q.; Wu, B.; Ding, Z.; Yang, Y. Synthesis and protective effects of novel salidroside analogues on glucose and serum depletion induced apoptosis in PC12 cells. Arch. Pharm. (Weinheim), 2013, 346(4), 300-307.
[174]
Guo, Y.; Zheng, C.; Xu, W.; Si, Y.; Dou, S.; Yang, Y. Free radical scavenging and hepatoprotective effects of salidroside analogs on CCl 4 -induced cytotoxicity in LO2 cells. Med. Chem. Res., 2013, 22(5), 2524-2530.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy