Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

New Derivatives of Bacteriopurpurin with Thiolated Au (I) Complexes: Dual Darkand Light Activated Antitumor Potency

Author(s): Mikhail A. Grin*, Sergei I. Tikhonov, Albina S. Petrova, Victor A. Pogorilyy, Аlexey N. Noev, Victor V. Tatarskiy, Dmitry B. Shpakovsky, Elena R. Milaeva, Elena V. Kalinina, Nikolai N. Chernov, Аlexander А. Shtil, Andrey F. Mironov, Andrey D. Kaprin and Elena V. Filonenko

Volume 20, Issue 1, 2020

Page: [49 - 58] Pages: 10

DOI: 10.2174/1871520619666190801102617

Price: $65

Abstract

Background: Conventional antitumor Photosensitizers (PS) are normally low toxic in the dark whereas light activation triggers massive cell death (photodynamic therapy, PDT).

Objective: To expand the therapeutic potential of PS to dual potency cytocidal agents, taking advantage of the use of bacteriopurpurin for a deeper tissue penetration of light, and suitability of the tetrapyrrolic macrocycle for chemical modifications at its periphery.

Methods: Conjugation of a pro-oxidant thiolate Au (I) moiety to the bacteriopurpurin core and evaluation of cytotoxicity in cell culture and in vivo.

Results: New water-soluble derivatives showed micromolar cytotoxicity for cultured human tumor cell lines in the dark, including the subline with an altered drug response due to p53 inactivation. Cellular PDT with the selected conjugate, thiolate Au (I)-dipropoxybacteriopurpurinimide (compound 6) with two triphenylphosphine Au fragments, triggered rapid (within minutes) cell death. Damage to the plasma membrane (necrosis) was a hallmark of cell death by compound 6 both in the dark and upon light activation. Furthermore, one single i.v. injection of compound 6 caused retardation of transplanted syngeneic tumors at the tolerable dose. Illumination of tumors that accumulated compound 6 significantly synergized with the effect of 6 in the dark.

Conclusion: Complexes of virtually non-toxic, photoactivatable bacteriopurpurin with the gold-containing organic moiety are considered the dual potency antitumor agents, tentatively applicable for intractable tumors.

Keywords: Bacteriopurpurin, Au (I) thiolates, photosensitizers, photodynamic therapy, photonecrosis, tumor cells.

Graphical Abstract
[1]
Bonnett, R. Chemical aspects of photodynamic therapy; CRC press: Boca Raton, FL, 2000.
[2]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[3]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[4]
Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 2011, 40(1), 340-362.
[http://dx.doi.org/10.1039/B915149B] [PMID: 20694259]
[5]
Simone, C.B.; Cengel, K.A. Definitive surgery and intraoperative photodynamic therapy: A prospective study of local control and survival for patients with pleural dissemination of non-small cell lung cancer. Proc. SPIE Int. Soc. Opt. Eng., 2014.
[6]
Kimura, M.; Miyajima, K.; Kojika, M.; Kono, T.; Kato, H. Photodynamic therapy (PDT) with chemotherapy for advanced lung cancer with airway stenosis. Int. J. Mol. Sci., 2015, 16(10), 25466-25475.
[http://dx.doi.org/10.3390/ijms161025466] [PMID: 26512656]
[7]
Wang, G.D.; Nguyen, H.T.; Chen, H.; Cox, P.B.; Wang, L.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J. X-ray induced photodynamic therapy: a combination of radiotherapy and photodynamic therapy. Theranostics, 2016, 6(13), 2295-2305.
[http://dx.doi.org/10.7150/thno.16141] [PMID: 27877235]
[8]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[9]
Grin, M.C.; Capital Em Cyrillicironov, C.A.; Shtil, A.C. Bacteriochlorophyll a, and its derivatives: chemistry and perspectives for cancer therapy. Anticancer. Agents Med. Chem., 2008, 8(6), 683-697.
[http://dx.doi.org/10.2174/187152008785133128] [PMID: 18690829]
[10]
Brandis, A.; Mazor, O.; Neumark, E.; Rosenbach-Belkin, V.; Salomon, Y.; Scherz, A. Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: Synthesis, solubility, phototoxicity and the effect of serum proteins. Photochem. Photobiol., 2005, 81(4), 983-993.
[http://dx.doi.org/10.1562/2004-12-01-RA-389R1.1] [PMID: 15839743]
[11]
Koudinova, N.V.; Pinthus, J.H.; Brandis, A.; Brenner, O.; Bendel, P.; Ramon, J.; Eshhar, Z.; Scherz, A.; Salomon, Y. Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): Successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer, 2003, 104(6), 782-789.
[http://dx.doi.org/10.1002/ijc.11002] [PMID: 12640688]
[12]
Grin, M.A.; Mironov, A.F. Chemical transformations of bacteriochlorophyll a and its medical applications. Russ. Chem. Bull., 2016, 65, 333-349.
[http://dx.doi.org/10.1007/s11172-016-1307-1]
[13]
Staron, J.; Boron, B.; Karcz, D.; Szczygieł, M.; Fiedor, L. Recent progress in chemical modifications of chlorophylls and bacteriochlorophylls for the applications in photodynamic therapy. Curr. Med. Chem., 2015, 22(26), 3054-3074.
[http://dx.doi.org/10.2174/0929867322666150818104034] [PMID: 26282940]
[14]
Mironov, A.F.; Grin, M.A.; Tsiprovskiy, A.G.; Meerovich, G.A.; Meerovich, I.G.; Loshenov, V.B.; Oborotova, N.A.; Treschalina, E.M.; Andronova, N.V.; Baryshnikov, A.Y.; Tsigankov, A.A. Photosensitiser based on bacteriochlorin p derivative, method of obtaining bacteriochlorin p derivative and method of photodynamic therapy of cancer with application of said photosensitiser. RU Patent 2,411,943C2, 2011.
[15]
Luz, A.F.S.; Pucelik, B.; Pereira, M.M.; Dąbrowski, J.M.; Arnaut, L.G. Translating phototherapeutic indices from in vitro to in vivo photodynamic therapy with bacteriochlorins. Lasers Surg. Med., 2018, 50(5), 451-459.
[http://dx.doi.org/10.1002/lsm.22931] [PMID: 29714399]
[16]
Mironov, A.F.; Grin, M.A.; Pantushenko, I.V.; Ostroverkhov, P.V.; Ivanenkov, Y.A.; Filkov, G.I.; Plotnikova, E.A.; Karmakova, T.A.; Starovoitova, A.V.; Burmistrova, N.V.; Yuzhakov, V.V.; Romanko, Y.S.; Abakumov, M.A.; Ignatova, A.A.; Feofanov, A.V.; Kaplan, M.A.; Yakubovskaya, R.I.; Tsigankov, A.A.; Majouga, A.G. Synthesis and investigation of photophysical and biological properties of novel s-containing bacteriopurpurinimides. J. Med. Chem., 2017, 60(24), 10220-10230.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00577] [PMID: 29202233]
[17]
Plotnikova, E.A.; Grin, M.A.; Ostroverkhov, P.V.; Pantushenko, I.V.; Yakubovskaya, R.I.; Kaprin, A.D. Primary screening of substances-photosensibilizers of the bacteriochlorin range for photodynamic therapy of malignant neoplasms. Biomed. Khim., 2018, 64(3), 283-289.
[http://dx.doi.org/10.18097/pbmc20186403283] [PMID: 29964266]
[18]
Shpakovsky, D.B.; Shtil, A.A.; Kharitonashvili, E.V.; Tyurin, V.Y.; Antonenko, T.A.; Nazarov, A.A.; Osipova, V.P.; Berberova, N.T.; Foteeva, L.S.; Schmidt, C.; Ott, I.; Milaeva, E.R. The antioxidant 2,6-di-tert-butylphenol moiety attenuates the pro-oxidant properties of the auranofin analogue. Metallomics, 2018, 10(3), 406-413.
[http://dx.doi.org/10.1039/C7MT00286F] [PMID: 29399682]
[19]
Nobili, S.; Mini, E.; Landini, I.; Gabbiani, C.; Casini, A.; Messori, L. Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med. Res. Rev., 2010, 30(3), 550-580.
[PMID: 19634148]
[20]
Dalton, T.P.; Dieter, M.Z.; Yang, Y.; Shertzer, H.G.; Nebert, D.W. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem. Biophys. Res. Commun., 2000, 279(2), 324-329.
[http://dx.doi.org/10.1006/bbrc.2000.3930] [PMID: 11118286]
[21]
Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis, 2017, 22(11), 1321-1335.
[http://dx.doi.org/10.1007/s10495-017-1424-9] [PMID: 28936716]
[22]
Nadysev, G.Y.; Tikhomirov, A.S.; Lin, M.H.; Yang, Y.T.; Dezhenkova, L.G.; Chen, H.Y.; Kaluzhny, D.N.; Schols, D.; Shtil, A.A.; Shchekotikhin, A.E.; Chueh, P.J. Aminomethylation of heliomycin: Preparation and anticancer characterization of the first series of semi-synthetic derivatives. Eur. J. Med. Chem., 2018, 143, 1553-1562.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.055] [PMID: 29137865]
[23]
Pantiushenko, I.V.; Rudakovskaya, P.G.; Starovoytova, A.V.; Mikhaylovskaya, A.A.; Abakumov, M.A.; Kaplan, M.A.; Tsygankov, A.A.; Majouga, A.G.; Grin, M.A.; Mironov, A.F. Development of bacteriochlorophyll a-based near-infrared photosensitizers conjugated to gold nanoparticles for photodynamic therapy of cancer. Biochemistry (Mosc.), 2015, 80(6), 752-762.
[http://dx.doi.org/10.1134/S0006297915060103] [PMID: 26531020]
[24]
Grin, M.A.; Pogorilyy, V.A.; Noev, A.N.; Tikhonov, S.I.; Majouga, A.G.; Mironov, A.F. Bacteriochlorophyll a derivatives with sulfur-containing amino acids as promising photosensitizers for cancer PDT. Macroheterocycles, 2018, 11(1), 89-94.
[http://dx.doi.org/10.6060/mhc180176p]
[25]
Yakubovskaya, R.I.; Chissov, V.I.; Mironov, A.F.; Grin, M.A.; Morozova, N.B.; Tsygankov, A.A.; Plotnikova, E.A. A drug for photodynamic therapy and a method of photodynamic therapy of cancer with its use. RU Patent 2521327, 2012.
[26]
Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.; Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998, 282(5393), 1497-1501.
[http://dx.doi.org/10.1126/science.282.5393.1497] [PMID: 9822382]
[27]
Moisenovich, M.M.; Ol’shevskaya, V.A.; Rokitskaya, T.I.; Ramonova, A.A.; Nikitina, R.G.; Savchenko, A.N.; Tatarskiy, V.V., Jr; Kaplan, M.A.; Kalinin, V.N.; Kotova, E.A.; Uvarov, O.V.; Agapov, I.I.; Antonenko, Y.N.; Shtil, A.A. Novel photosensitizers trigger rapid death of malignant human cells and rodent tumor transplants via lipid photodamage and membrane permeabilization. PLoS One, 2010, 5(9) e12717
[http://dx.doi.org/10.1371/journal.pone.0012717] [PMID: 20856679]
[28]
Efremenko, A.V.; Ignatova, A.A.; Grin, M.A.; Sivaev, I.B.; Mironov, A.F.; Bregadze, V.I.; Feofanov, A.V. Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochem. Photobiol. Sci., 2014, 13(1), 92-102.
[http://dx.doi.org/10.1039/C3PP50226K] [PMID: 24258161]
[29]
Panchenko, P.A.; Grin, M.A.; Fedorova, O.A.; Zakharko, M.A.; Pritmov, D.A.; Mironov, A.F.; Arkhipova, A.N.; Fedorov, Y.V.; Jonusauskas, G.; Yakubovskaya, R.I.; Morozova, N.B.; Ignatova, A.A.; Feofanov, A.V. A novel bacteriochlorin-styrylnaphthalimide conjugate for simultaneous photodynamic therapy and fluorescence imaging. Phys. Chem. Chem. Phys., 2017, 19(44), 30195-30206.
[http://dx.doi.org/10.1039/C7CP04449F] [PMID: 29105711]
[30]
Thompson, S.A.; Aggarwal, A.; Singh, S.; Adam, A.P.; Tome, J.P.C.; Drain, C.M. Compromising the plasma membrane as a secondary target in photodynamic therapy-induced necrosis. Bioorg. Med. Chem., 2018, 26(18), 5224-5228.
[http://dx.doi.org/10.1016/j.bmc.2018.09.026] [PMID: 30262133]
[31]
Marydasan, B.; Madhuri, B.; Cherukommu, S.; Jose, J.; Viji, M.; Karunakaran, S.C.; Chandrashekar, T.K.; Rao, K.S.; Rao, C.M.; Ramaiah, D. In vitro and in vivo demonstration of human-ovarian-cancer necrosis through a water-soluble and near-infrared-absorbing chlorin. J. Med. Chem., 2018, 61(11), 5009-5019.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00460] [PMID: 29767974]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy