Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Chemoselective Hydrogenation of Biomass-derived 5-hydroxymethylfurfural into Furanyl Diols

Author(s): Junnan Wei, Ting Wang, Peifeng Tang, Xing Tang*, Yong Sun, Xianhai Zeng and Lu Lin*

Volume 23, Issue 20, 2019

Page: [2155 - 2167] Pages: 13

DOI: 10.2174/1385272823666190802095801

Price: $65

Abstract

Lignocellulosic biomass can be converted to significant platform molecule 5- hydroxymethylfurfural (HMF), from which one can envision a number of biofuels and chemicals through either chemical or biological conversions. Chemoselective hydrogenation is one of the important pathways for the upgrading of HMF into furanyl diols consisting of 2,5-bis(hydroxymethyl)furan (BHMF) and 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF). BHMF and BHMTHF are all-purpose intermediates for the manufacture of chemicals, fuels, and functional materials. In this context, we comprehensively summarized the studies on the chemoselective hydrogenation of HMF into furanyl diols in terms of different H-donors, including molecular H2, alcohols, formic acid, and other alternative H-donors. Through the systematic survey of the previous works, a feasible research direction is discussed for the production of furanyl diols.

Keywords: Hydrogenation, 5-hydroxymethylfurfural, furanyl diols, 2, 5-bis(hydroxymethyl)furan, H-donors, formic acid, alcohols.

Graphical Abstract
[1]
Xiao, G.; Yan, Y.; Zhang, Y.; Yi, T.; Chemistry, D.O.; University, F. Heterogeneously catalytic transformation of biomass-derived sugars. Huaxue Jinzhan, 2013, 25(11), 1915-1927.
[2]
Van Putten, R.J.; Van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113(3), 1499-1597.
[http://dx.doi.org/10.1021/cr300182k] [PMID: 23394139]
[3]
Lange, J.P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural--a promising platform for lignocellulosic biofuels. ChemSusChem, 2012, 5(1), 150-166.
[http://dx.doi.org/10.1002/cssc.201100648] [PMID: 22213717]
[4]
Tang, X.; Zeng, X.; Li, Z.; Hu, L.; Sun, Y.; Liu, S.; Lei, T.; Lin, L. Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew. Sustain. Energy Rev., 2014, 40, 608-620.
[http://dx.doi.org/10.1016/j.rser.2014.07.209]
[5]
Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L. Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycling, 2000, 28(3), 227-239.
[6]
Román-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 2006, 312(5782), 1933-1937.
[http://dx.doi.org/10.1126/science.1126337] [PMID: 16809536]
[7]
Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 2007, 316(5831), 1597-1600.
[http://dx.doi.org/10.1126/science.1141199] [PMID: 17569858]
[8]
Liu, B.; Zhang, Z.; Zhao, Z.K.; Liu, B.; Zhang, Z.; Zhao, Z.K. Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids. Chem. Eng. J., 2013, 215-216(3), 517-521.
[http://dx.doi.org/10.1016/j.cej.2012.11.019]
[9]
Wang, C.; Fu, L.; Tong, X.; Yang, Q.; Zhang, W. Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr. Res., 2012, 347(1), 182-185.
[http://dx.doi.org/10.1016/j.carres.2011.11.013] [PMID: 22154494]
[10]
Yu, Y.; Xi, X.; Tong, D.; Hu, C.; Abu-Omar, M.M. One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO42- math container loading mathjax/ZrO2-Al2O3 solid catalyst. Bioresour. Technol., 2012, 116(7), 302-306.
[PMID: 22534374]
[11]
Moreau, C.; Belgacem, M.N.; Gandini, A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal., 2004, 27(1-4), 11-30.
[http://dx.doi.org/10.1023/B:TOCA.0000013537.13540.0e]
[12]
Makiarvela, P.; Holmbom, B.; Salmi, T.; Murzin, D.Y. Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catal. Rev., 2007, 49(3), 197-340.
[http://dx.doi.org/10.1080/01614940701313127]
[13]
Buntara, T.; Noel, S.; Phua, P.H.; Melián-Cabrera, I.; de Vries, J.G.; Heeres, H.J. Caprolactam from renewable resources: Catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7083-7087.
[http://dx.doi.org/10.1002/anie.201102156] [PMID: 21698732]
[14]
Yang, W.; Sen, A. One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels. ChemSusChem, 2010, 3(5), 597-603.
[http://dx.doi.org/10.1002/cssc.200900285] [PMID: 20437452]
[15]
Hu, L.; Lin, L.; Liu, S. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran. Ind. Eng. Chem. Res., 2014, 53(24), 9969-9978.
[http://dx.doi.org/10.1021/ie5013807]
[16]
Timko, J.M.; Cram, D.J. Furanyl unit in host compounds. J. Am. Chem. Soc., 1974, 96(22), 7159-7160.
[http://dx.doi.org/10.1021/ja00829a085]
[17]
Cottier, L.; Descotes, G.; Soro, Y. Heteromacrocycles from ring-closing metathesis of unsaturated furanic ethers. Synth. Commun., 2003, 33(24), 4285-4295.
[http://dx.doi.org/10.1081/SCC-120026858]
[18]
Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Bio-based furan polymers with self-healing ability. Macromolecules, 2013, 46(5), 1794-1802.
[http://dx.doi.org/10.1021/ma3023603]
[19]
Pasini, T.; Solinas, G.; Zanotti, V.; Albonetti, S.; Cavani, F.; Vaccari, A.; Mazzanti, A.; Ranieri, S.; Mazzoni, R. Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Trans., 2014, 43(26), 10224-10234.
[http://dx.doi.org/10.1039/C4DT00304G] [PMID: 24879540]
[20]
Chen, J.; Lu, F.; Zhang, J.; Yu, W.; Wang, F.; Gao, J.; Xu, J. Immobilized Ru clusters in nanosized mesoporous zirconium silica for the aqueous hydrogenation of furan derivatives at room temperature. ChemCatChem, 2013, 5(10), 2822-2826.
[http://dx.doi.org/10.1002/cctc.201300316]
[21]
Alamillo, R.; Tucker, M.; Chia, M.; Pagán-Torres, Y.; Dumesic, J. The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem., 2012, 14(5), 1413-1419.
[http://dx.doi.org/10.1039/c2gc35039d]
[22]
Han, J.; Kim, Y-H.; Jang, H-S.; Hwang, S-Y.; Jegal, J.; Kim, J.W.; Lee, Y-S. Heterogeneous zirconia-supported ruthenium catalyst for highly selective hydrogenation of 5-hydroxymethyl-2-furaldehyde to 2,5-bis(hydroxymethyl) furans in various n-alcohol solvents. RSC Adv, 2016, 6(96), 93394-93397.
[http://dx.doi.org/10.1039/C6RA18016G]
[23]
Li, Q.; Man, P.; Yuan, L.; Zhang, P.; Li, Y.; Ai, S. Ruthenium supported on CoFe layered double oxide for selective hydrogenation of 5-hydroxy-methylfurfural. Molecular Catalysis, 2017, 431, 32-38.
[http://dx.doi.org/10.1016/j.mcat.2017.01.011]
[24]
Chatterjee, M.; Ishizaka, T.; Kawanami, H. Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: A simple approach. Green Chem., 2014, 16(11), 4734-4739.
[http://dx.doi.org/10.1039/C4GC01127A]
[25]
Balakrishnan, M.; Sacia, E.R.; Bell, A.T. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem., 2012, 14(6), 1626-1634.
[http://dx.doi.org/10.1039/c2gc35102a]
[26]
Cai, H.; Li, C.; Wang, A.; Zhang, T. Biomass into chemicals: One-pot production of furan-based diols from carbohydrates via tandem reactions. Catal. Today, 2014, 234, 59-65.
[http://dx.doi.org/10.1016/j.cattod.2014.02.029]
[27]
Ohyama, J.; Esaki, A.; Yamamoto, Y.; Arai, S.; Satsuma, A. Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters. RSC Adv, 2012, 3(4), 1033-1036.
[http://dx.doi.org/10.1039/C2RA22190J]
[28]
Ohyama, J.; Hayashi, Y.; Ueda, K.; Yamamoto, Y.; Arai, S.; Satsuma, A. Effect of FeOx -Modification of Al2O3 on its supported AU catalyst for hydrogenation of 5-Hydroxymethylfurfural. J. Phys. Chem. C, 2016, 120(28), 15129-15136.
[http://dx.doi.org/10.1021/acs.jpcc.6b01542]
[29]
liu, F.; Audemar, M.; De Oliveira Vigier, K.; Clacens, J.-M.; De Campo, F.; Jérôme, F. Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione. Green Chem., 2014, 16(9), 4110-4114.
[http://dx.doi.org/10.1039/C4GC01158A]
[30]
Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem. Commun. (Camb.), 2013, 49(63), 7034-7036.
[http://dx.doi.org/10.1039/c3cc41526k] [PMID: 23689498]
[31]
Wang, G.H.; Hilgert, J.; Richter, F.H.; Wang, F.; Bongard, H.J.; Spliethoff, B.; Weidenthaler, C.; Schüth, F. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater., 2014, 13(3), 293-300.
[http://dx.doi.org/10.1038/nmat3872] [PMID: 24553655]
[32]
Shi, J.; Zhang, M.; Du, W.; Ning, W.; Hou, Z. SnO2-isolated Pt3Sn alloy on reduced graphene oxide: An efficient catalyst for selective hydrogenation of C=O in unsaturated aldehydes. Catal. Sci. Technol., 2015, 5(6), 3108-3112.
[http://dx.doi.org/10.1039/C5CY00393H]
[33]
Zhu, Y.; Kong, X.; Zheng, H.; Ding, G.; Zhu, Y.L.; Li, Y. Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethyl-furfural using mineral-derived Cu catalysts as versatile catalysts. Catal. Sci. Technol., 2015, 5(8), 4208-4217.
[http://dx.doi.org/10.1039/C5CY00700C]
[34]
Cao, Q.; Liang, W.; Guan, J.; Wang, L.; Qu, Q.; Zhang, X.; Wang, X.; Mu, X. Catalytic synthesis of 2,5-bis-methoxymethylfuran: A promising cetane number improver for diesel. Appl. Catal. A Gen., 2014, 481, 49-53.
[http://dx.doi.org/10.1016/j.apcata.2014.05.003]
[35]
Kumalaputri, A.J.; Bottari, G.; Erne, P.M.; Heeres, H.J.; Barta, K. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. ChemSusChem, 2014, 7(8), 2266-2275.
[http://dx.doi.org/10.1002/cssc.201402095] [PMID: 24924637]
[36]
Upare, P.P.; Hwang, Y.K.; Hwang, D.W. An integrated process for the production of 2,5-dihydroxymethylfuran and its polymer from fructose. Green Chem., 2018, 20(4), 879-885.
[http://dx.doi.org/10.1039/C7GC03597G]
[37]
Lima, S.; Chadwick, D.; Hellgardt, K. Towards sustainable hydrogenation of 5-(hydroxymethyl)furfural: A two-stage continuous process in aqueous media over RANEY® catalysts. RSC Adv, 2017, 7(50), 31401-31407.
[http://dx.doi.org/10.1039/C7RA03318D]
[38]
Li, X.L.; Zhang, K.; Chen, S.Y.; Li, C.; Fu, Y. A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chem., 2018, 20(5), 1095-1105.
[http://dx.doi.org/10.1039/C7GC03072J]
[39]
Srivastava, S.; Jadeja, G.C.; Parikh, J. Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxy-methylfur-fural hydrogenation. J. Mol. Catal. Chem., 2017, 426, 244-256.
[http://dx.doi.org/10.1016/j.molcata.2016.11.023]
[40]
Bottari, G.; Kumalaputri, A.J.; Krawczyk, K.K.; Feringa, B.L.; Heeres, H.J.; Barta, K. Copper-zinc alloy nanopowder: A robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural. ChemSusChem, 2015, 8(8), 1323-1327.
[http://dx.doi.org/10.1002/cssc.201403453] [PMID: 25833148]
[41]
Yao, S.; Wang, X.; Jiang, Y.; Wu, F.; Chen, X.; Mu, X. One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol Over Ni–Co–Al mixed oxide catalysts under mild conditions. ACS Sustain. Chem. Eng., 2013, 2(2), 173-180.
[http://dx.doi.org/10.1021/sc4003714]
[42]
Yu, L.; He, L.; Chen, J.; Zheng, J.; Ye, L.; Lin, H.; Yuan, Y. Robust and recyclable nonprecious bimetallic nanoparticles on carbon nanotubes for the hydrogenation and hydrogenolysis of 5-Hydroxymethylfurfural. ChemCatChem, 2015, 7(11), 1701-1707.
[http://dx.doi.org/10.1002/cctc.201500097]
[43]
Corma, A.; Serna, P.; Concepción, P.; Calvino, J.J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc., 2008, 130(27), 8748-8753.
[http://dx.doi.org/10.1021/ja800959g] [PMID: 18597431]
[44]
Wu, Z.Y.; Chen, P.; Wu, Q.S.; Yang, L.F.; Pan, Z.; Wang, Q. Co/Co3O4/C-N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy, 2014, 8(9), 118-125.
[http://dx.doi.org/10.1016/j.nanoen.2014.05.019]
[45]
Wei, Z.; Jing, W.; Mao, S.; Su, D.; Jin, H.; Wang, Y.; Fan, X.; Li, H.; Yong, W. In Situ-Generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal., 2015, 5(8), 4783-4789.
[http://dx.doi.org/10.1021/acscatal.5b00737]
[46]
Scholz, D.; Aellig, C.; Hermans, I. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 2014, 7(1), 268-275.
[http://dx.doi.org/10.1002/cssc.201300774] [PMID: 24227625]
[47]
Wang, T.; Zhang, J.; Xie, W.; Tang, Y.; Guo, D.; Ni, Y. Catalytic transfer hydrogenation of biobased HMF to 2,5-Bis-(Hydroxymethyl)Furan over Ru/Co3O4. Catalysts, 2017, 7(3), 92.
[http://dx.doi.org/10.3390/catal7030092]
[48]
Wei, J.; Cao, X.; Wang, T.; Liu, H.; Tang, X.; Zeng, X.; Sun, Y.; Lei, T.; Liu, S.; Lin, L. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalyst. Catal. Sci. Technol., 2018, 8, 4474-4484.
[http://dx.doi.org/10.1039/C8CY00500A]
[49]
Li, H.; He, J.; Riisager, A.; Saravanamurugan, S.; Song, B.; Yang, S. Acid–base bifunctional zirconium N-Alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal., 2016, 6(11), 7722-7727.
[http://dx.doi.org/10.1021/acscatal.6b02431]
[50]
Li, H.; Fang, Z.; He, J.; Yang, S. Orderly layered Zr-benzylphosphonate nanohybrids for efficient acid/base-mediated bifunctional/cascade catalysis. ChemSusChem, 2017, 10(4), 681-686.
[http://dx.doi.org/10.1002/cssc.201601570] [PMID: 27911042]
[51]
Li, H.; Liu, X.; Yang, T.; Zhao, W.; Saravanamurugan, S.; Yang, S. Porous zirconium-furandicarboxylate microspheres for efficient redox conversion of biofuranics. ChemSusChem, 2017, 10(8), 1761-1770.
[http://dx.doi.org/10.1002/cssc.201601898] [PMID: 28164471]
[52]
Rojas-Buzo, S.; García-García, P.; Corma, A. Catalytic transfer hydrogenation of biomass-derived carbonyls over hafnium-based metal-organic frameworks. ChemSusChem, 2018, 11(2), 432-438.
[http://dx.doi.org/10.1002/cssc.201701708] [PMID: 29139603]
[53]
Lei, H.; Mei, Y.; Ning, X.; Xu, J.; Zhou, S.; Chu, X.; Zhao, Y. Selective transformation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran via catalytic transfer hydrogenation over magnetic zirconium hydroxides. Korean J. Chem. Eng., 2018, 35(1), 99-109.
[http://dx.doi.org/10.1007/s11814-017-0238-3]
[54]
Hao, W.; Li, W.; Tang, X.; Zeng, X.; Sun, Y.; Liu, S.; Lin, L. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green Chem., 2016, 18(4), 1080-1088.
[http://dx.doi.org/10.1039/C5GC01221J]
[55]
Pasini, T.; Lolli, A.; Albonetti, S.; Cavani, F.; Mella, M. Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: Scope, limitations, and reaction mechanism. J. Catal., 2014, 317, 206-219.
[http://dx.doi.org/10.1016/j.jcat.2014.06.023]
[56]
Aellig, C.; Jenny, F.; Scholz, D.; Wolf, P.; Giovinazzo, I.; Kollhoff, F.; Hermans, I. Combined 1,4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfural-derivatives under continuous flow conditions. Catal. Sci. Technol., 2014, 4(8), 2326-2331.
[http://dx.doi.org/10.1039/C4CY00213J]
[57]
Gao, Z.; Yang, L.; Fan, G.; Li, F. Promotional role of surface defects on carbon-supported ruthenium-based catalysts in the transfer hydrogenation of furfural. ChemCatChem, 2016, 8(24), 3769-3779.
[http://dx.doi.org/10.1002/cctc.201601070]
[58]
Thananatthanachon, T.; Rauchfuss, T.B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew. Chem. Int. Ed. Engl., 2010, 49(37), 6616-6618.
[http://dx.doi.org/10.1002/anie.201002267] [PMID: 20680955]
[59]
Thananatthanachon, T.; Rauchfuss, T.B. Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem, 2010, 3(10), 1139-1141.
[http://dx.doi.org/10.1002/cssc.201000209] [PMID: 20734386]
[60]
Xing, R.; Qi, W.; Huber, G.W. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy Environ. Sci., 2011, 4(6), 2193-2205.
[http://dx.doi.org/10.1039/c1ee01022k]
[61]
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
[62]
de Graauw, C.F.; Peters, J.A.; van Bekkum, H.; Huskens, J. Meerwein-Ponndorf-Verley reductions and oppenauer oxidations an integrated approach. Synthesis, 1994, 10, 1007-1017.
[http://dx.doi.org/10.1055/s-1994-25625]
[63]
Lewis, J.D.; Van de Vyver, S.; Crisci, A.J.; Gunther, W.R.; Michaelis, V.K.; Griffin, R.G.; Román-Leshkov, Y. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites. ChemSusChem, 2014, 7(8), 2255-2265.
[http://dx.doi.org/10.1002/cssc.201402100] [PMID: 25045144]
[64]
Luo, J.; Yu, J.; Gorte, R.J.; Mahmoud, E.; Vlachos, D.G.; Smith, M.A. The effect of oxide acidity on HMF etherification. Catal. Sci. Technol., 2014, 4(9), 3074-3081.
[http://dx.doi.org/10.1039/C4CY00563E]
[65]
Der Waal, J.C.V.; Kunkeler, P.J.; Tan, K.; Van Bekkum, H. Zeolite titanium beta: A selective catalyst for the gas-phase meerwein-ponndorf-verley, and oppenauer reactions☆. J. Catal., 1998, 173(1), 74-83.
[http://dx.doi.org/10.1006/jcat.1997.1901]
[66]
De Graauw, C.F.; Peters, J.A.; Van Bekkum, H.; Huskens, J. Meerwein-ponndorf-verley reductions and oppenauer oxidations: An integrated approach. Synthesis, 1994, 1994(10), 1007-1017.
[http://dx.doi.org/10.1055/s-1994-25625]
[67]
Huang, J.; Dai, W.; Li, H.; Fan, K. Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to γ-butyrolactone. J. Catal., 2007, 252(1), 69-76.
[http://dx.doi.org/10.1016/j.jcat.2007.09.011]
[68]
Goswami, S.; Dey, S.; Jana, S. Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids. Tetrahedron, 2008, 64(27), 6358-6363.
[http://dx.doi.org/10.1016/j.tet.2008.04.086]
[69]
Goswami, S.; Dey, S.; Jana, S. Design and synthesis of a unique ditopic macrocyclic fluorescent receptor containing furan ring as a spacer for the recognition of dicarboxylic acids. Tetrahedron, 2008, 64(27), 6358-6363.
[http://dx.doi.org/10.1016/j.tet.2008.04.086]
[70]
Zhao, W.; Wu, W.; Li, H.; Fang, C.; Yang, T.; Wang, Z.; He, C.; Yang, S. Quantitative synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural and sugars over reusable solid catalysts at low temperatures. Fuel, 2018, 217, 365-369.
[http://dx.doi.org/10.1016/j.fuel.2017.12.069]
[71]
Li, G.; Sun, Z.; Yan, Y.; Zhang, Y.; Tang, Y. Direct transformation of HMF into 2,5-Diformylfuran and 2,5-Dihydroxymethylfuran without an external oxidant or reductant. ChemSusChem, 2017, 10(3), 494-498.
[http://dx.doi.org/10.1002/cssc.201601322] [PMID: 27882693]
[72]
Subbiah, S.; Simeonov, S.P.; Esperança, J.M.S.S.; Rebelo, L.P.N.; Afonso, C.A.M. Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chem., 2013, 15(10), 2849.
[http://dx.doi.org/10.1039/c3gc40930a]
[73]
Kang, E.S.; Da, W.C.; Kim, B.; Kim, Y.G. Efficient preparation of DHMF and HMFA from biomass-derived HMF via a Cannizzaro reaction in ionic liquids. J. Ind. Eng. Chem., 2012, 18(1), 174-177.
[http://dx.doi.org/10.1016/j.jiec.2011.11.020]
[74]
Roylance, J.J.; Kim, T.W.; Choi, K.S. Efficient and selective electrochemical and photoelectrochemical reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal., 2016, 6(3), 1840-1847.
[http://dx.doi.org/10.1021/acscatal.5b02586]
[75]
Guo, Y.; Chen, J. Photo-induced reduction of biomass-derived 5-hydroxymethylfurfural using graphitic carbon nitride supported metal catalysts. RSC Adva, 2016, 6(104), 101968-101973.
[http://dx.doi.org/10.1039/C6RA19153C]
[76]
Volkov, A.; Gustafson, K.P.J.; Tai, C.W.; Verho, O.; Bäckvall, J.E.; Adolfsson, H. Mild deoxygenation of aromatic ketones and aldehydes over Pd/C using polymethylhydrosiloxane as the reducing agent. Angew. Chem. Int. Ed. Engl., 2015, 54(17), 5122-5126.
[http://dx.doi.org/10.1002/anie.201411059] [PMID: 25728614]
[77]
Motokura, K.; Takahashi, N.; Miyaji, A.; Sakamoto, Y.; Yamaguchi, S.; Baba, T. Mechanistic studies on the N-formylation of amines with CO2 and hydrosilane catalyzed by a Cu–diphosphine complex. Tetrahedron, 2014, 70(39), 6951-6956.
[http://dx.doi.org/10.1016/j.tet.2014.07.089]
[78]
Kwon, Y.; de Jong, E.; Raoufmoghaddam, S.; Koper, M.T. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. ChemSusChem, 2013, 6(9), 1659-1667.
[http://dx.doi.org/10.1002/cssc.201300443] [PMID: 23857762]
[79]
Tang, X.; Wei, J.; Ding, N.; Sun, Y.; Zeng, X.; Hu, L.; Liu, S.; Lei, T.; Lin, L. Chemoselective hydrogenation of biomass derived 5-hydroxymethyl-furfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renew. Sustain. Energy Rev., 2017, 77, 287-296.
[http://dx.doi.org/10.1016/j.rser.2017.04.013]
[80]
Hu, L.; Xu, J.; Zhou, S.; He, A.; Tang, X.; Lin, L.; Xu, J.; Zhao, Y. Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catal., 2018, 8(4), 2959-2980.
[http://dx.doi.org/10.1021/acscatal.7b03530]
[81]
Buntara, T.; Noel, S.; Phua, P.H.; Meliancabrera, I.; De Vries, J.G.; Heeres, H.J. From 5-Hydroxymethylfurfural (HMF) to polymer precursors: catalyst screening studies on the conversion of 1,2,6-hexanetriol to 1,6-hexanediol. Top. Catal., 2012, 55, 612-619.
[http://dx.doi.org/10.1007/s11244-012-9839-6]
[82]
Chen, J.; Liu, R.; Guo, Y.; Chen, L.; Gao, H. Selective hydrogenation of biomass-based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal–organic frameworks. ACS Catal., 2015, 5(2), 722-733.
[http://dx.doi.org/10.1021/cs5012926]
[83]
Connolly, T.J.; Considine, J.L.; Ding, Z.; Forsatz, B.; Jennings, M.N.; Macewan, M.F.; Mccoy, K.; Place, D.W.; Sharma, A.; Sutherland, K. Efficient Synthesis of 8-Oxa-3-aza-bicyclo[3.2.1]octane Hydrochloride†. Org. Process Res. Dev., 2010, 14(2), 459-465.
[http://dx.doi.org/10.1021/op9002642]
[84]
Tadesse, H.; Luque, R. Advances on biomass pretreatment using ionic liquids: An overview. Energy Environ. Sci., 2011, 4(10), 3913-3929.
[http://dx.doi.org/10.1039/c0ee00667j]
[85]
Tucker, M.H.; Alamillo, R.; Crisci, A.J.; Gonzalez, G.M.; Scott, S.L.; Dumesic, J.A. Sustainable solvent systems for use in tandem carbohydrate dehydration hydrogenation. ACS Sustain. Chem. Eng., 2013, 1(5), 554-560.
[http://dx.doi.org/10.1021/sc400044d]
[86]
Perret, N.; Grigoropoulos, A.; Zanella, M.; Manning, T.D.; Claridge, J.B.; Rosseinsky, M.J. Catalytic response and stability of nickel/alumina for the hydrogenation of 5-hydroxymethylfurfural in water. ChemSusChem, 2016, 9(5), 521-531.
[http://dx.doi.org/10.1002/cssc.201501225] [PMID: 26870940]
[87]
Nakagawa, Y.; Tomishige, K. Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst. Catal. Commun., 2010, 12(3), 154-156.
[http://dx.doi.org/10.1016/j.catcom.2010.09.003]
[88]
Kong, X.; Zhu, Y.; Zheng, H.; Dong, F.; Zhu, Y.; Li, Y-W. Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over Raney Ni catalyst. RSC Advances, 2014, 4(105), 60467-60472.
[http://dx.doi.org/10.1039/C4RA09550B]
[89]
Nakagawa, Y.; Tomishige, K. Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst. Catal. Commun., 2010, 12(3), 154-156.
[http://dx.doi.org/10.1016/j.catcom.2010.09.003]
[90]
Nakagawa, Y.; Takada, K.; Tamura, M.; Tomishige, K. Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd–Ir alloy catalyst. ACS Catal., 2014, 4(8), 2718-2726.
[http://dx.doi.org/10.1021/cs500620b]
[91]
Kong, X.; Zheng, R.; Zhu, Y.; Ding, G.; Zhu, Y.; Li, Y-W. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chem., 2015, 17(4), 2504-2514.
[http://dx.doi.org/10.1039/C5GC00062A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy