Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Docking Based Analysis to Elucidate the DNA Topoisomerase IIβ as the Potential Target for the Ganoderic Acid; A Natural Therapeutic Agent in Cancer Therapy

Author(s): Kaushal K. Sharma, Brijendra Singh, Somdutt Mujwar and Prakash S. Bisen*

Volume 16, Issue 2, 2020

Page: [176 - 189] Pages: 14

DOI: 10.2174/1573409915666190820144759

Price: $65

Abstract

Introduction: Intermediate covalent complex of DNA-Topoisomerase II enzyme is the most promising target of the anticancer drugs to induce apoptosis in cancer cells. Currently, anticancer drug and chemotherapy are facing major challenges i.e., drug resistance, chemical instability and, dose-limiting side effect. Therefore, in this study, natural therapeutic agents (series of Ganoderic acids) were used for the molecular docking simulation against Human DNATopoisomerase II beta complex (PDB ID:3QX3).

Methods: Molecular docking studies were performed on a 50 series of ganoderic acids reported in the NCBI-PubChem database and FDA approved anti-cancer drugs, to find out binding energy, an interacting residue at the active site of Human DNA-Topoisomerase II beta and compare with the molecular arrangements of the interacting residue of etoposide with the Human DNA topoisomerase II beta. The autodock 4.2 was used for the molecular docking and pharmacokinetic and toxicity studies were performed for the analysis of physicochemical properties and to check the toxicity effects. Discovery studio software was used for the visualization and analysis of docked pose.

Results and Conclusion: Ganoderic acids (GS-1, A and DM) were found to be a more suitable competitor inhibitor among the ganoderic acid series with appropriate binding energy, pharmacokinetic profile and no toxicity effects. The interacting residue (Met782, DC-8, DC-11 and DA-12) shared a chemical resemblance with the interacting residue of etoposide present at the active site of human topoisomerase II beta receptor.

Keywords: Molecular docking, human topoisomerase II β, ganoderic acids, Autodock 4.2, anti-cancer property, natural therapeutic agents.

Graphical Abstract
[1]
Utku, N. New approaches to treat cancer - what they can and cannot do. Biotechnol. Health., 2011, 8(4), 25-27.
[PMID: 22479231]
[2]
Castleden, C.M.; Allen, J.G.; Altman, J. St, John-Smith. P. A comparison of oral midazolam, nitrazepam and placebo in young and elderly subjects. Eur. J. Clin. Pharmacol., 1987, 32(3), 253-257.
[http://dx.doi.org/10.1038/srep01445] [PMID: 23486013]
[3]
Liang, X.J.; Chen, C.; Zhao, Y.; Wang, P.C. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol. Biol., 2010, 596, 467-488.
[PMID: 19949937] [http://dx.doi.org/10.1007/978-1-60761-416-6_21]
[4]
Mayor, S. Side-effects of cancer drugs are under-reported in trials. Lancet Oncol., 2015, 16(3)e107
[http://dx.doi.org/10.1016/S1470-2045(15)70023-9] [PMID: 25639368]
[5]
Mathupala, S.P. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux. Recent Patents Anticancer Drug Discov., 2011, 6(1), 6-14.
[http://dx.doi.org/10.2174/157489211793980114] [PMID: 21110820]
[6]
Deweese, J.E.; Osheroff, M.A.; Osheroff, N. DNA topology and topoisomerases: teaching a “knotty” subject. Biochem. Mol. Biol. Educ., 2008, 37(1), 2-10.
[http://dx.doi.org/10.1002/bmb.20244] [PMID: 19225573]
[7]
Seol, Y.; Neuman, K.C. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys. Rev., 2016, 8(1), 101-111.
[http://dx.doi.org/10.1007/s12551-016-0240-8] [PMID: 28510219]
[8]
Lee, I.; Dong, K.C.; Berger, J.M. The role of DNA bending in type IIA topoisomerase function. Nucleic Acids Res., 2013, 41(10), 5444-5456.
[http://dx.doi.org/10.1093/nar/gkt238] [PMID: 23580548]
[9]
Harkin.; L.F.; Gerrelli.; D., Gold Diaz.; D.C., Santos, C.; Alzu’bi, A.; Austin, C.A.; Clowry, G.J. Distinct expression patterns for type II topoisomerases IIA and IIB in the early foetal human telencephalon. J. Anat., 2016, 228(3), 452-463.
[http://dx.doi.org/ 10.1111/joa.12416] [PMID: 26612825]
[10]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular cell biology, 4th edition. National Center for Biotechnology Information, Bookshelf, 2000.
[11]
Swift, L.; Golsteyn, R. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int. J. Mol. Sci., 2014, 15(3), 3403-3431.
[http://dx.doi.org/10.3390/ijms15033403] [PMID: 24573252]
[12]
Vera-Badillo, F.E.; Al-Mubarak, M.; Templeton, A.J.; Amir, E. Benefit and harms of new anti-cancer drugs. Curr. Oncol. Rep., 2013, 15(3), 270-275.
[http://dx.doi.org/10.1007/s11912-013-0303-y] [PMID: 23435854]
[13]
Cör, D.; Knez, Ž. Knez, Hrnčič. M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides. Molecules, 2018, 23(3), 649.
[http://dx.doi.org/10.3390/molecules23030649]
[14]
Wu, G.S.; Lu, J.J.; Guo, J.J.; Li, Y.B.; Tan, W.; Dang, Y.Y.; Zhong, Z.F.; Xu, Z.T.; Chen, X.P.; Wang, Y.T. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia, 2012, 83(2), 408-414.
[http://dx.doi.org/10.1016/j.fitote.2011.12.004] [PMID: 22178684]
[15]
You, B.J.; Tien, N.; Lee, M.H.; Bao, B.Y.; Wu, Y.S.; Hu, T.C.; Lee, H.Z. Induction of apoptosis and ganoderic acid biosynthesis by cAMP signaling in Ganoderma lucidum. Sci. Rep., 2017, 7(1), 318.
[http://dx.doi.org/10.1038/s41598-017-00281-x] [PMID: 28336949]
[16]
Tang, W.; Liu, J.W.; Zhao, W.M.; Wei, D.Z.; Zhong, J.J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci., 2006, 80(3), 205-211.
[http://dx.doi.org/10.1016/j.lfs.2006.09.001] [PMID: 17007887]
[17]
Wu, C.C.; Li, T.K.; Farh, L.; Lin, L.Y.; Lin, T.S.; Yu, Y.J.; Yen, T.J.; Chiang, C.W.; Chan, N.L. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science, 2011, 333(6041), 459-462.
[http://dx.doi.org/10.1126/science.1204117] [PMID: 21778401]
[18]
Berman, H.M.; Bourne, P.E.; Westbrook, J.; Zardecki, C. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[19]
Mujwar, S.; Pardasani, K. Prediction of Riboswitch as a potential drug target for infectious diseases: An Insilico case study of anthrax. J. Med. Imaging Health Inform., 2015, 5(1), 7-16.
[http://dx.doi.org/10.1166/jmihi.2015.1358]
[20]
Mujwar, S.; Pardasani, K.R. Prediction of riboswitch as a potential drug target and design of its optimal inhibitors for Mycobacterium tuberculosis. Int. J. Comput. Biol. Drug Des., 2015, 8(4), 326-347.
[http://dx.doi.org/10.1504/IJCBDD.2015.073671]
[21]
Lipinski, C.A. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[22]
Sander, T. OSIRIS property explorer; Organic Chemistry Portal, 2001.
[23]
Wendorff, T.J.; Schmidt, B.H.; Heslop, P.; Austin, C.A.; Berger, J.M. The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J. Mol. Biol., 2012, 424(3-4), 109-124.
[http://dx.doi.org/10.1016/j.jmb.2012.07.014] [PMID: 22841979]
[24]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[25]
Infante, Lara. L.; Fenner, S.; Ratcliffe, S.; Isidro-Llobet, A.; Hann, M.; Bax, B.; Osheroff, N.Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Res., 2018, 46(5), 2218-2233.
[http://dx.doi.org/10.1093/nar/gky072] [PMID: 29447373]
[26]
Ferreira, J.; Ramos, A.A.; Almeida, T.; Azqueta, A.; Rocha, E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs. Phytomedicine, 2018, 48, 84-93.
[http://dx.doi.org/10.1016/j.phymed. 2018.04.062] [PMID: 30195884]
[27]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers, 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers 6031769] [PMID: 25198391]
[28]
Li, C.H.; Chen, P.Y.; Chang, U.M.; Kan, L.S.; Fang, W.H.; Tsai, K.S.; Lin, S.B. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci., 2005, 77(3), 252-265.
[http://dx.doi.org/10.1016/j.lfs.2004.09.045] [PMID: 15878354]
[29]
Wang, X.; Sun, D.; Tai, J.; Wang, L. Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells. Mol. Med. Rep., 2017, 16(4), 3894-3900.
[http://dx.doi.org/10.3892/mmr.2017.7048] [PMID: 28731159]
[30]
Ravindran, S.; Suthar, J.K.; Rokade, R. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr. Drug Metab., 2018, 19(4), 327-334.
[http://dx.doi.org/10.2174/1389200219666180305154119] [PMID: 29512450]
[31]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[32]
Efremov, R.G.; Chugunov, A.O; Pyrkov, T.V.; Priestle, J.P.; Arseniev, A.S.; Jacoby, E. Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem, 2007, 14(4), 393-415.
[http://dx.doi.org/10.2174/092986707779941050] [PMID: 17305542]
[33]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledgebased approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem, 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[34]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541- 553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[35]
Burden, D.A.; Osheroff, N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim. Biophys. Acta Gene. Regul. Mech, 1998, 1400(1-3), 139-154.
[http://dx.doi.org/10.1016/S0167-4781(98)00132-8]
[36]
Pommier, Y.; Pourquier, P.; Fan, Y.; Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim. Biophys. Acta Gene Regul. Mech., 1998, 1400(1-3), 83-106.
[http://dx.doi.org/10.1016/S0167-4781(98)00129-8]
[37]
Delgado, J.L.; Hsieh, C-M.; Chan, N-L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J, 2018, 475(2), 373-398.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[38]
Wilstermann, A.M.; Bender, R.P.; Godfrey, M.; Choi, S.; Anklin, C.; Berkowitz, D.B.; Osheroff, N.; Graves, D.E. Topoisomerase II− drug interaction domains: identification of substituents on etoposide that interact with the enzyme. Biochemistry, 2007, 46(28), 8217-8225.
[http://dx.doi.org/10.1021/bi700272u] [PMID: 17580961]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy