Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

AMPK: Potential Therapeutic Target for Alzheimer's Disease

Author(s): Luping Yang, Yijing Jiang, Lihong Shi, Dongling Zhong, Yuxi Li, Juan Li* and Rongjiang Jin*

Volume 21, Issue 1, 2020

Page: [66 - 77] Pages: 12

DOI: 10.2174/1389203720666190819142746

Price: $65

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The pathogenesis of AD is very complicated. For decades, the amyloid hypothesis has influenced and guided research in the field of AD. Meanwhile, researchers gradually realized that AD is caused by multiple concomitant factors, such as autophagy, mitochondrial quality control, insulin resistance and oxidative stress. In current clinical trials, the improvement strategies of AD, such as Aβ antibody immunotherapy and gamma secretase inhibitors, are limited. There is mounting evidence of neurodegenerative disorders indicated that activation of AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. We reviewed the researches on AMPK for AD, the results demonstrated that activation of AMPK is controversial in Aβ deposition and tau phosphorylation, but is positive to promote autophagy, maintain mitochondrial quality control, reduce insulin resistance and relieve oxidative stress. It is concluded that AMPK might be a new target for AD by aggressively treating the risk factors in the future.

Keywords: AD, AMPK, Aβ accumulation, tau phosphorylation, Alzheimer's disease, tau phosphorylation.

Graphical Abstract
[1]
Sabbagh, M.; Han, S.; Kim, S.; Na, H.R.; Lee, J.H.; Kandiah, N.; Phanthumchinda, K.; Suthisisang, C.; Senanarong, V.; Pai, M.C.; Narilastri, D.; Sowani, A.M.; Ampil, E.; Dash, A. Clinical recommendations for the use of donepezil 23 mg in moderate-to-severe Alzheimer’s disease in the asia-pacific region. Dement. Geriatr. Cogn. Disord. Extra, 2016, 6(3), 382-395.
[http://dx.doi.org/10.1159/000448214]
[2]
Prince, M.; Wimo, A.; Guerchet, M. World Alzheimer Report 2015 - The Global Impact of Dementia; Alzheimer’s Disease International, 2015.
[3]
Catindig, J.A.S.; Venketasubramanian, N.; Ikram, M.K.; Chen, C. Epidemiology of dementia in Asia: insights on prevalence, trends and novel risk factors. J. Neurol. Sci., 2012, 321(1-2), 11-16.
[http://dx.doi.org/10.1016/j.jns.2012.07.023] [PMID: 22877510]
[4]
Dauphinot, V.; Delphin-Combe, F.; Mouchoux, C.; Dorey, A.; Bathsavanis, A.; Makaroff, Z.; Rouch, I.; Krolak-Salmon, P. Risk factors of caregiver burden among patients with Alzheimer’s disease or related disorders: A cross-sectional study. J. Alzheimers Dis., 2015, 44(3), 907-916.
[http://dx.doi.org/10.3233/JAD-142337] [PMID: 25374109]
[5]
Aggarwal, N.T.; Tripathi, M.; Dodge, H.H.; Alladi, S.; Anstey, K.J. Trends in Alzheimer’s disease and dementia in the asian-pacific region. Int. J. Alzheimers Dis., 2012, 2012171327
[http://dx.doi.org/10.1155/2012/171327] [PMID: 23304631]
[6]
Ja., Yesavage; J.O., Brooks, III; J., Taylor Development of aphasia, apraxia, and agnosia and decline in Alzheimer’s disease. Am. J. Psychiatry, 1993, 150(5), 742-747.
[7]
Usery, S.E. Understanding mechanistic details of neuroinflammatory pathways stimulated by the Alzheimer’s disease amyloid-beta protein; Dissertations & Theses - Gradworks, 2014.
[8]
Tcw, J.; Goate, A.M. Genetics of β-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb. Perspect. Med., 2017, 7(6)a024539
[http://dx.doi.org/10.1101/cshperspect.a024539] [PMID: 28003277]
[9]
Wang, Q.; Zhang, J.Y.; Liu, S.J.; Li, H.L. Overactivated mitogen-activated protein kinase by anisomycin induces tau hyperphosphorylation. Sheng Li Xue Bao, 2008, 60(4), 485-491.
[PMID: 18690390]
[10]
Vijayan, S.; Grundke-Iqbal, I.; Iqbal, K. Abnormal hyperphosphorylation of non-tau proteins in Alzheimer’s disease brain. Neurobiol. Aging, 2000, 21(1), 150-150.
[http://dx.doi.org/10.1016/S0197-4580(00)82475-6]
[11]
Li, Q.; Liu, Y.; Sun, M. Autophagy and Alzheimer’s Disease. Cell. Mol. Neurobiol., 2017, 37(3), 377-388.
[http://dx.doi.org/10.1007/s10571-016-0386-8] [PMID: 27260250]
[12]
Liu, J.; Li, C.; Xing, G.; Zhou, L.; Dong, M.; Geng, Y.; Li, X.; Li, J.; Wang, G.; Zou, D.; Niu, Y. Beta-asarone attenuates neuronal apoptosis induced by beta amyloid in rat hippocampus. Yakugaku Zasshi, 2010, 130(5), 737-746.
[http://dx.doi.org/10.1248/yakushi.130.737] [PMID: 20460873]
[13]
Diehl, T.; Mullins, R.; Kapogiannis, D. Insulin resistance in Alzheimer’s disease. Transl. Res., 2017, 183, 26-40.
[http://dx.doi.org/10.1016/j.trsl.2016.12.005] [PMID: 28034760]
[14]
Mullins, R.J.; Diehl, T.C.; Chia, C.W.; Kapogiannis, D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Front. Aging Neurosci., 2017, 9, 118.
[http://dx.doi.org/10.3389/fnagi.2017.00118] [PMID: 28515688]
[15]
Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[16]
Li, D.D.; Zhang, Y.H.; Zhang, W.; Zhao, P. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, Rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front. Neurosci., 2019, 13, 472.
[http://dx.doi.org/10.3389/fnins.2019.00472] [PMID: 31156366]
[17]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[18]
Cao, J.; Hou, J.; Ping, J.; Cai, D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 64-64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[19]
Carling, D.; Thornton, C.; Woods, A.; Sanders, M.J. AMP-activated protein kinase: new regulation, new roles? Biochem. J., 2012, 445(1), 11-27.
[http://dx.doi.org/10.1042/BJ20120546] [PMID: 22702974]
[20]
Lu, J.; Wu, D.M.; Zheng, Y.L.; Hu, B.; Zhang, Z.F.; Shan, Q.; Zheng, Z.H.; Liu, C.M.; Wang, Y.J. Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J. Pathol., 2010, 222(2), 199-212.
[http://dx.doi.org/10.1002/path.2754] [PMID: 20690163]
[21]
Min, S.W.; Cho, S.H.; Zhou, Y.; Schroeder, S.; Haroutunian, V.; Seeley, W.W.; Huang, E.J.; Shen, Y.; Masliah, E.; Mukherjee, C.; Meyers, D.; Cole, P.A.; Ott, M.; Gan, L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 2010, 67(6), 953-966.
[http://dx.doi.org/10.1016/j.neuron.2010.08.044] [PMID: 20869593]
[22]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[23]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[24]
Prasher, V.P.; Farrer, M.J.; Kessling, A.M.; Fisher, E.M.; West, R.J.; Barber, P.C.; Butler, A.C. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann. Neurol., 1998, 43(3), 380-383.
[http://dx.doi.org/10.1002/ana.410430316] [PMID: 9506555]
[25]
Rovelet-Lecrux, A.; Hannequin, D.; Raux, G.; Le Meur, N.; Laquerrière, A.; Vital, A.; Dumanchin, C.; Feuillette, S.; Brice, A.; Vercelletto, M.; Dubas, F.; Frebourg, T.; Campion, D. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet., 2006, 38(1), 24-26.
[http://dx.doi.org/10.1038/ng1718] [PMID: 16369530]
[26]
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci., 2004, 5(5), 347-360.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[27]
Hollander, E. Rare metabolic syndromes, a vascular hypotheses of Alzheimer’s disease, and drug developments for attention and trauma. CNS Spectrums., 2008, 13(07), 548-549.
[http://dx.doi.org/10.1017/S1092852900016801]
[28]
Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci., 2011, 12(12), 723-738.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[29]
Reddy, P.H. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochim. Biophys. Acta, 2013, 1832(12), 1913-1921.
[http://dx.doi.org/10.1016/j.bbadis.2013.06.012] [PMID: 23816568]
[30]
Du, H.; Guo, L.; Yan, S.S. Synaptic mitochondrial pathology in Alzheimer’s disease. Antioxid. Redox Signal., 2012, 16(12), 1467-1475.
[http://dx.doi.org/10.1089/ars.2011.4277] [PMID: 21942330]
[31]
Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2001, 60(8), 759-767.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[32]
Toledo, J.B.; Arnold, S.E.; Raible, K.; Brettschneider, J.; Xie, S.X.; Grossman, M.; Monsell, S.E.; Kukull, W.A.; Trojanowski, J.Q. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain, 2013, 136(Pt 9), 2697-2706.
[http://dx.doi.org/10.1093/brain/awt188] [PMID: 23842566]
[33]
Cai, Z. 1.; Zhao, B.; Li, K.; Zhang, L.; Li, C.; Quazi, S.H.; Tan, Y. Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J. Neurosci. Res., 2012, 90(6), 1105-1118.
[http://dx.doi.org/10.1002/jnr.23011] [PMID: 22344941]
[34]
Iturria-Medina, Y.; Sotero, R.C.; Toussaint, P.J.; Mateos-Pérez, J.M.; Evans, A.C. Alzheimer’s disease neuroimaging initiative. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun., 2016, 7, 11934.
[http://dx.doi.org/10.1038/ncomms11934] [PMID: 27327500]
[35]
Calabrese, M.F.; Rajamohan, F.; Harris, M.S.; Caspers, N.L.; Magyar, R.; Withka, J.M.; Wang, H.; Borzilleri, K.A.; Sahasrabudhe, P.V.; Hoth, L.R.; Geoghegan, K.F.; Han, S.; Brown, J.; Subashi, T.A.; Reyes, A.R.; Frisbie, R.K.; Ward, J.; Miller, R.A.; Landro, J.A.; Londregan, A.T.; Carpino, P.A.; Cabral, S.; Smith, A.C.; Conn, E.L.; Cameron, K.O.; Qiu, X.; Kurumbail, R.G. Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure, 2014, 22(8), 1161-1172.
[http://dx.doi.org/10.1016/j.str.2014.06.009] [PMID: 25066137]
[36]
Kurumbail, R.G.; Calabrese, M.F. (2016) Structure and Regulation of AMPK. In: ; Cordero M., Viollet B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham., .
[http://dx.doi.org/10.1007/978-3-319-43589-3_1]
[37]
Hawley, S.A.; Ross, F.A.; Gowans, G.J.; Tibarewal, P.; Leslie, N.R.; Hardie, D.G. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J., 2014, 459(2), 275-287.
[http://dx.doi.org/10.1042/BJ20131344] [PMID: 24467442]
[38]
Hawley, S.A.; Davison, M.; Woods, A.; Davies, S.P.; Beri, R.K.; Carling, D.; Hardie, D.G. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem., 1996, 271(44), 27879-27887.
[http://dx.doi.org/10.1074/jbc.271.44.27879] [PMID: 8910387]
[39]
Woods, A.; Johnstone, S.R.; Dickerson, K.; Leiper, F.C.; Fryer, L.G.; Neumann, D.; Schlattner, U.; Wallimann, T.; Carlson, M.; Carling, D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol., 2003, 13(22), 2004-2008.
[http://dx.doi.org/10.1016/j.cub.2003.10.031] [PMID: 14614828]
[40]
Hawley, S.A.; Pan, D.A.; Mustard, K.J.; Ross, L.; Bain, J.; Edelman, A.M.; Frenguelli, B.G.; Hardie, D.G. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab., 2005, 2(1), 9-19.
[http://dx.doi.org/10.1016/j.cmet.2005.05.009] [PMID: 16054095]
[41]
Momcilovic, M.; Hong, S.P.; Carlson, M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem., 2006, 281(35), 25336-25343.
[http://dx.doi.org/10.1074/jbc.M604399200] [PMID: 16835226]
[42]
Hudson, E.R.; Pan, D.A.; James, J.; Lucocq, J.M.; Hawley, S.A.; Green, K.A.; Baba, O.; Terashima, T.; Hardie, D.G. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol., 2003, 13(10), 861-866.
[http://dx.doi.org/10.1016/S0960-9822(03)00249-5] [PMID: 12747836]
[43]
Polekhina, G.; Gupta, A.; Belinda, M.J.; Parker, M.W.; Kemp, B.E.; Stapleton, D. AMPK β subunit targets metabolic stress sensing to glycogen. Curr. Biol., 2003, 13(10), 867-871.
[http://dx.doi.org/10.1016/S0960-9822(03)00292-6]
[44]
Sanz, P.; Rubio, T.; Garcia-Gimeno, M.A. AMPKβ subunits: more than just a scaffold in the formation of AMPK complex. FEBS J., 2013, 280(16), 3723-3733.
[http://dx.doi.org/10.1111/febs.12364] [PMID: 23721051]
[45]
Li, T.; Jiang, S.; Yang, Z.; Ma, Z.; Yi, W.; Wang, D.; Yang, Y. Targeting the energy guardian AMPK: another avenue for treating cardiomyopathy? Cell. Mol. Life Sci., 2017, 74(8), 1413-1429.
[http://dx.doi.org/10.1007/s00018-016-2407-7] [PMID: 27815596]
[46]
Curry, D.W.; Stutz, B.; Andrews, Z.B.; Elsworth, J.D. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson’s Disease. J. Parkinsons Dis., 2018, 8(2), 161-181.
[http://dx.doi.org/10.3233/JPD-171296] [PMID: 29614701]
[47]
Li, X.; Wang, L.; Zhou, X.E.; Ke, J.; de Waal, P.W.; Gu, X.; Tan, M.H.; Wang, D.; Wu, D.; Xu, H.E.; Melcher, K. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res., 2015, 25(1), 50-66.
[http://dx.doi.org/10.1038/cr.2014.150] [PMID: 25412657]
[48]
Taylor, E.B.; Ellingson, W.J.; Lamb, J.D.; Chesser, D.G.; Winder, W.W. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. Am. J. Physiol. Endocrinol. Metab., 2005, 288(6), E1055-E1061.
[http://dx.doi.org/10.1152/ajpendo.00516.2004] [PMID: 15644453]
[49]
Woods, A.; Dickerson, K.; Heath, R.; Hong, S.P.; Momcilovic, M.; Johnstone, S.R.; Carlson, M.; Carling, D. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab., 2005, 2(1), 21-33.
[http://dx.doi.org/10.1016/j.cmet.2005.06.005] [PMID: 16054096]
[50]
Boudeau, J.; Baas, A.F.; Deak, M.; Morrice, N.A.; Kieloch, A.; Schutkowski, M.; Prescott, A.R.; Clevers, H.C.; Alessi, D.R. MO25α/β interact with STRADalpha/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J., 2003, 22(19), 5102-5114.
[http://dx.doi.org/10.1093/emboj/cdg490] [PMID: 14517248]
[51]
Hawley, S.A.; Boudeau, J.; Reid, J.L.; Mustard, K.J.; Udd, L.; Mäkelä, T.P.; Alessi, D.R.; Hardie, D.G. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol., 2003, 2(4), 28.
[http://dx.doi.org/10.1186/1475-4924-2-28] [PMID: 14511394]
[52]
Xiao, B.; Sanders, M.J.; Carmena, D.; Bright, N.J.; Haire, L.F.; Underwood, E.; Patel, B.R.; Heath, R.B.; Walker, P.A.; Hallen, S.; Giordanetto, F.; Martin, S.R.; Carling, D.; Gamblin, S.J. Structural basis of AMPK regulation by small molecule activators. Nat. Commun., 2013, 4(1), 3017.
[http://dx.doi.org/10.1038/ncomms4017] [PMID: 24352254]
[53]
Kim, J.; Yang, G.; Kim, Y.; Kim, J.; Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med., 2016, 48(4) e224
[http://dx.doi.org/10.1038/emm.2016.16] [PMID: 27034026]
[54]
Wu, Y.; Li, P.; Zhang, D.; Sun, Y. Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway. Exp. Ther. Med., 2018, 15(2), 2120-2127.
[PMID: 29434814]
[55]
Corton, J.M.; Gillespie, J.G.; Hawley, S.A.; Hardie, D.G. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem., 1995, 229(2), 558-565.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20498.x] [PMID: 7744080]
[56]
Guo, D.; Hildebrandt, I.J.; Prins, R.M.; Soto, H.; Mazzotta, M.M.; Dang, J.; Czernin, J.; Shyy, J.Y.; Watson, A.D.; Phelps, M.; Radu, C.G.; Cloughesy, T.F.; Mischel, P.S. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12932-12937.
[http://dx.doi.org/10.1073/pnas.0906606106] [PMID: 19625624]
[57]
Robakis, N.K. Mechanisms of AD neurodegeneration may be independent of Aβ and its derivatives. Neurobiol. Aging, 2011, 32(3), 372-379.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.022] [PMID: 20594619]
[58]
Wu, L.; Rosa-Neto, P.; Hsiung, G.Y.; Sadovnick, A.D.; Masellis, M.; Black, S.E.; Jia, J.; Gauthier, S. Early-onset familial Alzheimer’s disease (EOFAD). Can. J. Neurol. Sci., 2012, 39(4), 436-445.
[http://dx.doi.org/10.1017/S0317167100013949] [PMID: 22728850]
[59]
Johnson, D.S.; Li, Y.M.; Pettersson, M.; St George-Hyslop, P.H. Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harb. Perspect. Med., 2017, 7(12)a024067
[http://dx.doi.org/10.1101/cshperspect.a024067] [PMID: 28320827]
[60]
Kang, J.; Lemaire, H-G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325(6106), 733-736.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[61]
Haass, C. Take five--BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J., 2004, 23(3), 483-488.
[http://dx.doi.org/10.1038/sj.emboj.7600061] [PMID: 14749724]
[62]
Xu, X. Formation of nicastrin and APH1 subcomplex is necessary for recruitment of substrate CTFβ. Alzheimers Dement., 2011, 7(4) e25
[http://dx.doi.org/10.1016/j.jalz.2011.09.073]
[63]
Zhang, H.; Zhao, C.; Cao, G.; Guo, L.; Zhang, S.; Liang, Y.; Qin, C.; Su, P.; Li, H.; Zhang, W. Berberine modulates amyloid-β peptide generation by activating AMP-activated protein kinase. Neuropharmacology, 2017, 125, 408-417.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.013] [PMID: 28822725]
[64]
Won, J.S. Im, Y.B.; Kim, J.; Singh, A.K.; Singh, I. Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem. Biophys. Res. Commun., 2010, 399(4), 487-491.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.081] [PMID: 20659426]
[65]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem., 2010, 285(12), 9100-9113.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[66]
Buerger, K.; Ewers, M.; Pirttilä, T.; Zinkowski, R.; Alafuzoff, I.; Teipel, S.J.; DeBernardis, J.; Kerkman, D.; McCulloch, C.; Soin-inen, H.; Hampel, H. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain, 2006, 129(Pt 11), 3035-3041.
[http://dx.doi.org/10.1093/brain/awl269] [PMID: 17012293]
[67]
Wischik, C.M.; Crowther, R.A.; Stewart, M.; Roth, M. Subunit structure of paired helical filaments in Alzheimer’s disease. J. Cell Biol., 1985, 100(6), 1905-1912.
[http://dx.doi.org/10.1083/jcb.100.6.1905] [PMID: 2581978]
[68]
Rossi, G.; Dalprà, L.; Crosti, F.; Lissoni, S.; Sciacca, F.L.; Catania, M.; Di Fede, G.; Mangieri, M.; Giaccone, G.; Croci, D.; Tagliavini, F. A new function of microtubule-associated protein tau: involvement in chromosome stability. Cell Cycle, 2008, 7(12), 1788-1794.
[http://dx.doi.org/10.4161/cc.7.12.6012] [PMID: 18583940]
[69]
Lindwall, G.; Cole, R.D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem., 1984, 259(8), 5301-5305.
[PMID: 6425287]
[70]
Greco, S.J.; Sarkar, S.; Johnston, J.M.; Tezapsidis, N. Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem. Biophys. Res. Commun., 2009, 380(1), 98-104.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.041] [PMID: 19166821]
[71]
Domise, M.; Didier, S.; Marinangeli, C.; Zhao, H.; Chandakkar, P.; Buée, L.; Viollet, B.; Davies, P.; Marambaud, P.; Vingtdeux, V. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci. Rep., 2016, 6(1), 26758.
[http://dx.doi.org/10.1038/srep26758] [PMID: 27230293]
[72]
Vingtdeux, V.; Davies, P.; Dickson, D.W.; Marambaud, P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol., 2011, 121(3), 337-349.
[http://dx.doi.org/10.1007/s00401-010-0759-x] [PMID: 20957377]
[73]
Mairet-Coello, G.; Courchet, J.; Pieraut, S. Inhibition of the CAMKK2-AMPK-tau signaling pathway protects hippocampal neurons from beta-amyloid oligomer-induced synaptotoxicity. Alzheimers Dement., 2013, 9(4), 577-P577.
[http://dx.doi.org/10.1016/j.jalz.2013.05.1147]
[74]
Chen, Y.; Zhou, K.; Wang, R.; Liu, Y.; Kwak, Y.D.; Ma, T.; Thompson, R.C.; Zhao, Y.; Smith, L.; Gasparini, L.; Luo, Z.; Xu, H.; Liao, F.F. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3907-3912.
[http://dx.doi.org/10.1073/pnas.0807991106] [PMID: 19237574]
[75]
Reddy, P.H.; Tripathi, R.; Troung, Q.; Tirumala, K.; Reddy, T.P.; Anekonda, V.; Shirendeb, U.P.; Calkins, M.J.; Reddy, A.P.; Mao, P.; Manczak, M. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim. Biophys. Acta, 2012, 1822(5), 639-649.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.011] [PMID: 22037588]
[76]
Gibson, G.E.; Shi, Q. A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J. Alzheimers Dis., 2010, 20(S2), 591-607.
[PMID: 20463407]
[77]
Maruszak, A.; Żekanowski, C. Mitochondrial dysfunction and Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(2), 320-330.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.004] [PMID: 20624441]
[78]
Cai, Q.; Tammineni, P. Alterations in mitochondrial quality control in Alzheimer ’s disease. Front. Cell. Neurosci., 2016, 10(1), 24.
[http://dx.doi.org/10.3389/fncel.2016.00024] [PMID: 26903809]
[79]
Du, H.; Guo, L.; Yan, S.S. Synaptic mitochondrial pathology in Alzheimer’s disease. Antioxid. Redox Signal., 2012, 16(12), 1467-1475.
[http://dx.doi.org/10.1089/ars.2011.4277] [PMID: 21942330]
[80]
Tolö, J.; Taschenberger, G.; Leite, K.; Stahlberg, M.; Spehlbrink, G.; Kues, J.; Munari, F.; Capaldi, S.; Becker, S.; Zweckstetter, M.; Dean, C.; Bähr, M.; Kügler, S. Pathophysiological consequences of neuronal alpha-synuclein overexpression: Impacts on ion homeostasis, stress signaling, mitochondrial integrity, and electrical activity. Front. Mol. Neurosci., 2018, 11, 49.
[http://dx.doi.org/10.3389/fnmol.2018.00049] [PMID: 29563864]
[81]
Calkins, M.J.; Manczak, M.; Mao, P.; Shirendeb, U.; Reddy, P.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum. Mol. Genet., 2011, 20(23), 4515-4529.
[http://dx.doi.org/10.1093/hmg/ddr381] [PMID: 21873260]
[82]
Handschin, C.; Kobayashi, Y.M.; Chin, S.; Seale, P.; Campbell, K.P.; Spiegelman, B.M. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev., 2007, 21(7), 770-783.
[http://dx.doi.org/10.1101/gad.1525107] [PMID: 17403779]
[83]
Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 2006, 127(1), 59-69.
[http://dx.doi.org/10.1016/j.cell.2006.09.015] [PMID: 17018277]
[84]
Qin, W.; Haroutunian, V.; Katsel, P.; Cardozo, C.P.; Ho, L.; Buxbaum, J.D.; Pasinetti, G.M. PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch. Neurol., 2009, 66(3), 352-361.
[http://dx.doi.org/10.1001/archneurol.2008.588] [PMID: 19273754]
[85]
Sibylle, J.G.; Christoph, H.; Julie, S.P. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12017-12022.
[86]
Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab., 2005, 1(6), 361-370.
[http://dx.doi.org/10.1016/j.cmet.2005.05.004] [PMID: 16054085]
[87]
Hood, D.A.; Tryon, L.D.; Carter, H.N.; Kim, Y.; Chen, C.C. Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem. J., 2016, 473(15), 2295-2314.
[http://dx.doi.org/10.1042/BCJ20160009] [PMID: 27470593]
[88]
Shaerzadeh, F.; Motamedi, F.; Khodagholi, F. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer’s disease. Cell. Mol. Neurobiol., 2014, 34(8), 1223-1233.
[http://dx.doi.org/10.1007/s10571-014-0099-9] [PMID: 25135709]
[89]
Philp, A.; Chen, A.; Lan, D.; Meyer, G.A.; Murphy, A.N.; Knapp, A.E.; Olfert, I.M.; McCurdy, C.E.; Marcotte, G.R.; Hogan, M.C.; Baar, K.; Schenk, S. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J. Biol. Chem., 2011, 286(35), 30561-30570.
[http://dx.doi.org/10.1074/jbc.M111.261685] [PMID: 21757760]
[90]
Kou, X.; Li, J.; Liu, X.; Yang, X.; Fan, J.; Chen, N. Ampelopsin attenuates the atrophy of skeletal muscle from d-gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade. Biomed. Pharmacother., 2017, 90, 311-320.
[http://dx.doi.org/10.1016/j.biopha.2017.03.070] [PMID: 28364603]
[91]
Sun, P.; Yin, J.B.; Liu, L.H.; Guo, J.; Wang, S.H.; Qu, C.H.; Wang, C.X. Protective role of Dihydromyricetin in Alzheimer's disease rat model associated with activating AMPK/SIRT1 signaling pathway. 2019, 39(1), pii: BSR20180902..
[92]
Shah, S.A.; Yoon, G.H.; Chung, S.S.; Abid, M.N.; Kim, T.H.; Lee, H.Y.; Kim, M.O. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry, 2017, 22(3), 407-416.
[http://dx.doi.org/10.1038/mp.2016.23] [PMID: 27001618]
[93]
Du, L.L.; Chai, D.M.; Zhao, L.N.; Li, X.H.; Zhang, F.C.; Zhang, H.B.; Liu, L.B.; Wu, K.; Liu, R.; Wang, J.Z.; Zhou, X.W. AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J. Alzheimers Dis., 2015, 43(3), 775-784.
[http://dx.doi.org/10.3233/JAD-140564] [PMID: 25114075]
[94]
Liu, Z.; Zhou, T.; Ziegler, A.C. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev., 2017, 4, 1-11.
[95]
Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2001, 60(8), 759-767.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[96]
Markesbery, W.R.; Carney, J.M. Oxidative alterations in Alzheimer’s disease. Brain Pathol., 1999, 9(1), 133-146.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00215.x] [PMID: 9989456]
[97]
Su, B.; Wang, X.; Nunomura, A.; Moreira, P.I.; Lee, H.G.; Perry, G.; Smith, M.A.; Zhu, X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(6), 525-532.
[http://dx.doi.org/10.2174/156720508786898451] [PMID: 19075578]
[98]
Mecocci, P.; MacGarvey, U.; Beal, M.F. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol., 1994, 36(5), 747-751.
[http://dx.doi.org/10.1002/ana.410360510] [PMID: 7979220]
[99]
Gabbita, S.P.; Lovell, M.A.; Markesbery, W.R. Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J. Neurochem., 1998, 71(5), 2034-2040.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71052034.x] [PMID: 9798928]
[100]
Nunomura, A.; Perry, G.; Pappolla, M.A.; Wade, R.; Hirai, K.; Chiba, S.; Smith, M.A. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci., 1999, 19(6), 1959-1964.
[http://dx.doi.org/10.1523/JNEUROSCI.19-06-01959.1999] [PMID: 10066249]
[101]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[102]
Tong, Y.; Zhou, W.; Fung, V.; Christensen, M.A.; Qing, H.; Sun, X.; Song, W. Oxidative stress potentiates BACE1 gene expression and Abeta generation. J. Neural Transm. (Vienna), 2005, 112(3), 455-469.
[http://dx.doi.org/10.1007/s00702-004-0255-3] [PMID: 15614428]
[103]
Klotz, L.O.; Sánchez-Ramos, C.; Prieto-Arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox regulation of FoxO transcription factors. Redox Biol., 2015, 6, 51-72.
[http://dx.doi.org/10.1016/j.redox.2015.06.019] [PMID: 26184557]
[104]
Nixon, R.A.; Wegiel, J.; Kumar, A.; Yu, W.H.; Peterhoff, C.; Cataldo, A.; Cuervo, A.M. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol., 2005, 64(2), 113-122.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[105]
Correia, S.C.; Resende, R.; Moreira, P.I.; Pereira, C.M. Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu. DNA Cell Biol., 2015, 34(4), 261-273.
[http://dx.doi.org/10.1089/dna.2014.2757] [PMID: 25664381]
[106]
Yu, W.H.; Cuervo, A.M.; Kumar, A.; Peterhoff, C.M.; Schmidt, S.D.; Lee, J.H.; Mohan, P.S.; Mercken, M.; Farmery, M.R.; Tjernberg, L.O.; Jiang, Y.; Duff, K.; Uchiyama, Y.; Näslund, J.; Mathews, P.M.; Cataldo, A.M.; Nixon, R.A. Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol., 2005, 171(1), 87-98.
[http://dx.doi.org/10.1083/jcb.200505082] [PMID: 16203860]
[107]
Omata, Y.; Lim, Y.M.; Akao, Y.; Tsuda, L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am. J. Neurodegener. Dis., 2014, 3(3), 134-142.
[PMID: 25628964]
[108]
Zhou, F.; van Laar, T.; Huang, H.; Zhang, L. APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells. Protein Cell, 2011, 2(5), 377-383.
[http://dx.doi.org/10.1007/s13238-011-1047-9] [PMID: 21626267]
[109]
Son, S.M.; Jung, E.S.; Shin, H.J.; Byun, J.; Mook-Jung, I. Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol. Aging, 2012, 33(5), 1006.e11-1006.e23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.039] [PMID: 22048125]
[110]
Cheng, Y.; Ren, X.; Hait, W.N.; Yang, J.M. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev., 2013, 65(4), 1162-1197.
[http://dx.doi.org/10.1124/pr.112.007120] [PMID: 23943849]
[111]
Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell, 2008, 30(2), 214-226.
[http://dx.doi.org/10.1016/j.molcel.2008.03.003] [PMID: 18439900]
[112]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[113]
Zhao, H.; Wang, Z.C.; Wang, K.F.; Chen, X.Y. Aβ peptide secretion is reduced by Radix Polygalae-induced autophagy via activation of the AMPK/mTOR pathway. Mol. Med. Rep., 2015, 12(2), 2771-2776.
[http://dx.doi.org/10.3892/mmr.2015.3781] [PMID: 25976650]
[114]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.; Xu, H.; Zeng, Z.; Zhu, H. TRPML1 Participates in the Progression of Alzheimer’s Disease by Regulating the PPARγ/AMPK/Mtor Signalling Pathway. Cell. Physiol. Biochem., 2017, 43(6), 2446-2456.
[http://dx.doi.org/10.1159/000484449] [PMID: 29131026]
[115]
Spielman, L.J.; Little, J.P.; Klegeris, A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J. Neuroimmunol., 2014, 273(1-2), 8-21.
[http://dx.doi.org/10.1016/j.jneuroim.2014.06.004] [PMID: 24969117]
[116]
Frölich, L.; Blum-Degen, D.; Bernstein, H-G.; Engelsberger, S.; Humrich, J.; Laufer, S.; Muschner, D.; Thalheimer, A.; Türk, A.; Hoyer, S.; Zöchling, R.; Boissl, K.W.; Jellinger, K.; Riederer, P. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural Transm. (Vienna), 1998, 105(4-5), 423-438.
[http://dx.doi.org/10.1007/s007020050068] [PMID: 9720972]
[117]
Hoyer, S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur. J. Pharmacol., 2004, 490(1-3), 115-125.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.049] [PMID: 15094078]
[118]
de la Monte, S.M.; Tong, M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem. Pharmacol., 2014, 88(4), 548-559.
[http://dx.doi.org/10.1016/j.bcp.2013.12.012] [PMID: 24380887]
[119]
Neumann, K.F.; Rojo, L.; Navarrete, L.P.; Farías, G.; Reyes, P.; Maccioni, R.B. Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr. Alzheimer Res., 2008, 5(5), 438-447.
[http://dx.doi.org/10.2174/156720508785908919] [PMID: 18855585]
[120]
Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP-4 Inhibitor Linagliptin Attenuates Aβ-induced Cytotoxicity through Activation of AMPK in Neuronal Cells. CNS Neurosci. Ther., 2015, 21(7), 549-557.
[http://dx.doi.org/10.1111/cns.12404] [PMID: 26010513]
[121]
Bhat, N.R.; Thirumangalakudi, L. Increased tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J. Alzheimers Dis., 2013, 36(4), 781-789.
[http://dx.doi.org/10.3233/JAD-2012-121030] [PMID: 23703152]
[122]
Tokutake, T.; Kasuga, K.; Yajima, R.; Sekine, Y.; Tezuka, T.; Nishizawa, M.; Ikeuchi, T. Hyperphosphorylation of Tau induced by naturally secreted amyloid-β at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3β signaling pathway. J. Biol. Chem., 2012, 287(42), 35222-35233.
[http://dx.doi.org/10.1074/jbc.M112.348300] [PMID: 22910909]
[123]
Schubert, M.; Gautam, D.; Surjo, D.; Ueki, K.; Baudler, S.; Schubert, D.; Kondo, T.; Alber, J.; Galldiks, N.; Küstermann, E.; Arndt, S.; Jacobs, A.H.; Krone, W.; Kahn, C.R.; Brüning, J.C. Role for neuronal insulin resistance in neurodegenerative diseases. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3100-3105.
[http://dx.doi.org/10.1073/pnas.0308724101] [PMID: 14981233]
[124]
Bhat, R.; Xue, Y.; Berg, S.; Hellberg, S.; Ormö, M.; Nilsson, Y.; Radesäter, A.C.; Jerning, E.; Markgren, P.O.; Borgegård, T.; Nylöf, M.; Giménez-Cassina, A.; Hernández, F.; Lucas, J.J.; Díaz-Nido, J.; Avila, J. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem., 2003, 278(46), 45937-45945.
[http://dx.doi.org/10.1074/jbc.M306268200] [PMID: 12928438]
[125]
Anderson, N.J.; King, M.R.; Delbruck, L.; Jolivalt, C.G. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice. Dis. Model. Mech., 2014, 7(6), 625-633.
[http://dx.doi.org/10.1242/dmm.015750] [PMID: 24764191]
[126]
Cheng, K.K.; Lam, K.S.; Wang, B.; Xu, A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 3-13.
[http://dx.doi.org/10.1016/j.beem.2013.06.006] [PMID: 24417941]
[127]
Li, W.; Yu, Z.; Hou, D.; Zhou, L.; Deng, Y.; Tian, M.; Feng, X. Relationship between adiponectin gene polymorphisms and late-onset Alzheimer’s disease. PLoS One, 2015, 10(4)e0125186
[http://dx.doi.org/10.1371/journal.pone.0125186] [PMID: 25902149]
[128]
PLOS ONE Staff. Correction: Relationship between adiponectin gene polymorphisms and late-onset Alzheimer’s disease. PLoS One, 2015, 10(6)e0130521
[http://dx.doi.org/10.1371/journal.pone.0130521] [PMID: 26061041]
[129]
Chan, K.H.; Lam, K.S.; Cheng, O.Y.; Kwan, J.S.; Ho, P.W.; Cheng, K.K.; Chung, S.K.; Ho, J.W.; Guo, V.Y.; Xu, A. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS One, 2012, 7(12)e52354
[http://dx.doi.org/10.1371/journal.pone.0052354] [PMID: 23300647]
[130]
Ng, R.C.; Cheng, O.Y.; Jian, M.; Kwan, J.S.; Ho, P.W.; Cheng, K.K.; Yeung, P.K.; Zhou, L.L.; Hoo, R.L.; Chung, S.K.; Xu, A.; Lam, K.S.; Chan, K.H. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol. Neurodegener., 2016, 11(1), 71.
[http://dx.doi.org/10.1186/s13024-016-0136-x] [PMID: 27884163]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy