Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Endothelial Dysfunction in Dyslipidaemia: Molecular Mechanisms and Clinical Implications

Author(s): Bozidarka Zaric, Milan Obradovic, Andreja Trpkovic, Maciej Banach, Dimitri P. Mikhailidis and Esma R. Isenovic*

Volume 27, Issue 7, 2020

Page: [1021 - 1040] Pages: 20

DOI: 10.2174/0929867326666190903112146

Price: $65

Abstract

The endothelium consists of a monolayer of Endothelial Cells (ECs) which form the inner cellular lining of veins, arteries, capillaries and lymphatic vessels. ECs interact with the blood and lymph. The endothelium fulfils functions such as vasodilatation, regulation of adhesion, infiltration of leukocytes, inhibition of platelet adhesion, vessel remodeling and lipoprotein metabolism. ECs synthesize and release compounds such as Nitric Oxide (NO), metabolites of arachidonic acid, Reactive Oxygen Species (ROS) and enzymes that degrade the extracellular matrix. Endothelial dysfunction represents a phenotype prone to atherogenesis and may be used as a marker of atherosclerotic risk. Such dysfunction includes impaired synthesis and availability of NO and an imbalance in the relative contribution of endothelialderived relaxing factors and contracting factors such as endothelin-1 and angiotensin. This dysfunction appears before the earliest anatomic evidence of atherosclerosis and could be an important initial step in further development of atherosclerosis. Endothelial dysfunction was historically treated with vitamin C supplementation and L-arginine supplementation. Short term improvement of the expression of adhesion molecule and endothelial function during antioxidant therapy has been observed. Statins are used in the treatment of hyperlipidaemia, a risk factor for cardiovascular disease. Future studies should focus on identifying the mechanisms involved in the beneficial effects of statins on the endothelium. This may help develop drugs specifically aimed at endothelial dysfunction.

Keywords: Hyperlipidaemia, endothelium, endothelial dysfunction, statins, cardiovascular disease, atherosclerosis.

[1]
Pries, A.R.; Kuebler, W.M. Normal endothelium. Handb. Exp. Pharmacol., 2006, 176(176 Pt 1), 1-40.
[PMID: 16999215]
[2]
Jaffe, E.A. Cell biology of endothelial cells. Hum. Pathol., 1987, 18(3), 234-239.
[http://dx.doi.org/10.1016/S0046-8177(87)80005-9] [PMID: 3546072]
[3]
Feletou, M. The Endothelium part 1: multiple functions of the endothelial cells-focus on endothelium-derived vasoactive mediators. San Rafael (CA): Morgan & Claypool Life Sciences, 2011.
[http://dx.doi.org/10.4199/C00031ED1V01Y201105ISP019] [PMID: 21850763]
[4]
Dart, A.M.; Chin-Dusting, J.P.F. Lipids and the endothelium. Cardiovasc. Res., 1999, 43(2), 308-322.
[http://dx.doi.org/10.1016/S0008-6363(99)00150-9] [PMID: 10536661]
[5]
Dzau, V.J.; Gibbons, G.H.; Cooke, J.P.; Omoigui, N. Vascular biology and medicine in the 1990s: scope, concepts, potentials, and perspectives. Circulation, 1993, 87(3), 705-719.
[http://dx.doi.org/10.1161/01.CIR.87.3.705] [PMID: 8443891]
[6]
Vogel, R.A.; Corretti, M.C.; Gellman, J. Cholesterol, cholesterol lowering, and endothelial function. Prog. Cardiovasc. Dis., 1998, 41(2), 117-136.
[http://dx.doi.org/10.1016/S0033-0620(98)80008-X] [PMID: 9790413]
[7]
Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature, 2006, 444(7121), 875-880.
[http://dx.doi.org/10.1038/nature05487] [PMID: 17167476]
[8]
Aguilera, C.M.; Gil-Campos, M.; Cañete, R.; Gil, A. Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin. Sci. (Lond.), 2008, 114(3), 183-193.
[http://dx.doi.org/10.1042/CS20070115] [PMID: 18184112]
[9]
Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics-2017 update: a report from the American heart association. Circulation, 2017, 135(10), e146-e603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[10]
Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino, R.B., Sr; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 2015, 131(5), 451-458.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012477] [PMID: 25623155]
[11]
Fredrickson, D.S.; Lees, R.S. A System for phenotyping hyperlipoproteinemia. Circulation, 1965, 31, 321-327.
[http://dx.doi.org/10.1161/01.CIR.31.3.321] [PMID: 14262568]
[12]
Helkin, A.; Stein, J.J.; Lin, S.; Siddiqui, S.; Maier, K.G.; Gahtan, V. Dyslipidemia part 1--review of lipid metabolism and vascular cell physiology. Vasc. Endovascular Surg., 2016, 50(2), 107-118.
[http://dx.doi.org/10.1177/1538574416628654] [PMID: 26983667]
[13]
Balletshofer, B.M.; Rittig, K.; Enderle, M.D.; Volk, A.; Maerker, E.; Jacob, S.; Matthaei, S.; Rett, K.; Häring, H.U. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation, 2000, 101(15), 1780-1784.
[http://dx.doi.org/10.1161/01.CIR.101.15.1780] [PMID: 10769277]
[14]
Versari, D.; Daghini, E.; Virdis, A.; Ghiadoni, L.; Taddei, S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care, 2009, 32(Suppl. 2), S314-S321.
[http://dx.doi.org/10.2337/dc09-S330] [PMID: 19875572]
[15]
Linden, E.; Cai, W.; He, J.C.; Xue, C.; Li, Z.; Winston, J.; Vlassara, H.; Uribarri, J. Endothelial dysfunction in patients with chronic kidney disease results from advanced glycation end products (AGE)-mediated inhibition of endothelial nitric oxide synthase through RAGE activation. Clin. J. Am. Soc. Nephrol., 2008, 3(3), 691-698.
[http://dx.doi.org/10.2215/CJN.04291007] [PMID: 18256374]
[16]
Vergnani, L.; Hatrik, S.; Ricci, F.; Passaro, A.; Manzoli, N.; Zuliani, G.; Brovkovych, V.; Fellin, R.; Malinski, T. Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production: key role of L-arginine availability. Circulation, 2000, 101(11), 1261-1266.
[http://dx.doi.org/10.1161/01.CIR.101.11.1261] [PMID: 10725285]
[17]
Creager, M.A.; Gallagher, S.J.; Girerd, X.J.; Coleman, S.M.; Dzau, V.J.; Cooke, J.P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J. Clin. Invest., 1992, 90(4), 1248-1253.
[http://dx.doi.org/10.1172/JCI115987] [PMID: 1401062]
[18]
Kugiyama, K.; Kerns, S.A.; Morrisett, J.D.; Roberts, R.; Henry, P.D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature, 1990, 344(6262), 160-162.
[http://dx.doi.org/10.1038/344160a0] [PMID: 2106627]
[19]
Pant, R.; Marok, R.; Klein, L.W. Pathophysiology of coronary vascular remodeling: relationship with traditional risk factors for coronary artery disease. Cardiol. Rev., 2014, 22(1), 13-16.
[http://dx.doi.org/10.1097/CRD.0b013e31829dea90] [PMID: 23873211]
[20]
Ting, H.H.; Timimi, F.K.; Haley, E.A.; Roddy, M.A.; Ganz, P.; Creager, M.A. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation, 1997, 95(12), 2617-2622.
[http://dx.doi.org/10.1161/01.CIR.95.12.2617] [PMID: 9193429]
[21]
Timimi, F.K.; Ting, H.H.; Haley, E.A.; Roddy, M.A.; Ganz, P.; Creager, M.A. Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol., 1998, 31(3), 552-557.
[http://dx.doi.org/10.1016/S0735-1097(97)00536-6] [PMID: 9502634]
[22]
Chauhan, A.; More, R.S.; Mullins, P.A.; Taylor, G.; Petch, C.; Schofield, P.M. Aging-associated endothelial dysfunction in humans is reversed by L-arginine. J. Am. Coll. Cardiol., 1996, 28(7), 1796-1804.
[http://dx.doi.org/10.1016/S0735-1097(96)00394-4] [PMID: 8962569]
[23]
Quyyumi, A.A.; Dakak, N.; Diodati, J.G.; Gilligan, D.M.; Panza, J.A.; Cannon, R.O. III Effect of L-arginine on human coronary endothelium-dependent and physiologic vasodilation. J. Am. Coll. Cardiol., 1997, 30(5), 1220-1227.
[http://dx.doi.org/10.1016/S0735-1097(97)00279-9] [PMID: 9350919]
[24]
Creager, M.A.; Cooke, J.P.; Mendelsohn, M.E.; Gallagher, S.J.; Coleman, S.M.; Loscalzo, J.; Dzau, V.J. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. Clin. Invest., 1990, 86(1), 228-234.
[http://dx.doi.org/10.1172/JCI114688] [PMID: 2195060]
[25]
Iantorno, M.; Campia, U.; Di Daniele, N.; Nistico, S.; Forleo, G.B.; Cardillo, C.; Tesauro, M. Obesity, inflammation and endothelial dysfunction. J. Biol. Regul. Homeost. Agents, 2014, 28(2), 169-176.
[PMID: 25001649]
[26]
Artwohl, M.; Roden, M.; Waldhäusl, W.; Freudenthaler, A.; Baumgartner-Parzer, S.M. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J., 2004, 18(1), 146-148.
[http://dx.doi.org/10.1096/fj.03-0301fje] [PMID: 14597560]
[27]
Pi, X.; Xie, L.; Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ. Res., 2018, 123(4), 477-494.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313237] [PMID: 30355249]
[28]
Yau, J.W.; Teoh, H.; Verma, S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord., 2015, 15, 130.
[http://dx.doi.org/10.1186/s12872-015-0124-z] [PMID: 26481314]
[29]
Chistiakov, D.A.; Revin, V.V.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function. Mini Rev. Med. Chem., 2015, 15(4), 338-350.
[http://dx.doi.org/10.2174/1389557515666150226114031] [PMID: 25723463 ]
[30]
van Hinsbergh, V.W. Endothelium--role in regulation of coagulation and inflammation. Semin. Immunopathol., 2012, 34(1), 93-106.
[http://dx.doi.org/10.1007/s00281-011-0285-5] [PMID: 21845431]
[31]
Aird, W.C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res., 2007, 100(2), 158-173.
[http://dx.doi.org/10.1161/01.RES.0000255691.76142.4a] [PMID: 17272818]
[32]
Fischer, C.; Schneider, M.; Carmeliet, P. Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb. Exp. Pharmacol., 2006, 176(176 Pt 2), 157-212.
[http://dx.doi.org/10.1007/3-540-36028-X_6] [PMID: 16999228]
[33]
Versteeg, H.H.; Heemskerk, J.W.; Levi, M.; Reitsma, P.H. New fundamentals in hemostasis. Physiol. Rev., 2013, 93(1), 327-358.
[http://dx.doi.org/10.1152/physrev.00016.2011] [PMID: 23303912]
[34]
Brown, N.J. Blood pressure reduction and tissue-type plasminogen activator release. Hypertension, 2006, 47(4), 648-649.
[http://dx.doi.org/10.1161/01.HYP.0000209952.30603.e9] [PMID: 16520404 ]
[35]
Pearson, J.D. Endothelial cell function and thrombosis. Best Pract. Res. Clin. Haematol., 1999, 12(3), 329-341.
[http://dx.doi.org/10.1053/beha.1999.0028] [PMID: 10856973]
[36]
Nordt, T.K.; Bode, C. Impaired endogenous fibrinolysis in diabetes mellitus: mechanisms and therapeutic approaches. Semin. Thromb. Hemost., 2000, 26(5), 495-501.
[http://dx.doi.org/10.1055/s-2000-13205] [PMID: 11129405]
[37]
Erickson, L.A.; Fici, G.J.; Lund, J.E.; Boyle, T.P.; Polites, H.G.; Marotti, K.R. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature, 1990, 346(6279), 74-76.
[http://dx.doi.org/10.1038/346074a0] [PMID: 2366866]
[38]
Zhang, G.; Xiang, B.; Dong, A.; Skoda, R.C.; Daugherty, A.; Smyth, S.S.; Du, X.; Li, Z. Biphasic roles for soluble guanylyl cyclase (sGC) in platelet activation. Blood, 2011, 118(13), 3670-3679.
[http://dx.doi.org/10.1182/blood-2011-03-341107] [PMID: 21803853]
[39]
Gale, A.J.; Cramer, T.J.; Rozenshteyn, D.; Cruz, J.R. Detailed mechanisms of the inactivation of factor VIIIa by activated protein C in the presence of its cofactors, protein S and factor V. J. Biol. Chem., 2008, 283(24), 16355-16362.
[http://dx.doi.org/10.1074/jbc.M708985200] [PMID: 18424440]
[40]
McVey, J.H. Tissue factor pathway. Best Pract. Res. Clin. Haematol., 1999, 12(3), 361-372.
[http://dx.doi.org/10.1053/beha.1999.0030] [PMID: 10856975]
[41]
Reininger, A.J. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia, 2008, 14(Suppl. 5), 11-26.
[http://dx.doi.org/10.1111/j.1365-2516.2008.01848.x] [PMID: 18786007]
[42]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.; Bittner, V.; Ray, K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb. Haemost., 2016, 115(3), 520-532.
[http://dx.doi.org/10.1160/th15-08-0620] [PMID: 26632869]
[43]
Petraglia, A.L.; Marky, A.H.; Walker, C.; Thiyagarajan, M.; Zlokovic, B.V. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery, 2010, 66(1), 165-171.
[http://dx.doi.org/10.1227/01.NEU.0000363148.49779.68] [PMID: 20023547]
[44]
Shuvaev, V.V.; Brenner, J.S.; Muzykantov, V.R. Targeted endothelial nanomedicine for common acute pathological conditions. J. Control. Release, 2015, 219, 576-595.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.055] [PMID: 26435455]
[45]
Hong, X.; Le Bras, A.; Margariti, A.; Xu, Q. Reprogramming towards endothelial cells for vascular regeneration. Genes Dis., 2016, 3(3), 186-197.
[http://dx.doi.org/10.1016/j.gendis.2016.02.003] [PMID: 30258888]
[46]
Highet, A.R.; Buckberry, S.; Mayne, B.T.; Khoda, S.M.; Bianco-Miotto, T.; Roberts, C.T. First trimester trophoblasts forming endothelial-like tubes in vitro emulate a ‘blood vessel development’ gene expression profile. Gene Expr. Patterns, 2016, 21(2), 103-110.
[http://dx.doi.org/10.1016/j.gep.2016.05.001] [PMID: 27221232]
[47]
Bennett, H.S.; Luft, J.H.; Hampton, J.C. Morphological classifications of vertebrate blood capillaries. Am. J. Physiol., 1959, 196(2), 381-390.
[http://dx.doi.org/10.1152/ajplegacy.1959.196.2.381] [PMID: 13627187]
[48]
Panza, J.A.; Quyyumi, A.A.; Brush, J.E. Jr.; Epstein, S.E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med., 1990, 323(1), 22-27.
[http://dx.doi.org/10.1056/NEJM199007053230105] [PMID: 2355955]
[49]
Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol., 2003, 23(2), 168-175.
[http://dx.doi.org/10.1161/01.ATV.0000051384.43104.FC] [PMID: 12588755]
[50]
Brunner, H.; Cockcroft, J.R.; Deanfield, J.; Donald, A.; Ferrannini, E.; Halcox, J.; Kiowski, W.; Lüscher, T.F.; Mancia, G.; Natali, A.; Oliver, J.J.; Pessina, A.C.; Rizzoni, D.; Rossi, G.P.; Salvetti, A.; Spieker, L.E.; Taddei, S.; Webb, D.J. Working group on endothelins and endothelial factors of the european society of hypertension. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the working group on endothelins and endothelial factors of the European Society of Hypertension. J. Hypertens., 2005, 23(2), 233-246.
[http://dx.doi.org/10.1097/00004872-200502000-00001] [PMID: 15662207]
[51]
Rubanyi, G.M.; Vanhoutte, P.M. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol., 1986, 250(5 Pt 2), H822-H827.
[PMID: 3010744]
[52]
Bauer, V.; Sotníková, R. Nitric oxide--the endothelium-derived relaxing factor and its role in endothelial functions. Gen. Physiol. Biophys., 2010, 29(4), 319-340.
[http://dx.doi.org/10.4149/gpb_2010_04_319] [PMID: 21156995]
[53]
De Mey, J.G.; Vanhoutte, P.M. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol., 1983, 335, 65-74.
[http://dx.doi.org/10.1113/jphysiol.1983.sp014519] [PMID: 6875896]
[54]
Griffith, T.M.; Edwards, D.H.; Lewis, M.J.; Newby, A.C.; Henderson, A.H. The nature of endothelium-derived vascular relaxant factor. Nature, 1984, 308(5960), 645-647.
[http://dx.doi.org/10.1038/308645a0] [PMID: 6424031]
[55]
Zeiher, A.M.; Krause, T.; Schächinger, V.; Minners, J.; Moser, E. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation, 1995, 91(9), 2345-2352.
[http://dx.doi.org/10.1161/01.CIR.91.9.2345] [PMID: 7729020]
[56]
Cornwell, T.L.; Arnold, E.; Boerth, N.J.; Lincoln, T.M. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am. J. Physiol., 1994, 267(5 Pt 1), C1405-C1413.
[http://dx.doi.org/10.1152/ajpcell.1994.267.5.C1405] [PMID: 7977701]
[57]
Koppenol, W.H.; Moreno, J.J.; Pryor, W.A.; Ischiropoulos, H.; Beckman, J.S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol., 1992, 5(6), 834-842.
[http://dx.doi.org/10.1021/tx00030a017] [PMID: 1336991]
[58]
Szmitko, P.E.; Wang, C.H.; Weisel, R.D.; de Almeida, J.R.; Anderson, T.J.; Verma, S. New markers of inflammation and endothelial cell activation: Part I. Circulation, 2003, 108(16), 1917-1923.
[http://dx.doi.org/10.1161/01.CIR.0000089190.95415.9F] [PMID: 14568885]
[59]
Uemura, S.; Matsushita, H.; Li, W.; Glassford, A.J.; Asagami, T.; Lee, K.H.; Harrison, D.G.; Tsao, P.S. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ. Res., 2001, 88(12), 1291-1298.
[http://dx.doi.org/10.1161/hh1201.092042] [PMID: 11420306]
[60]
Singh, R.B.; Mengi, S.A.; Xu, Y-J.; Arneja, A.S.; Dhalla, N.S. Pathogenesis of atherosclerosis: A multifactorial process. Exp. Clin. Cardiol., 2002, 7(1), 40-53.
[PMID: 19644578]
[61]
Avan, A.; Tavakoly Sany, S.B.; Ghayour-Mobarhan, M.; Rahimi, H.R.; Tajfard, M.; Ferns, G. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. J. Cell. Physiol., 2018, 233(11), 8508-8525.
[http://dx.doi.org/10.1002/jcp.26791] [PMID: 29932219]
[62]
Verma, S.; Wang, C.H.; Li, S.H.; Dumont, A.S.; Fedak, P.W.; Badiwala, M.V.; Dhillon, B.; Weisel, R.D.; Li, R.K.; Mickle, D.A.; Stewart, D.J. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation, 2002, 106(8), 913-919.
[http://dx.doi.org/10.1161/01.CIR.0000029802.88087.5E] [PMID: 12186793]
[63]
Ledue, T.B.; Rifai, N. Preanalytic and analytic sources of variations in C-reactive protein measurement: implications for cardiovascular disease risk assessment. Clin. Chem., 2003, 49(8), 1258-1271.
[http://dx.doi.org/10.1373/49.8.1258] [PMID: 12881440]
[64]
Turu, M.M.; Slevin, M.; Matou, S.; West, D.; Rodríguez, C.; Luque, A.; Grau-Olivares, M.; Badimon, L.; Martinez-Gonzalez, J.; Krupinski, J. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression. BMC Cell Biol., 2008, 9, 47-47.
[http://dx.doi.org/10.1186/1471-2121-9-47] [PMID: 18764931]
[65]
Xiao, S.; Wagner, L.; Schmidt, R.J.; Baylis, C. Circulating endothelial nitric oxide synthase inhibitory factor in some patients with chronic renal disease. Kidney Int., 2001, 59(4), 1466-1472.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590041466.x] [PMID: 11260409]
[66]
Endemann, D.H.; Schiffrin, E.L. Endothelial dysfunction. J. Am. Soc. Nephrol., 2004, 15(8), 1983-1992.
[http://dx.doi.org/10.1097/01.ASN.0000132474.50966.DA] [PMID: 15284284 ]
[67]
Chen, X.; Touyz, R.M.; Park, J.B.; Schiffrin, E.L. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension, 2001, 38(3 Pt 2), 606-611.
[http://dx.doi.org/10.1161/hy09t1.094005] [PMID: 11566940]
[68]
DeFronzo, R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia, 2010, 53(7), 1270-1287.
[http://dx.doi.org/10.1007/s00125-010-1684-1] [PMID: 20361178]
[69]
Sharma, S.; Adrogue, J.V.; Golfman, L.; Uray, I.; Lemm, J.; Youker, K.; Noon, G.P.; Frazier, O.H.; Taegtmeyer, H. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J., 2004, 18(14), 1692-1700.
[http://dx.doi.org/10.1096/fj.04-2263com] [PMID: 15522914]
[70]
Steinberg, H.O.; Tarshoby, M.; Monestel, R.; Hook, G.; Cronin, J.; Johnson, A.; Bayazeed, B.; Baron, A.D. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Invest., 1997, 100(5), 1230-1239.
[http://dx.doi.org/10.1172/JCI119636] [PMID: 9276741]
[71]
Steinberg, H.O.; Bayazeed, B.; Hook, G.; Johnson, A.; Cronin, J.; Baron, A.D. Endothelial dysfunction is associated with cholesterol levels in the high normal range in humans. Circulation, 1997, 96(10), 3287-3293.
[http://dx.doi.org/10.1161/01.CIR.96.10.3287] [PMID: 9396418]
[72]
Blair, A.; Shaul, P.W.; Yuhanna, I.S.; Conrad, P.A.; Smart, E.J. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J. Biol. Chem., 1999, 274(45), 32512-32519.
[http://dx.doi.org/10.1074/jbc.274.45.32512] [PMID: 10542298 ]
[73]
Kim, J.A.; Montagnani, M.; Chandrasekran, S.; Quon, M.J. Role of lipotoxicity in endothelial dysfunction. Heart Fail. Clin., 2012, 8(4), 589-607.
[http://dx.doi.org/10.1016/j.hfc.2012.06.012] [PMID: 22999242]
[74]
Virdis, A.; Iglarz, M.; Neves, M.F.; Amiri, F.; Touyz, R.M.; Rozen, R.; Schiffrin, E.L. Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2003, 23(8), 1352-1357.
[http://dx.doi.org/10.1161/01.ATV.0000083297.47245.DA] [PMID: 12829522]
[75]
Zhang, X.; Li, H.; Jin, H.; Ebin, Z.; Brodsky, S.; Goligorsky, M.S. Effects of homocysteine on endothelial nitric oxide production. Am. J. Physiol. Renal Physiol., 2000, 279(4), F671-F678.
[http://dx.doi.org/10.1152/ajprenal.2000.279.4.F671] [PMID: 10997917]
[76]
Virdis, A.; Ghiadoni, L.; Cardinal, H.; Favilla, S.; Duranti, P.; Birindelli, R.; Magagna, A.; Bernini, G.; Salvetti, G.; Taddei, S.; Salvetti, A. Mechanisms responsible for endothelial dysfunction induced by fasting hyperhomocystinemia in normotensive subjects and patients with essential hypertension. J. Am. Coll. Cardiol., 2001, 38(4), 1106-1115.
[http://dx.doi.org/10.1016/S0735-1097(01)01492-9] [PMID: 11583890]
[77]
Stühlinger, M.C.; Oka, R.K.; Graf, E.E.; Schmölzer, I.; Upson, B.M.; Kapoor, O.; Szuba, A.; Malinow, M.R.; Wascher, T.C.; Pachinger, O.; Cooke, J.P. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation, 2003, 108(8), 933-938.
[http://dx.doi.org/10.1161/01.CIR.0000085067.55901.89] [PMID: 12912818]
[78]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[79]
Lopaschuk, G.D.; Folmes, C.D.; Stanley, W.C. Cardiac energy metabolism in obesity. Circ. Res., 2007, 101(4), 335-347.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.150417] [PMID: 17702980]
[80]
Szczepaniak, L.S.; Dobbins, R.L.; Metzger, G.J.; Sartoni-D’Ambrosia, G.; Arbique, D.; Vongpatanasin, W.; Unger, R.; Victor, R.G. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn. Reson. Med., 2003, 49(3), 417-423.
[http://dx.doi.org/10.1002/mrm.10372] [PMID: 12594743 ]
[81]
Rider, O.J.; Cox, P.; Tyler, D.; Clarke, K.; Neubauer, S. Myocardial substrate metabolism in obesity. Int. J. Obes., 2013, 37(7), 972-979.
[http://dx.doi.org/10.1038/ijo.2012.170] [PMID: 23069666]
[82]
Rizzo, M.; Kotur-Stevuljevic, J.; Berneis, K.; Spinas, G.; Rini, G.B.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; Vekic, J. Atherogenic dyslipidemia and oxidative stress: a new look. Transl. Res., 2009, 153(5), 217-223.
[http://dx.doi.org/10.1016/j.trsl.2009.01.008] [PMID: 19375682]
[83]
Vinik, A.I. The metabolic basis of atherogenic dyslipidemia. Clin. Cornerstone, 2005, 7(2-3), 27-35.
[http://dx.doi.org/10.1016/S1098-3597(05)80065-1] [PMID: 16473258]
[84]
Nikolic, D.; Katsiki, N.; Montalto, G.; Isenovic, E.R.; Mikhailidis, D.P.; Rizzo, M. Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients, 2013, 5(3), 928-948.
[http://dx.doi.org/10.3390/nu5030928] [PMID: 23507795]
[85]
Mikhailidis, D.P.; Elisaf, M.; Rizzo, M.; Berneis, K.; Griffin, B.; Zambon, A.; Athyros, V.; de Graaf, J.; März, W.; Parhofer, K.G.; Rini, G.B.; Spinas, G.A.; Tomkin, G.H.; Tselepis, A.D.; Wierzbicki, A.S.; Winkler, K.; Florentin, M.; Liberopoulos, E. “European panel on low density lipoprotein (LDL) subclasses”: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses: executive summary. Curr. Vasc. Pharmacol., 2011, 9(5), 531-532.
[http://dx.doi.org/10.2174/157016111796642698] [PMID: 21595629]
[86]
Mikhailidis, D.P.; Elisaf, M.; Rizzo, M.; Berneis, K.; Griffin, B.; Zambon, A.; Athyros, V.; de Graaf, J.; März, W.; Parhofer, K.G.; Rini, G.B.; Spinas, G.A.; Tomkin, G.H.; Tselepis, A.D.; Wierzbicki, A.S.; Winkler, K.; Florentin, M.; Liberopoulos, E. “European panel on low density lipoprotein (LDL) subclasses”: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses. Curr. Vasc. Pharmacol., 2011, 9(5), 533-571.
[http://dx.doi.org/10.2174/157016111796642661] [PMID: 21595628]
[87]
Watts, G.F.; Ooi, E.M.; Chan, D.C. Demystifying the management of hypertriglyceridaemia. Nat. Rev. Cardiol., 2013, 10(11), 648-661.
[http://dx.doi.org/10.1038/nrcardio.2013.140] [PMID: 24060958]
[88]
Johansen, C.T.; Kathiresan, S.; Hegele, R.A. Genetic determinants of plasma triglycerides. J. Lipid Res., 2011, 52(2), 189-206.
[http://dx.doi.org/10.1194/jlr.R009720] [PMID: 21041806]
[89]
Nelson, R.H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care, 2013, 40(1), 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003] [PMID: 23402469]
[90]
Tavori, H.; Giunzioni, I.; Fazio, S. PCSK9 inhibition to reduce cardiovascular disease risk: recent findings from the biology of PCSK9. Curr. Opin. Endocrinol. Diabetes Obes., 2015, 22(2), 126-132.
[http://dx.doi.org/10.1097/MED.0000000000000137] [PMID: 25692926 ]
[91]
Krauss, R.M.; Winston, M.; Fletcher, R.N.; Grundy, S.M. Obesity: impact of cardiovascular disease. Circulation, 1998, 98(14), 1472-1476.
[http://dx.doi.org/10.1161/01.CIR.98.14.1472]
[92]
Hubert, H.B.; Feinleib, M.; McNamara, P.M.; Castelli, W.P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation, 1983, 67(5), 968-977.
[http://dx.doi.org/10.1161/01.CIR.67.5.968] [PMID: 6219830]
[93]
Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; Tybjærg-Hansen, A.; Watts, G.F.; Averna, M.; Boileau, C.; Borén, J.; Catapano, A.L.; Defesche, J.C.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Masana, L.; Pajukanta, P.; Parhofer, K.G.; Ray, K.K.; Stalenhoef, A.F.; Stroes, E.; Taskinen, M.R.; Wiegman, A.; Wiklund, O.; Chapman, M.J. European Atherosclerosis Society Consensus Panel on Familial Hypercholesterolaemia. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J., 2014, 35(32), 2146-2157.
[http://dx.doi.org/10.1093/eurheartj/ehu274] [PMID: 25053660]
[94]
Turgeon, R.D.; Barry, A.R.; Pearson, G.J. Familial hypercholesterolemia: Review of diagnosis, screening, and treatment. Can. Fam. Physician, 2016, 62(1), 32-37.
[PMID: 26796832]
[95]
Banach, M.; Rizzo, M.; Obradovic, M.; Montalto, G.; Rysz, J.; Mikhailidis, D.P.; Isenovic, E.R. PCSK9 inhibition - a novel mechanism to treat lipid disorders? Curr. Pharm. Des., 2013, 19(21), 3869-3877.
[http://dx.doi.org/10.2174/13816128113199990303] [PMID: 23286435]
[96]
Obradovic, M.; Zaric, B.; Sudar-Milovanovic, E.; Ilincic, B.; Stokic, E.; Perovic, M.; Isenovic, E.R. PCSK9 and hypercholesterolemia: therapeutic approach. Curr. Drug Targets, 2018, 19(9), 1058-1067.
[http://dx.doi.org/10.2174/1389450119666171205101401] [PMID: 29210646]
[97]
Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids, 2015, 2015971453
[http://dx.doi.org/10.1155/2015/971453] [PMID: 25949827]
[98]
Narverud, I.; Retterstøl, K.; Iversen, P.O.; Halvorsen, B.; Ueland, T.; Ulven, S.M.; Ose, L.; Aukrust, P.; Veierød, M.B.; Holven, K.B. Markers of atherosclerotic development in children with familial hypercholesterolemia: a literature review. Atherosclerosis, 2014, 235(2), 299-309.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.917] [PMID: 24908240]
[99]
Järvisalo, M.J.; Lehtimäki, T.; Raitakari, O.T. Determinants of arterial nitrate-mediated dilatation in children: role of oxidized low-density lipoprotein, endothelial function, and carotid intima-media thickness. Circulation, 2004, 109(23), 2885-2889.
[http://dx.doi.org/10.1161/01.CIR.0000129304.98566.D8] [PMID: 15159289]
[100]
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. (Adult Treatment Panel III). JAMA, 2001, 285(19), 2486-2497.
[http://dx.doi.org/10.1001/jama.285.19.2486] [PMID: 11368702]
[101]
Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; Lennie, T.A.; Levi, M.; Mazzone, T.; Pennathur, S. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation, 2011, 123(20), 2292-2333.
[http://dx.doi.org/10.1161/CIR.0b013e3182160726] [PMID: 21502576]
[102]
Nordestgaard, B.G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ. Res., 2016, 118(4), 547-563.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306249] [PMID: 26892957]
[103]
Catapano, A.L.; Pirillo, A.; Norata, G.D. Vascular inflammation and low-density lipoproteins: is cholesterol the link? A lesson from the clinical trials. Br. J. Pharmacol., 2017, 174(22), 3973-3985.
[http://dx.doi.org/10.1111/bph.13805] [PMID: 28369752]
[104]
Cox, B.E.; Griffin, E.E.; Ullery, J.C.; Jerome, W.G. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J. Lipid Res., 2007, 48(5), 1012-1021.
[http://dx.doi.org/10.1194/jlr.M600390-JLR200] [PMID: 17308299]
[105]
Wang, G.P.; Deng, Z.D.; Ni, J.; Qu, Z.L. Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis, 1997, 133(1), 31-36.
[http://dx.doi.org/10.1016/S0021-9150(97)00109-3] [PMID: 9258404 ]
[106]
Navab, M.; Imes, S.S.; Hama, S.Y.; Hough, G.P.; Ross, L.A.; Bork, R.W.; Valente, A.J.; Berliner, J.A.; Drinkwater, D.C.; Laks, H. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J. Clin. Invest., 1991, 88(6), 2039-2046.
[http://dx.doi.org/10.1172/JCI115532] [PMID: 1752961]
[107]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[108]
Chen, T.; Wu, Y.; Gu, W.; Xu, Q. Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cell. Mol. Life Sci., 2018, 75(22), 4079-4091.
[http://dx.doi.org/10.1007/s00018-018-2859-z] [PMID: 29946805]
[109]
Stokes, K.Y.; Calahan, L.; Hamric, C.M.; Russell, J.M.; Granger, D.N. CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(3), H689-H697.
[http://dx.doi.org/10.1152/ajpheart.00962.2008] [PMID: 19112095]
[110]
Haghikia, A.; Landmesser, U. High-density lipoproteins: effects on vascular function and role in the immune response. Cardiol. Clin., 2018, 36(2), 317-327.
[http://dx.doi.org/10.1016/j.ccl.2017.12.013] [PMID: 29609761]
[111]
Kratzer, A.; Giral, H.; Landmesser, U. High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc. Res., 2014, 103(3), 350-361.
[http://dx.doi.org/10.1093/cvr/cvu139] [PMID: 24935432]
[112]
Suessenbacher, A.; Dörler, J.; Wunder, J.; Hohenwarter, F.; Alber, H.F.; Pachinger, O.; Frick, M. Comparison of brachial artery wall thickness versus endothelial function to predict late cardiovascular events in patients undergoing elective coronary angiography. Am. J. Cardiol., 2013, 111(5), 671-675.
[http://dx.doi.org/10.1016/j.amjcard.2012.11.020] [PMID: 23266073]
[113]
Yeboah, J.; McClelland, R.L.; Polonsky, T.S.; Burke, G.L.; Sibley, C.T.; O’Leary, D.; Carr, J.J.; Goff, D.C.; Greenland, P.; Herrington, D.M. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA, 2012, 308(8), 788-795.
[http://dx.doi.org/10.1001/jama.2012.9624] [PMID: 22910756]
[114]
Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol., 2017, 174(12), 1591-1619.
[http://dx.doi.org/10.1111/bph.13517] [PMID: 27187006]
[115]
Bajaj, H.S.; Ye, C.; Hanley, A.J.; Sermer, M.; Zinman, B.; Retnakaran, R. Biomarkers of vascular injury and endothelial dysfunction after recent glucose intolerance in pregnancy. Diab. Vasc. Dis. Res., 2018, 15(5), 449-457.
[http://dx.doi.org/10.1177/1479164118779924] [PMID: 29871496]
[116]
Reiner, Ž. Statins in the primary prevention of cardiovascular disease. Nat. Rev. Cardiol., 2013, 10(8), 453-464.
[http://dx.doi.org/10.1038/nrcardio.2013.80] [PMID: 23736519]
[117]
Katsiki, N.; Reiner, Ž.; Tedeschi Reiner, E.; Al-Rasadi, K.; Pirro, M.; Mikhailidis, D.P.; Sahebkar, A. Improvement of endothelial function by pitavastatin: a meta-analysis. Expert Opin. Pharmacother., 2018, 19(3), 279-286.
[http://dx.doi.org/10.1080/14656566.2018.1428560] [PMID: 29334477]
[118]
Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 2001, 292(5519), 1160-1164.
[http://dx.doi.org/10.1126/science.1059344] [PMID: 11349148]
[119]
Tousoulis, D.; Simopoulou, C.; Papageorgiou, N.; Oikonomou, E.; Hatzis, G.; Siasos, G.; Tsiamis, E.; Stefanadis, C. Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol. Ther., 2014, 144(3), 253-267.
[http://dx.doi.org/10.1016/j.pharmthera.2014.06.003] [PMID: 24928320]
[120]
Liu, P.Y.; Liu, Y.W.; Lin, L.J.; Chen, J.H.; Liao, J.K. Evidence for statin pleiotropy in humans: differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation, 2009, 119(1), 131-138.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.813311] [PMID: 19075102]
[121]
Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res., 2017, 120(1), 229-243.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308537] [PMID: 28057795]
[122]
Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.; Pfeffer, M.A.; Skene, A.M. Pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med., 2004, 350(15), 1495-1504.
[http://dx.doi.org/10.1056/NEJMoa040583] [PMID: 15007110]
[123]
Patti, G.; Pasceri, V.; Colonna, G.; Miglionico, M.; Fischetti, D.; Sardella, G.; Montinaro, A.; Di Sciascio, G. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDA-ACS randomized trial. J. Am. Coll. Cardiol., 2007, 49(12), 1272-1278.
[http://dx.doi.org/10.1016/j.jacc.2007.02.025] [PMID: 17394957]
[124]
O’Driscoll, G.; Green, D.; Taylor, R.R. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation, 1997, 95(5), 1126-1131.
[http://dx.doi.org/10.1161/01.CIR.95.5.1126] [PMID: 9054840]
[125]
Williams, J.K.; Sukhova, G.K.; Herrington, D.M.; Libby, P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J. Am. Coll. Cardiol., 1998, 31(3), 684-691.
[http://dx.doi.org/10.1016/S0735-1097(97)00537-8] [PMID: 9502654]
[126]
Amarenco, P.; Labreuche, J. Lipid management in the prevention of stroke: review and updated meta-analysis of statins for stroke prevention. Lancet Neurol., 2009, 8(5), 453-463.
[http://dx.doi.org/10.1016/S1474-4422(09)70058-4] [PMID: 19375663]
[127]
Takagi, H.; Yamamoto, H.; Iwata, K.; Goto, S.N.; Umemoto, T. Low-density lipoprotein-independent improvement of flow-mediated dilatation with atorvastatin: a meta-analysis and meta-regression of randomized controlled trials. Int. J. Cardiol., 2012, 158(2), 285-289.
[http://dx.doi.org/10.1016/j.ijcard.2012.04.054] [PMID: 22560909]
[128]
Katsiki, N.; Triposkiadis, F.; Giannoukas, A.D.; Mikhailidis, D.P. Statin loading in cardiovascular surgery: never too early to treat. Curr. Opin. Cardiol., 2018, 33(4), 436-443.
[http://dx.doi.org/10.1097/HCO.0000000000000519] [PMID: 29601328]
[129]
Katsiki, N.; Mikhailidis, D.P. Lipids: a personal view of the past decade. Hormones, 2018, 17(4), 461-478.
[http://dx.doi.org/10.1007/s42000-018-0058-9] [PMID: 30229482]
[130]
Tziomalos, K.; Athyros, V.G.; Mikhailidis, D.P. Statin discontinuation: an underestimated risk? Curr. Med. Res. Opin., 2008, 24(11), 3059-3062.
[http://dx.doi.org/10.1185/03007990802469102] [PMID: 18826752]
[131]
Katsiki, N.; Doumas, M.; Mikhailidis, D.P. Lipids, statins and heart failure: An update. Curr. Pharm. Des., 2016, 22(31), 4796-4806.
[http://dx.doi.org/10.2174/1381612822666160701073452] [PMID: 27396601]
[132]
Libby, P. Inflammation in atherosclerosis. Nature, 2002, 420(6917), 868-874.
[http://dx.doi.org/10.1038/nature01323] [PMID: 12490960]
[133]
Kureishi, Y.; Luo, Z.; Shiojima, I.; Bialik, A.; Fulton, D.; Lefer, D.J.; Sessa, W.C.; Walsh, K. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med., 2000, 6(9), 1004-1010.
[http://dx.doi.org/10.1038/79510] [PMID: 10973320]
[134]
Sun, W.; Lee, T.S.; Zhu, M.; Gu, C.; Wang, Y.; Zhu, Y.; Shyy, J.Y. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation, 2006, 114(24), 2655-2662.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.630194] [PMID: 17116771]
[135]
Rikitake, Y.; Kim, H.H.; Huang, Z.; Seto, M.; Yano, K.; Asano, T.; Moskowitz, M.A.; Liao, J.K. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke, 2005, 36(10), 2251-2257.
[http://dx.doi.org/10.1161/01.STR.0000181077.84981.11] [PMID: 16141422]
[136]
Wassmann, S.; Laufs, U.; Bäumer, A.T.; Müller, K.; Konkol, C.; Sauer, H.; Böhm, M.; Nickenig, G. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol. Pharmacol., 2001, 59(3), 646-654.
[http://dx.doi.org/10.1124/mol.59.3.646] [PMID: 11179461]
[137]
Kozai, T.; Eto, M.; Yang, Z.; Shimokawa, H.; Lüscher, T.F. Statins prevent pulsatile stretch-induced proliferation of human saphenous vein smooth muscle cells via inhibition of Rho/Rho-kinase pathway. Cardiovasc. Res., 2005, 68(3), 475-482.
[http://dx.doi.org/10.1016/j.cardiores.2005.07.002] [PMID: 16098957]
[138]
Hermida, N.; Balligand, J.L. Low-density lipoprotein-cholesterol-induced endothelial dysfunction and oxidative stress: the role of statins. Antioxid. Redox Signal., 2014, 20(8), 1216-1237.
[http://dx.doi.org/10.1089/ars.2013.5537] [PMID: 23924077]
[139]
Pelat, M.; Dessy, C.; Massion, P.; Desager, J.P.; Feron, O.; Balligand, J.L. Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E-/- mice in vivo. Circulation, 2003, 107(19), 2480-2486.
[http://dx.doi.org/10.1161/01.CIR.0000065601.83526.3E] [PMID: 12719275]
[140]
Sen-Banerjee, S.; Mir, S.; Lin, Z.; Hamik, A.; Atkins, G.B.; Das, H.; Banerjee, P.; Kumar, A.; Jain, M.K. Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation, 2005, 112(5), 720-726.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.525774] [PMID: 16043642]
[141]
Vasa, M.; Fichtlscherer, S.; Adler, K.; Aicher, A.; Martin, H.; Zeiher, A.M.; Dimmeler, S. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 2001, 103(24), 2885-2890.
[http://dx.doi.org/10.1161/hc2401.092816] [PMID: 11413075]
[142]
Wagner, A.H.; Köhler, T.; Rückschloss, U.; Just, I.; Hecker, M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol., 2000, 20(1), 61-69.
[http://dx.doi.org/10.1161/01.ATV.20.1.61] [PMID: 10634801]
[143]
Wolfrum, S.; Jensen, K.S.; Liao, J.K. Endothelium-dependent effects of statins. Arterioscler. Thromb. Vasc. Biol., 2003, 23(5), 729-736.
[http://dx.doi.org/10.1161/01.ATV.0000063385.12476.A7] [PMID: 12615672]
[144]
Briasoulis, A.; Tousoulis, D.; Androulakis, E.S.; Papageorgiou, N.; Latsios, G.; Stefanadis, C. Endothelial dysfunction and atherosclerosis: focus on novel therapeutic approaches. Recent Pat. Cardiovasc. Drug Discov., 2012, 7(1), 21-32.
[http://dx.doi.org/10.2174/157489012799362386] [PMID: 22280336 ]
[145]
Maack, C.; Kartes, T.; Kilter, H.; Schäfers, H.J.; Nickenig, G.; Böhm, M.; Laufs, U. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation, 2003, 108(13), 1567-1574.
[http://dx.doi.org/10.1161/01.CIR.0000091084.46500.BB] [PMID: 12963641]
[146]
Choi, S.H.; Chae, A.; Miller, E.; Messig, M.; Ntanios, F.; DeMaria, A.N.; Nissen, S.E.; Witztum, J.L.; Tsimikas, S. Relationship between biomarkers of oxidized low-density lipoprotein, statin therapy, quantitative coronary angiography, and atheroma: volume observations from the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering) study. J. Am. Coll. Cardiol., 2008, 52(1), 24-32.
[http://dx.doi.org/10.1016/j.jacc.2008.02.066] [PMID: 18582631]
[147]
Abe, M.; Maruyama, N.; Okada, K.; Matsumoto, S.; Matsumoto, K.; Soma, M. Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J. Atheroscler. Thromb., 2011, 18(11), 1018-1028.
[http://dx.doi.org/10.5551/jat.9084] [PMID: 21921413]
[148]
Gluba, A.; Banach, M.; Mikhailidis, D.P.; Rysz, J. Genetic determinants of cardiovascular disease: the renin-angiotensin-aldosterone system, paraoxonases, endothelin-1, nitric oxide synthase and adrenergic receptors. In Vivo, 2009, 23(5), 797-812.
[PMID: 19779116]
[149]
Jagroop, I.A.; Daskalopoulou, S.S.; Mikhailidis, D.P. Endothelin-1 and human platelets. Curr. Vasc. Pharmacol., 2005, 3(4), 393-399.
[http://dx.doi.org/10.2174/157016105774329453] [PMID: 16248783]
[150]
Jagroop, I.A.; Mikhailidis, D.P. Effect of endothelin-1 on human platelet shape change: reversal of activation by naftidrofuryl. Platelets, 2000, 11(5), 272-277.
[http://dx.doi.org/10.1080/09537100050129288] [PMID: 11030461]
[151]
Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.; Banach, M. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.022] [PMID: 26074317]
[152]
Serban, C.; Sahebkar, A.; Ursoniu, S.; Mikhailidis, D.P.; Rizzo, M.; Lip, G.Y.; Kees Hovingh, G.; Kastelein, J.J.; Kalinowski, L.; Rysz, J.; Banach, M. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci. Rep., 2015, 5(9902), 9902.
[http://dx.doi.org/10.1038/srep09902] [PMID: 25970700]
[153]
Reilly, S.N.; Jayaram, R.; Nahar, K.; Antoniades, C.; Verheule, S.; Channon, K.M.; Alp, N.J.; Schotten, U.; Casadei, B. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation, 2011, 124(10), 1107-1117.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.029223] [PMID: 21844076]
[154]
Kjekshus, J.; Apetrei, E.; Barrios, V.; Böhm, M.; Cleland, J.G.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; Gullestad, L.; Hjalmarson, A.; Hradec, J.; Jánosi, A.; Kamenský, G.; Komajda, M.; Korewicki, J.; Kuusi, T.; Mach, F.; Mareev, V.; McMurray, J.J.; Ranjith, N.; Schaufelberger, M.; Vanhaecke, J.; van Veldhuisen, D.J.; Waagstein, F.; Wedel, H.; Wikstrand, J. CORONA Group. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med., 2007, 357(22), 2248-2261.
[http://dx.doi.org/10.1056/NEJMoa0706201] [PMID: 17984166]
[155]
Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G. Gissi-HF Investigators. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet, 2008, 372(9645), 1231-1239.
[http://dx.doi.org/10.1016/S0140-6736(08)61240-4] [PMID: 18757089]
[156]
Lipinski, M.J.; Cauthen, C.A.; Biondi-Zoccai, G.G.; Abbate, A.; Vrtovec, B.; Khan, B.V.; Vetrovec, G.W. Meta-analysis of randomized controlled trials of statins versus placebo in patients with heart failure. Am. J. Cardiol., 2009, 104(12), 1708-1716.
[http://dx.doi.org/10.1016/j.amjcard.2009.07.055] [PMID: 19962481]
[157]
Toyama, K.; Nishioka, T.; Isshiki, A.; Ando, T.; Inoue, Y.; Kirimura, M.; Kamiyama, T.; Sasaki, O.; Ito, H.; Maruyama, Y.; Yoshimoto, N. Eicosapentaenoic Acid combined with optimal statin therapy improves endothelial dysfunction in patients with coronary artery disease. Cardiovasc. Drugs Ther., 2014, 28(1), 53-59.
[http://dx.doi.org/10.1007/s10557-013-6496-3] [PMID: 24158248 ]
[158]
Steven, S.; Dib, M.; Hausding, M.; Kashani, F.; Oelze, M.; Kröller-Schön, S.; Hanf, A.; Daub, S.; Roohani, S.; Gramlich, Y.; Lutgens, E.; Schulz, E.; Becker, C.; Lackner, K.J.; Kleinert, H.; Knosalla, C.; Niesler, B.; Wild, P.S.; Münzel, T.; Daiber, A. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc. Res., 2018, 114(2), 312-323.
[http://dx.doi.org/10.1093/cvr/cvx197] [PMID: 29036612]
[159]
Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; Lloyd-Jones, D.M.; Nelson, S.A.; Nichol, G.; Orenstein, D.; Wilson, P.W.; Woo, Y.J. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation, 2011, 123(8), 933-944.
[http://dx.doi.org/10.1161/CIR.0b013e31820a55f5] [PMID: 21262990]
[160]
Odden, M.C.; Coxson, P.G.; Moran, A.; Lightwood, J.M.; Goldman, L.; Bibbins-Domingo, K. The impact of the aging population on coronary heart disease in the United States. Am. J. Med., 2011, 124(9), 827-833.e5.
[http://dx.doi.org/10.1016/j.amjmed.2011.04.010] [PMID: 21722862]
[161]
Mortensen, M.B.; Falk, E. Primary prevention with statins in the elderly. J. Am. Coll. Cardiol., 2018, 71(1), 85-94.
[http://dx.doi.org/10.1016/j.jacc.2017.10.080] [PMID: 29301631]
[162]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C. Jr.; Watson, K.; Wilson, P.W. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2014, 63(25 Pt B), 2889-2934.
[http://dx.doi.org/10.1016/j.jacc.2013.11.002] [PMID: 24239923]
[163]
National Clinical Guideline, Centre (UK). Lipid modification: Cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. National Institute for Health and Care Excellence (UK), London, 2014.
[PMID: 25340243]
[164]
Anderson, T.J.; Grégoire, J.; Pearson, G.J.; Barry, A.R.; Couture, P.; Dawes, M.; Francis, G.A.; Genest, J., Jr; Grover, S.; Gupta, M.; Hegele, R.A.; Lau, D.C.; Leiter, L.A.; Lonn, E.; Mancini, G.B.; McPherson, R.; Ngui, D.; Poirier, P.; Sievenpiper, J.L.; Stone, J.A.; Thanassoulis, G.; Ward, R. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol., 2016, 32(11), 1263-1282.
[http://dx.doi.org/10.1016/j.cjca.2016.07.510] [PMID: 27712954]
[165]
Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W., Jr; García, F.A.; Gillman, M.W.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; Landefeld, C.S.; LeFevre, M.L.; Mangione, C.M.; Phillips, W.R.; Owens, D.K.; Phipps, M.G.; Pignone, M.P. US Preventive services task force. Statin use for the primary prevention of cardiovascular disease in adults: us preventive services task force recommendation statement. JAMA, 2016, 316(19), 1997-2007.
[http://dx.doi.org/10.1001/jama.2016.15450] [PMID: 27838723]
[166]
Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; Graham, I.; Hall, M.S.; Hobbs, F.D.R.; Løchen, M.L.; Löllgen, H.; Marques-Vidal, P.; Perk, J.; Prescott, E.; Redon, J.; Richter, D.J.; Sattar, N.; Smulders, Y.; Tiberi, M.; van der Worp, H.B.; van Dis, I.; Verschuren, W.M.M.; Binno, S. ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The sixth joint task force of the european society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the european association for cardiovascular prevention & rehabilitation (EACPR). Eur. Heart J., 2016, 37(29), 2315-2381.
[http://dx.doi.org/10.1093/eurheartj/ehw106] [PMID: 27222591]
[167]
Gurwitz, J.H.; Go, A.S.; Fortmann, S.P. Statins for primary prevention in older adults: uncertainty and the need for more evidence. JAMA, 2016, 316(19), 1971-1972.
[http://dx.doi.org/10.1001/jama.2016.15212] [PMID: 27838724]
[168]
Fischer, S.; Julius, U. Management of patients with statin intolerance. Atheroscler. Suppl., 2017, 30, 33-37.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2017.05.013] [PMID: 29096858]
[169]
Alonso, R.; Cuevas, A.; Cafferata, A. Diagnosis and management of statin intolerance. J. Atheroscler. Thromb., 2019, 26(3), 207-215.
[http://dx.doi.org/10.5551/jat.RV17030] [PMID: 30662020]
[170]
Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.; Nordestgaard, B.G.; Bruckert, E.; De Backer, G.; Krauss, R.M.; Laufs, U.; Santos, R.D.; Hegele, R.A.; Hovingh, G.K.; Leiter, L.A.; Mach, F.; März, W.; Newman, C.B.; Wiklund, O.; Jacobson, T.A.; Catapano, A.L.; Chapman, M.J.; Ginsberg, H.N. European Atherosclerosis Society Consensus Panel. European atherosclerosis society consensus panel. statin-associated muscle symptoms: impact on statin therapy-european atherosclerosis society consensus panel statement on assessment, aetiology and management. Eur. Heart J., 2015, 36(17), 1012-1022.
[http://dx.doi.org/10.1093/eurheartj/ehv043] [PMID: 25694464]
[171]
Banach, M.; Rizzo, M.; Toth, P.P.; Farnier, M.; Davidson, M.H.; Al-Rasadi, K.; Aronow, W.S.; Athyros, V.; Djuric, D.M.; Ezhov, M.V.; Greenfield, R.S.; Hovingh, G.K.; Kostner, K.; Serban, C.; Lighezan, D.; Fras, Z.; Moriarty, P.M.; Muntner, P.; Goudev, A.; Ceska, R.; Nicholls, S.J.; Broncel, M.; Nikolic, D.; Pella, D.; Puri, R.; Rysz, J.; Wong, N.D.; Bajnok, L.; Jones, S.R.; Ray, K.K.; Mikhailidis, D.P. Statin intolerance - an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch. Med. Sci., 2015, 11(1), 1-23.
[http://dx.doi.org/10.5114/aoms.2015.49807] [PMID: 25861286]
[172]
Sposito, A.C.; Faria Neto, J.R.; Carvalho, L.S.; Lorenzatti, A.; Cafferata, A.; Elikir, G.; Esteban, E.; Morales Villegas, E.C.; Bodanese, L.C.; Alonso, R.; Ruiz, A.J.; Rocha, V.Z.; Faludi, A.A.; Xavier, H.T.; Coelho, O.R.; Assad, M.H.; Izar, M.C.; Santos, R.D.; Fonseca, F.A.; Mello, E. Silva, A.; Silva, P.M.; Bertolami, M.C. on behalf of the Luso-Latin American Consortium on statin-associated muscle symptoms. Statin-associated muscle symptoms: position paper from the Luso-Latin American Consortium. Curr. Med. Res. Opin., 2017, 33(2), 239-251.
[http://dx.doi.org/10.1080/03007995.2016.1252740] [PMID: 27776432]
[173]
Sahebkar, A.; Giua, R.; Pedone, C.; Ray, K.K.; Vallejo-Vaz, A.J.; Costanzo, L. Fibrate therapy and flow-mediated dilation: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol. Res., 2016, 111, 163-179.
[http://dx.doi.org/10.1016/j.phrs.2016.06.011] [PMID: 27320045]
[174]
Ghani, R.A.; Bin Yaakob, I.; Wahab, N.A.; Zainudin, S.; Mustafa, N.; Sukor, N.; Wan Mohamud, W.N.; Kadir, K.A.; Kamaruddin, N.A. The influence of fenofibrate on lipid profile, endothelial dysfunction, and inflammatory markers in type 2 diabetes mellitus patients with typical and mixed dyslipidemia. J. Clin. Lipidol., 2013, 7(5), 446-453.
[http://dx.doi.org/10.1016/j.jacl.2013.04.004] [PMID: 24079286]
[175]
Wang, T.D.; Chen, W.J.; Lin, J.W.; Cheng, C.C.; Chen, M.F.; Lee, Y.T. Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia: relations with baseline lipid profiles. Atherosclerosis, 2003, 170(2), 315-323.
[http://dx.doi.org/10.1016/S0021-9150(03)00296-X] [PMID: 14612213]
[176]
Bae, J.H.; Bassenge, E.; Lee, H.J.; Park, K.R.; Park, C.G.; Park, K.Y.; Lee, M.S.; Schwemmer, M. Impact of postprandial hypertriglyceridemia on vascular responses in patients with coronary artery disease: effects of ACE inhibitors and fibrates. Atherosclerosis, 2001, 158(1), 165-171.
[http://dx.doi.org/10.1016/S0021-9150(01)00408-7] [PMID: 11500188]
[177]
Ikeda, S.; Maemura, K. Ezetimibe and vascular endothelial function. Curr. Vasc. Pharmacol., 2011, 9(1), 87-98.
[http://dx.doi.org/10.2174/157016111793744797] [PMID: 21044017]
[178]
Takase, S.; Matoba, T.; Nakashiro, S.; Mukai, Y.; Inoue, S.; Oi, K.; Higo, T.; Katsuki, S.; Takemoto, M.; Suematsu, N.; Eshima, K.; Miyata, K.; Yamamoto, M.; Usui, M.; Sadamatsu, K.; Satoh, S.; Kadokami, T.; Hironaga, K.; Ichi, I.; Todaka, K.; Kishimoto, J.; Egashira, K.; Sunagawa, K. Ezetimibe in combination with statins ameliorates endothelial dysfunction in coronary arteries after stenting: the cuvic trial (effect of cholesterol absorption inhibitor usage on target vessel dysfunction after coronary stenting), a multicenter randomized controlled trial. Arterioscler. Thromb. Vasc. Biol., 2017, 37(2), 350-358.
[http://dx.doi.org/10.1161/ATVBAHA.116.308388] [PMID: 27932353]
[179]
Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; De Ferrari, G.M.; Ruzyllo, W.; De Lucca, P. Im, K.; Bohula, E.A.; Reist, C.; Wiviott, S.D.; Tershakovec, A.M.; Musliner, T.A.; Braunwald, E.; Califf, R.M. IMPROVE-IT Investigators. Im, K.; Bohula, E.A.; Reist, C.; Wiviott, S.D.; Tershakovec, A.M.; Musliner, T.A.; Braunwald, E.; Califf, R.M. IMPROVE-IT investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med., 2015, 372(25), 2387-2397.
[http://dx.doi.org/10.1056/NEJMoa1410489] [PMID: 26039521]
[180]
Bass, A.; Hinderliter, A.L.; Lee, C.R. The impact of ezetimibe on endothelial function and other markers of cardiovascular risk. Ann. Pharmacother., 2009, 43(12), 2021-2030.
[http://dx.doi.org/10.1345/aph.1M302] [PMID: 19920161]
[181]
Insull, W., Jr Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South. Med. J., 2006, 99(3), 257-273.
[http://dx.doi.org/10.1097/01.smj.0000208120.73327.db] [PMID: 16553100]
[182]
Staels, B.; Handelsman, Y.; Fonseca, V. Bile acid sequestrants for lipid and glucose control. Curr. Diab. Rep., 2010, 10(1), 70-77.
[http://dx.doi.org/10.1007/s11892-009-0087-5] [PMID: 20425070]
[183]
Insull, W., Jr; Toth, P.; Mullican, W.; Hunninghake, D.; Burke, S.; Donovan, J.M.; Davidson, M.H. Effectiveness of colesevelam hydrochloride in decreasing LDL cholesterol in patients with primary hypercholesterolemia: a 24-week randomized controlled trial. Mayo Clin. Proc., 2001, 76(10), 971-982.
[http://dx.doi.org/10.4065/76.10.971] [PMID: 11605698 ]
[184]
The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. JAMA, 1984, 251(3), 351-364.
[http://dx.doi.org/10.1001/jama.1984.03340270029025] [PMID: 6361299]
[185]
Hunninghake, D.; Insull, W., Jr; Toth, P.; Davidson, D.; Donovan, J.M.; Burke, S.K. Coadministration of colesevelam hydrochloride with atorvastatin lowers LDL cholesterol additively. Atherosclerosis, 2001, 158(2), 407-416.
[http://dx.doi.org/10.1016/S0021-9150(01)00437-3] [PMID: 11583720]
[186]
Knapp, H.H.; Schrott, H.; Ma, P.; Knopp, R.; Chin, B.; Gaziano, J.M.; Donovan, J.M.; Burke, S.K.; Davidson, M.H. Efficacy and safety of combination simvastatin and colesevelam in patients with primary hypercholesterolemia. Am. J. Med., 2001, 110(5), 352-360.
[http://dx.doi.org/10.1016/S0002-9343(01)00638-6] [PMID: 11286949]
[187]
Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697 ]
[188]
Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci., 2007, 32(2), 71-77.
[http://dx.doi.org/10.1016/j.tibs.2006.12.008] [PMID: 17215125]
[189]
Giugliano, R.P.; Sabatine, M.S. Are PCSK9 inhibitors the next breakthrough in the cardiovascular field? J. Am. Coll. Cardiol., 2015, 65(24), 2638-2651.
[http://dx.doi.org/10.1016/j.jacc.2015.05.001] [PMID: 26088304]
[190]
Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; Ballantyne, C.M.; Somaratne, R.; Legg, J.; Wasserman, S.M.; Scott, R.; Koren, M.J.; Stein, E.A. Open-label study of long-term evaluation against LDL cholesterol (OSLER) investigators. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1500-1509.
[http://dx.doi.org/10.1056/NEJMoa1500858] [PMID: 25773607]
[191]
Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; El Shahawy, M.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J. ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499.
[http://dx.doi.org/10.1056/NEJMoa1501031] [PMID: 25773378]
[192]
Zhang, X.L.; Zhu, Q.Q.; Zhu, L.; Chen, J.Z.; Chen, Q.H.; Li, G.N.; Xie, J.; Kang, L.N.; Xu, B. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med., 2015, 13(1)
[http://dx.doi.org/10.1186/s12916-015-0358-8]
[193]
Maulucci, G.; Cipriani, F.; Russo, D.; Casavecchia, G.; Di Staso, C.; Di Martino, L.; Ruggiero, A.; Di Biase, M.; Brunetti, N.D. Improved endothelial function after short-term therapy with evolocumab. J. Clin. Lipidol., 2018, 12(3), 669-673.
[http://dx.doi.org/10.1016/j.jacl.2018.02.004] [PMID: 29544724]
[194]
Virani, S.S.; Akeroyd, J.M.; Nambi, V.; Heidenreich, P.A.; Morris, P.B.; Nasir, K.; Michos, E.D.; Bittner, V.A.; Petersen, L.A.; Ballantyne, C.M. Estimation of eligibility for proprotein convertase subtilisin/kexin type 9 inhibitors and associated costs based on the FOURIER trial (further cardiovascular outcomes research with PCSK9 inhibition in subjects with elevated risk): insights from the department of veterans affairs. Circulation, 2017, 135(25), 2572-2574.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028503] [PMID: 28465286]
[195]
Cuchel, M.; Meagher, E.A.; du Toit Theron, H.; Blom, D.J.; Marais, A.D.; Hegele, R.A.; Averna, M.R.; Sirtori, C.R.; Shah, P.K.; Gaudet, D.; Stefanutti, C.; Vigna, G.B.; Du Plessis, A.M.E.; Propert, K.J.; Sasiela, W.J.; Bloedon, L.T.; Rader, D.J. Phase 3 HoFH Lomitapide Study investigators. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet, 2013, 381(9860), 40-46.
[http://dx.doi.org/10.1016/S0140-6736(12)61731-0] [PMID: 23122768]
[196]
Rader, D.J. New Therapeutic approaches to the treatment of dyslipidemia. Cell Metab., 2016, 23(3), 405-412.
[http://dx.doi.org/10.1016/j.cmet.2016.01.005] [PMID: 26853751]
[197]
Berberich, A.J.; Hegele, R.A. Lomitapide for the treatment of hypercholesterolemia. Expert Opin. Pharmacother., 2017, 18(12), 1261-1268.
[http://dx.doi.org/10.1080/14656566.2017.1340941] [PMID: 28598687]
[198]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.L.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J. Inclisiran in patients at high cardiovascular risk with elevated LDL Cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[199]
Tadin-Strapps, M.; Peterson, L.B.; Cumiskey, A-M.; Rosa, R.L.; Mendoza, V.H.; Castro-Perez, J.; Puig, O.; Zhang, L.; Strapps, W.R.; Yendluri, S.; Andrews, L.; Pickering, V.; Rice, J.; Luo, L.; Chen, Z.; Tep, S.; Ason, B.; Somers, E.P.; Sachs, A.B.; Bartz, S.R.; Tian, J.; Chin, J.; Hubbard, B.K.; Wong, K.K.; Mitnaul, L.J. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J. Lipid Res., 2011, 52(6), 1084-1097.
[http://dx.doi.org/10.1194/jlr.M012872] [PMID: 21398511]
[200]
Thota, R.N.; Ferguson, J.J.A.; Abbott, K.A.; Dias, C.B.; Garg, M.L. Science behind the cardio-metabolic benefits of omega-3 polyunsaturated fatty acids: biochemical effects vs. clinical outcomes. Food Funct., 2018, 9(7), 3576-3596.
[http://dx.doi.org/10.1039/C8FO00348C] [PMID: 29904777]
[201]
Balta, S.; Mikhailidis, D.P.; Demirkol, S.; Ozturk, C.; Celik, T.; Iyisoy, A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis, 2015, 243(1), 339-343.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.030] [PMID: 26448266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy