Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

General Review Article

Estrogen Deprivation and Myocardial Infarction: Role of Aerobic Exercise Training, Inflammation and Metabolomics

Author(s): Olívia M. Ruberti and Bruno Rodrigues*

Volume 16, Issue 4, 2020

Page: [292 - 305] Pages: 14

DOI: 10.2174/1573403X15666190729153026

Price: $65

Abstract

In general, postmenopausal women present higher mortality, and worse prognosis after myocardial infarction (MI) compared to men, due to estrogen deficiency. After MI, cardiovascular alterations occur such as the autonomic imbalance and the pro-inflammatory cytokines increase. In this sense, therapies that aim to minimize deleterious effects caused by myocardial ischemia are important. Aerobic training has been proposed as a promising intervention in the prevention of cardiovascular diseases. On the other hand, some studies have attempted to identify potential biomarkers for cardiovascular diseases or specifically for MI. For this purpose, metabolomics has been used as a tool in the discovery of cardiovascular biomarkers. Therefore, the objective of this work is to discuss the changes involved in ovariectomy, myocardial infarction, and aerobic training, with emphasis on inflammation and metabolism.

Keywords: Ovariectomy, estrogen, aerobic training, myocardial infarction, inflammation, metabolomics.

Graphical Abstract
[1]
Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[2]
Reamy BV, Williams PM, Kuckel DP. Prevention of cardiovascular disease. Prim Care 2018; 45(1): 25-44.
[http://dx.doi.org/10.1016/j.pop.2017.11.003] [PMID: 29406943]
[3]
Hage FG, Oparil S. Ovarian hormones and vascular disease. Curr Opin Cardiol 2013; 28(4): 411-6.
[PMID: 23736815]
[4]
Casanova G, Pritzer PM. Aspectos Fisiopatológicos: Estrogênios, menopausa e terapia hormonal. Revista da Sociedade Brasileira de Hipertensão 2007; 10: 131-4.
[5]
Al-Mallah MH, Sakr S, Al-Qunaibet A. Cardiorespiratory fitness and cardiovascular disease prevention: An update. Curr Atheroscler Rep 2018; 20(1): 1.
[http://dx.doi.org/10.1007/s11883-018-0711-4] [PMID: 29340805]
[6]
Giada F, Biffi A, Agostoni P, et al. Exercise prescription for the prevention and treatment of cardiovascular diseases: Part I. J Cardiovasc Med (Hagerstown) 2008; 9(5): 529-44.
[http://dx.doi.org/10.2459/JCM.0b013e3282f7ca77] [PMID: 18404008]
[7]
Hivert MF, Arena R, Forman DE, et al. Medical training to achieve competency in lifestyle counseling: An essential foundation for prevention and treatment of cardiovascular diseases and other chronic medical conditions: A scientific statement From the American Heart Association. Circulation 2016; 134(15): e308-27.
[http://dx.doi.org/10.1161/CIR.0000000000000442] [PMID: 27601568]
[8]
Lanier JB, Bury DC, Richardson SW. Diet and physical activity for cardiovascular disease prevention. Am Fam Physician 2016; 93(11): 919-24.
[PMID: 27281836]
[9]
Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: Long-term health consequences. Maturitas 2010; 65(2): 161-6.
[http://dx.doi.org/10.1016/j.maturitas.2009.08.003] [PMID: 19733988]
[10]
Jin M, Yu Y, Huang H. An update on primary ovarian insufficiency. Sci China Life Sci 2012; 55(8): 677-86.
[http://dx.doi.org/10.1007/s11427-012-4355-2] [PMID: 22932883]
[11]
Monteleone P, Mascagni G, Giannini A, Genazzani AR, Simoncini T. Symptoms of menopause - global prevalence, physiology and implications. Nat Rev Endocrinol 2018; 14(4): 199-215.
[http://dx.doi.org/10.1038/nrendo.2017.180] [PMID: 29393299]
[12]
Rivera CM, Grossardt BR, Rhodes DJ, Rocca WA. Increased mortality for neurological and mental diseases following early bilateral oophorectomy. Neuroepidemiology 2009; 33(1): 32-40.
[http://dx.doi.org/10.1159/000211951] [PMID: 19365140]
[13]
Rocca WA, Grossardt BR, de Andrade M, Malkasian GD, Melton LJ III. Survival patterns after oophorectomy in premenopausal women: A population-based cohort study. Lancet Oncol 2006; 7(10): 821-8.
[http://dx.doi.org/10.1016/S1470-2045(06)70869-5] [PMID: 17012044]
[14]
Rocca WA, Bower JH, Maraganore DM, et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 2007; 69(11): 1074-83.
[http://dx.doi.org/10.1212/01.wnl.0000276984.19542.e6] [PMID: 17761551]
[15]
Rocca WA, Shuster LT, Grossardt BR, et al. Long-term effects of bilateral oophorectomy on brain aging: Unanswered questions from the Mayo Clinic Cohort Study of oophorectomy and aging. Womens Health (Lond) 2009; 5(1): 39-48.
[http://dx.doi.org/10.2217/17455057.5.1.39] [PMID: 19102639]
[16]
Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, menopause, estrogen, and cognitive aging: The timing hypothesis. Neurodegener Dis 2010; 7(1-3): 163-6.
[http://dx.doi.org/10.1159/000289229] [PMID: 20197698]
[17]
Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, menopause, estrogen treatment, and cognitive aging: Clinical evidence for a window of opportunity. Brain Res 2011; 1379: 188-98.
[http://dx.doi.org/10.1016/j.brainres.2010.10.031] [PMID: 20965156]
[18]
Rocca WA, Grossardt BR, Miller VM, Shuster LT, Brown RD Jr. Premature menopause or early menopause and risk of ischemic stroke. Menopause 2012; 19(3): 272-7.
[http://dx.doi.org/10.1097/gme.0b013e31822a9937] [PMID: 21993082]
[19]
Shuster LT, Gostout BS, Grossardt BR, Rocca WA. Prophylactic oophorectomy in premenopausal women and long-term health. Menopause Int 2008; 14(3): 111-6.
[http://dx.doi.org/10.1258/mi.2008.008016] [PMID: 18714076]
[20]
Parker WH. Bilateral oophorectomy vs. ovarian conservation: Effects on long-term women’s health. J Minim Invasive Gynecol 2010; 17(2): 161-6.
[http://dx.doi.org/10.1016/j.jmig.2009.12.016] [PMID: 20226402]
[21]
Parker WH, Broder MS, Chang E, et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet Gynecol 2009; 113(5): 1027-37.
[http://dx.doi.org/10.1097/AOG.0b013e3181a11c64] [PMID: 19384117]
[22]
Parker WH, Feskanich D, Broder MS, et al. Long-term mortality associated with oophorectomy compared with ovarian conservation in the nurses’ health study. Obstet Gynecol 2013; 121(4): 709-16.
[http://dx.doi.org/10.1097/AOG.0b013e3182864350] [PMID: 23635669]
[23]
Shao B, Cheng Y, Jin K. Estrogen, neuroprotection and neurogenesis after ischemic stroke. Curr Drug Targets 2012; 13(2): 188-98.
[http://dx.doi.org/10.2174/138945012799201702] [PMID: 22204318]
[24]
Lee JO, Kang SG, Kim SH, Park SJ, Song SW. The relationship between menopausal symptoms and heart rate variability in middle aged women. Korean J Fam Med 2011; 32(5): 299-305.
[http://dx.doi.org/10.4082/kjfm.2011.32.5.299] [PMID: 22745867]
[25]
SPRITZER PM. Aspectos fisiopatológicos: Estrogênios, menopausa e terapia hormonal. Revista da Sociedade Brasileira de Hieprtensão 2007; 10(4): 131-4.
[26]
Abramson BL, Melvin RG. Cardiovascular risk in women: focus on hypertension. Can J Cardiol 2014; 30(5): 553-9.
[http://dx.doi.org/10.1016/j.cjca.2014.02.014] [PMID: 24786446]
[27]
Sack MN, Rader DJ, Cannon RO III. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet 1994; 343(8892): 269-70.
[http://dx.doi.org/10.1016/S0140-6736(94)91117-7] [PMID: 7905101]
[28]
Ross RK, Paganini-Hill A, Mack TM, Henderson BE. Cardiovascular benefits of estrogen replacement therapy. Am J Obstet Gynecol 1989; 160(5 Pt 2): 1301-6.
[http://dx.doi.org/10.1016/S0002-9378(89)80017-1] [PMID: 2655453]
[29]
Vargas R, Wroblewska B, Rego A, Hatch J, Ramwell PW. Oestradiol inhibits smooth muscle cell proliferation of pig coronary artery. Br J Pharmacol 1993; 109(3): 612-7.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13616.x] [PMID: 8358561]
[30]
Huikuri HV, Pikkujämsä SM, Airaksinen KE, et al. Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation 1996; 94(2): 122-5.
[http://dx.doi.org/10.1161/01.CIR.94.2.122] [PMID: 8674168]
[31]
Saleh TM, Connell BJ. Centrally mediated effect of 17beta-estradiol on parasympathetic tone in male rats. Am J Physiol 1999; 276(2): R474-81.
[PMID: 9950927]
[32]
Saleh MC, Connell BJ, Saleh TM. Autonomic and cardiovascular reflex responses to central estrogen injection in ovariectomized female rats. Brain Res 2000; 879(1-2): 105-14.
[http://dx.doi.org/10.1016/S0006-8993(00)02757-8] [PMID: 11011011]
[33]
Dart AM, Du XJ, Kingwell BA. Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res 2002; 53(3): 678-87.
[http://dx.doi.org/10.1016/S0008-6363(01)00508-9] [PMID: 11861039]
[34]
Davy KP, DeSouza CA, Jones PP, Seals DR. Elevated heart rate variability in physically active young and older adult women. Clin Sci (Lond) 1998; 94(6): 579-84.
[http://dx.doi.org/10.1042/cs0940579] [PMID: 9854454]
[35]
Ribeiro TF, Azevedo GD, Crescêncio JC, et al. Heart rate variability under resting conditions in postmenopausal and young women. Braz J Med Biol Res 2001; 34(7): 871-7.
[http://dx.doi.org/10.1590/S0100-879X2001000700006] [PMID: 11449305]
[36]
Neves VF, Silva de Sá MF, Gallo L Jr, et al. Autonomic modulation of heart rate of young and postmenopausal women undergoing estrogen therapy. Braz J Med Biol Res 2007; 40(4): 491-9.
[http://dx.doi.org/10.1590/S0100-879X2007000400007] [PMID: 17401492]
[37]
Vongpatanasin W. Autonomic regulation of blood pressure in menopause. Semin Reprod Med 2009; 27(4): 338-45.
[http://dx.doi.org/10.1055/s-0029-1225262] [PMID: 19530068]
[38]
Thawornkaiwong A, Preawnim S, Wattanapermpool J. Upregulation of beta 1-adrenergic receptors in ovariectomized rat hearts. Life Sci 2003; 72(16): 1813-24.
[http://dx.doi.org/10.1016/S0024-3205(02)02473-6] [PMID: 12586219]
[39]
Kam KW, Qi JS, Chen M, Wong TM. Estrogen reduces cardiac injury and expression of beta1-adrenoceptor upon ischemic insult in the rat heart. J Pharmacol Exp Ther 2004; 309(1): 8-15.
[http://dx.doi.org/10.1124/jpet.103.058339] [PMID: 14718598]
[40]
Sherwood A, Park SB, Hughes JW, et al. Cardiovascular hemodynamics during stress in premenopausal vs. postmenopausal women. Menopause 2010; 17(2): 403-9.
[http://dx.doi.org/10.1097/gme.0b013e3181b9b061] [PMID: 19770780]
[41]
De Melo VU, Saldanha RR, Dos Santos CR, et al. Ovarian hormone deprivation reduces oxytocin expression in paraventricular nucleus preautonomic neurons and correlates with baroreflex impairment in rats. Front Physiol 2016; 7: 461.
[http://dx.doi.org/10.3389/fphys.2016.00461] [PMID: 27790154]
[42]
Moreau KL, Hildreth KL, Meditz AL, Deane KD, Kohrt WM. Endothelial function is impaired across the stages of the menopause transition in healthy women. J Clin Endocrinol Metab 2012; 97(12): 4692-700.
[http://dx.doi.org/10.1210/jc.2012-2244] [PMID: 22969140]
[43]
Stamatelopoulos KS, Armeni E, Georgiopoulos G, et al. Recently postmenopausal women have the same prevalence of subclinical carotid atherosclerosis as age and traditional risk factor matched men. Atherosclerosis 2012; 221(2): 508-13.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.006] [PMID: 22196935]
[44]
Hildreth KL, Kohrt WM, Moreau KL. Oxidative stress contributes to large elastic arterial stiffening across the stages of the menopausal transition. Menopause 2014; 21(6): 624-32.
[http://dx.doi.org/10.1097/GME.0000000000000116] [PMID: 24149926]
[45]
Lisabeth L, Bushnell C. Stroke risk in women: The role of menopause and hormone therapy. Lancet Neurol 2012; 11(1): 82-91.
[http://dx.doi.org/10.1016/S1474-4422(11)70269-1] [PMID: 22172623]
[46]
Lobo RA, Davis SR, De Villiers TJ, et al. Prevention of diseases after menopause. Climacteric 2014; 17(5): 540-56.
[http://dx.doi.org/10.3109/13697137.2014.933411] [PMID: 24969415]
[47]
Koebele SV, Bimonte-Nelson HA. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. Maturitas 2016; 87: 5-17.
[http://dx.doi.org/10.1016/j.maturitas.2016.01.015] [PMID: 27013283]
[48]
Irigoyen MC, Paulini J, Flores LJ, et al. Exercise training improves baroreflex sensitivity associated with oxidative stress reduction in ovariectomized rats. Hypertension 2005; 46(4): 998-1003.
[http://dx.doi.org/10.1161/01.HYP.0000176238.90688.6b] [PMID: 16157791]
[49]
Conti FF, Brito Jde O, Bernardes N, et al. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations. Am J Physiol Regul Integr Comp Physiol 2015; 309(12): R1532-9.
[http://dx.doi.org/10.1152/ajpregu.00076.2015] [PMID: 26423710]
[50]
Sanches IC, Conti FF, Bernardes N, et al. Impact of combined exercise training on cardiovascular autonomic control and mortality in diabetic ovariectomized rats. J Appl Physiol 2015; 119(6): 656-2.
[http://dx.doi.org/10.1152/japplphysiol.00883.2014]
[51]
da Palma RK, Moraes-Silva IC, da Silva Dias D, et al. Resistance or aerobic training decreases blood pressure and improves cardiovascular autonomic control and oxidative stress in hypertensive menopausal rats. J Appl Physiol 2016; 121(4): 1032-8.
[http://dx.doi.org/10.1152/japplphysiol.00130.2016]
[52]
Machi JF, Dias Dda S, Freitas SC, et al. Impact of aging on cardiac function in a female rat model of menopause: Role of autonomic control, inflammation, and oxidative stress. Clin Interv Aging 2016; 11: 341-50.
[http://dx.doi.org/10.2147/CIA.S88441] [PMID: 27042032]
[53]
Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998; 280(7): 605-13.
[http://dx.doi.org/10.1001/jama.280.7.605] [PMID: 9718051]
[54]
Herrington DM, Reboussin DM, Brosnihan KB, et al. Effects of estrogen replacement on the progression of coronary-artery atherosclerosis. N Engl J Med 2000; 343(8): 522-9.
[http://dx.doi.org/10.1056/NEJM200008243430801] [PMID: 10954759]
[55]
Waters DD, Alderman EL, Hsia J, et al. Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women: A randomized controlled trial. JAMA 2002; 288(19): 2432-40.
[http://dx.doi.org/10.1001/jama.288.19.2432] [PMID: 12435256]
[56]
Clarke SC, Kelleher J, Lloyd-Jones H, Slack M, Schofiel PM. A study of hormone replacement therapy in postmenopausal women with ischaemic heart disease: The Papworth HRT atherosclerosis study. BJOG 2002; 109(9): 1056-62.
[http://dx.doi.org/10.1111/j.1471-0528.2002.01544.x] [PMID: 12269682]
[57]
Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002; 288(3): 321-33.
[http://dx.doi.org/10.1001/jama.288.3.321] [PMID: 12117397]
[58]
Izzicupo P, D’Amico MA, Di Blasio A, et al. Aerobic training improves angiogenic potential independently of vascular endothelial growth factor modifications in postmenopausal women. Front Endocrinol (Lausanne) 2017; 8: 363.
[http://dx.doi.org/10.3389/fendo.2017.00363] [PMID: 29312152]
[59]
Pedersen LR, Frestad D, Michelsen MM, et al. Risk factors for myocardial infarction in women and men: A review of the current literature. Curr Pharm Des 2016; 22(25): 3835-52.
[http://dx.doi.org/10.2174/1381612822666160309115318] [PMID: 26956230]
[60]
Legro RS. Polycystic ovary syndrome and cardiovascular disease: A premature association? Endocr Rev 2003; 24(3): 302-12.
[http://dx.doi.org/10.1210/er.2003-0004] [PMID: 12788801]
[61]
Vryonidou A, Papatheodorou A, Tavridou A, et al. Association of hyperandrogenemic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90(5): 2740-6.
[http://dx.doi.org/10.1210/jc.2004-2363] [PMID: 15741256]
[62]
Sudhir K, Chou TM, Chatterjee K, et al. Premature coronary artery disease associated with a disruptive mutation in the estrogen receptor gene in a man. Circulation 1997; 96(10): 3774-7.
[http://dx.doi.org/10.1161/01.CIR.96.10.3774] [PMID: 9396482]
[63]
Puzianowska-Kuźnicka M. ESR1 in myocardial infarction. Clin Chim Acta 2012; 413(1-2): 81-7.
[http://dx.doi.org/10.1016/j.cca.2011.10.028] [PMID: 22061094]
[64]
Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol 2012; 60(16): 1581-98.
[http://dx.doi.org/10.1016/j.jacc.2012.08.001] [PMID: 22958960]
[65]
Siervuli MTF. Silva AdS, Silva ACd, Muzzi RAL, Santos GAB. Infarto do miocárdio: Alterações morfológicas e breve abordagem da influência do exercício físico. Rev Bras Cardiol 2014; 27: 349-55.
[66]
Yousef ZR, Redwood SR, Marber MS. Postinfarction left ventricular remodelling: Where are the theories and trials leading us? Heart 2000; 83(1): 76-80.
[http://dx.doi.org/10.1136/heart.83.1.76] [PMID: 10618340]
[67]
Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000; 101(25): 2981-8.
[http://dx.doi.org/10.1161/01.CIR.101.25.2981] [PMID: 10869273]
[68]
Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB. Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol 2001; 281(5): R1734-45.
[http://dx.doi.org/10.1152/ajpregu.2001.281.5.R1734] [PMID: 11641147]
[69]
Shih H, Lee B, Lee RJ, Boyle AJ. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 2011; 57(1): 9-17.
[http://dx.doi.org/10.1016/j.jacc.2010.08.623] [PMID: 21185495]
[70]
Barretto AC, Ramires JA. Heart failure. Arq Bras Cardiol 1998; 71(4): 635-42.
[http://dx.doi.org/10.1590/S0066-782X1998001000014]] [PMID: 10347943]
[71]
La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998; 351(9101): 478-84.
[http://dx.doi.org/10.1016/S0140-6736(97)11144-8] [PMID: 9482439]
[72]
Negrao CE, Middlekauff HR. Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev 2008; 13(1): 51-60.
[http://dx.doi.org/10.1007/s10741-007-9057-7] [PMID: 17932745]
[73]
Flores LJ, Figueroa D, Sanches IC, et al. Effects of exercise training on autonomic dysfunction management in an experimental model of menopause and myocardial infarction. Menopause 2010; 17(4): 712-7.
[PMID: 20577132]
[74]
Ponikowski P, Chua TP, Anker SD, et al. Peripheral chemoreceptor hypersensitivity: An ominous sign in patients with chronic heart failure. Circulation 2001; 104(5): 544-9.
[http://dx.doi.org/10.1161/hc3101.093699] [PMID: 11479251]
[75]
Ponikowski PP, Chua TP, Francis DP, Capucci A, Coats AJ, Piepoli MF. Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation 2001; 104(19): 2324-30.
[http://dx.doi.org/10.1161/hc4401.098491] [PMID: 11696473]
[76]
Jorge L, Rodrigues B, Rosa KT, et al. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality. Eur Heart J 2011; 32(7): 904-12.
[http://dx.doi.org/10.1093/eurheartj/ehq244] [PMID: 20675661]
[77]
Feriani DJ, Souza GIH, Carrozzi NM, et al. Impact of exercise training associated to pyridostigmine treatment on autonomic function and inflammatory profile after myocardial infarction in rats. Int J Cardiol 2017; 227: 757-65.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.061] [PMID: 27823896]
[78]
Feriani DJ, Coelho-Júnior HJ, de Oliveira JCMF, et al. Pyridostigmine improves the effects of resistance exercise training after myocardial infarction in rats. Front Physiol 2018; 9: 53.
[http://dx.doi.org/10.3389/fphys.2018.00053] [PMID: 29483876]
[79]
Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. National Registry of Myocardial Infarction 2 Participants. N Engl J Med 1999; 341(4): 217-25.
[http://dx.doi.org/10.1056/NEJM199907223410401] [PMID: 10413733]
[80]
Chandra NC, Ziegelstein RC, Rogers WJ, et al. Observations of the treatment of women in the United States with myocardial infarction: A report from the National Registry of Myocardial Infarction-I. Arch Intern Med 1998; 158(9): 981-8.
[http://dx.doi.org/10.1001/archinte.158.9.981] [PMID: 9588431]
[81]
Wong SC, Sleeper LA, Monrad ES, et al. Absence of gender differences in clinical outcomes in patients with cardiogenic shock complicating acute myocardial infarction. A report from the SHOCK Trial Registry. J Am Coll Cardiol 2001; 38(5): 1395-401.
[http://dx.doi.org/10.1016/S0735-1097(01)01581-9] [PMID: 11691514]
[82]
Mirić L, Mirić D, Duplancić D, et al. Specific and gender differences between hospitalized and out of hospital mortality due to myocardial infarction. Coll Antropol 2008; 32(2): 361-7.
[PMID: 18756882]
[83]
Honda S, Asaumi Y, Yamane T, et al. Trends in the clinical and pathological characteristics of cardiac rupture in patients with acute myocardial infarction over 35 years. J Am Heart Assoc 2014; 3(5)e000984
[http://dx.doi.org/10.1161/JAHA.114.000984] [PMID: 25332178]
[84]
Lam CS, McEntegart M, Claggett B, et al. Sex differences in clinical characteristics and outcomes after myocardial infarction: Insights from the Valsartan in Acute Myocardial Infarction Trial (VALIANT). Eur J Heart Fail 2015; 17(3): 301-12.
[http://dx.doi.org/10.1002/ejhf.238] [PMID: 25655011]
[85]
Kytö V, Sipilä J, Rautava P. Gender and in-hospital mortality of ST-segment elevation myocardial infarction (from a multihospital nationwide registry study of 31,689 patients). Am J Cardiol 2015; 115(3): 303-6.
[http://dx.doi.org/10.1016/j.amjcard.2014.11.001] [PMID: 25488357]
[86]
Pfeffer MA, Pfeffer JM, Fishbein MC, et al. Myocardial infarct size and ventricular function in rats. Circ Res 1979; 44(4): 503-12.
[http://dx.doi.org/10.1161/01.RES.44.4.503] [PMID: 428047]
[87]
Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 2001; 280(6): H2726-31.
[http://dx.doi.org/10.1152/ajpheart.2001.280.6.H2726] [PMID: 11356629]
[88]
Braga LM, Rosa K, Rodrigues B, et al. Systemic delivery of adult stem cells improves cardiac function in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2008; 35(2): 113-9.
[PMID: 17973933]
[89]
Malfitano C, Barboza CA, Mostarda C, et al. Diabetic hyperglycemia attenuates sympathetic dysfunction and oxidative stress after myocardial infarction in rats. Cardiovasc Diabetol 2014; 13: 131.
[http://dx.doi.org/10.1186/s12933-014-0131-x] [PMID: 25301475]
[90]
Malfitano C, Alba Loureiro TC, Rodrigues B, et al. Hyperglycaemia protects the heart after myocardial infarction: Aspects of programmed cell survival and cell death. Eur J Heart Fail 2010; 12(7): 659-67.
[http://dx.doi.org/10.1093/eurjhf/hfq053] [PMID: 20406798]
[91]
Rodrigues B, Rosa KT, Medeiros A, et al. Hyperglycemia can delay left ventricular dysfunction but not autonomic damage after myocardial infarction in rodents. Cardiovasc Diabetol 2011; 10: 26.
[http://dx.doi.org/10.1186/1475-2840-10-26] [PMID: 21470409]
[92]
Tucci PJ. Pathophysiological characteristics of the post-myocardial infarction heart failure model in rats. Arq Bras Cardiol 2011; 96(5): 420-4.
[http://dx.doi.org/10.1590/S0066-782X2011005000049] [PMID: 21503387]
[93]
Mill JG, Stefanon I, dos Santos L, Baldo MP. Remodeling in the ischemic heart: The stepwise progression for heart failure. Braz J Med Biol Res 2011; 44(9): 890-8.
[http://dx.doi.org/10.1590/S0100-879X2011007500096] [PMID: 21829898]
[94]
Rodrigues B, Mostarda CT, Jorge L, et al. Impact of myocardial infarction on cardiac autonomic function in diabetic rats. J Diabetes Complications 2013; 27(1): 16-22.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.08.002] [PMID: 23044051]
[95]
Rodrigues B, Jorge L, Mostarda CT, et al. Aerobic exercise training delays cardiac dysfunction and improves autonomic control of circulation in diabetic rats undergoing myocardial infarction. J Card Fail 2012; 18(9): 734-44.
[http://dx.doi.org/10.1016/j.cardfail.2012.07.006] [PMID: 22939043]
[96]
de Macedo Braga LM, Lacchini S, Schaan BD, et al. In situ delivery of bone marrow cells and mesenchymal stem cells improves cardiovascular function in hypertensive rats submitted to myocardial infarction. J Biomed Sci 2008; 15(3): 365-74.
[http://dx.doi.org/10.1007/s11373-008-9237-z] [PMID: 18256904]
[97]
de La Fuente RN, Rodrigues B, Moraes-Silva IC, et al. Cholinergic stimulation with pyridostigmine improves autonomic function in infarcted rats. Clin Exp Pharmacol Physiol 2013; 40(9): 610-6.
[http://dx.doi.org/10.1111/1440-1681.12121] [PMID: 23701019]
[98]
Barboza CA, Rocha LY, Mostarda CT, et al. Ventricular and autonomic benefits of exercise training persist after detraining in infarcted rats. Eur J Appl Physiol 2013; 113(5): 1137-46.
[http://dx.doi.org/10.1007/s00421-012-2533-3] [PMID: 23108584]
[99]
Rodrigues F, Feriani DJ, Barboza CA, et al. Cardioprotection afforded by exercise training prior to myocardial infarction is associated with autonomic function improvement. BMC Cardiovasc Disord 2014; 14: 84.
[http://dx.doi.org/10.1186/1471-2261-14-84] [PMID: 25022361]
[100]
Barboza CA, Souza GI, Oliveira JC, et al. Cardioprotective properties of aerobic and resistance training against myocardial infarction. Int J Sports Med 2016; 37(6): 421-30.
[http://dx.doi.org/10.1055/s-0035-1565136] [PMID: 26928914]
[101]
Gupta A, Houston B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. Heart Fail Rev 2017; 22(6): 825-42.
[http://dx.doi.org/10.1007/s10741-017-9623-6] [PMID: 28536966]
[102]
Lopaschuk GD. Metabolic modulators in heart disease: Past, present, and future. Can J Cardiol 2017; 33(7): 838-49.
[http://dx.doi.org/10.1016/j.cjca.2016.12.013] [PMID: 28279520]
[103]
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85(3): 1093-129.
[http://dx.doi.org/10.1152/physrev.00006.2004] [PMID: 15987803]
[104]
Eckerle M, Ambroggio L, Puskarich MA, et al. Metabolomics as a driver in advancing precision medicine in sepsis. Pharmacotherapy 2017; 37(9): 1023-32.
[http://dx.doi.org/10.1002/phar.1974] [PMID: 28632924]
[105]
Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 2015; 113: 108-20.
[http://dx.doi.org/10.1016/j.jpba.2014.12.017] [PMID: 25577715]
[106]
Naz S, Moreira dos Santos DC, García A, Barbas C. Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2014; 6(12): 1657-77.
[http://dx.doi.org/10.4155/bio.14.119] [PMID: 25077626]
[107]
Cheng S, Shah SH, Corwin EJ, et al. Potential impact and study considerations of metabolomics in cardiovascular health and disease: A scientific statement from the American Heart Association. Circ Cardiovasc Genet 2017; 10(2)e000032
[http://dx.doi.org/10.1161/HCG.0000000000000032] [PMID: 28360086]
[108]
Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martínez-González MA, Hu FB. Comprehensive metabolomic profiling and incident cardiovascular disease: A systematic review. J Am Heart Assoc 2017; 6(10)e005705
[http://dx.doi.org/10.1161/JAHA.117.005705] [PMID: 28963102]
[109]
Lewis GD, Wei R, Liu E, et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest 2008; 118(10): 3503-12.
[http://dx.doi.org/10.1172/JCI35111] [PMID: 18769631]
[110]
Bodi V, Marrachelli VG, Husser O, Chorro FJ, Viña JR, Monleon D. Metabolomics in the diagnosis of acute myocardial ischemia. J Cardiovasc Transl Res 2013; 6(5): 808-15.
[http://dx.doi.org/10.1007/s12265-013-9505-9] [PMID: 23990264]
[111]
Ganna A, Salihovic S, Sundström J, et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet 2014; 10(12)e1004801
[http://dx.doi.org/10.1371/journal.pgen.1004801] [PMID: 25502724]
[112]
Laborde CM, Mourino-Alvarez L, Posada-Ayala M, et al. Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis in acute coronary syndrome. Metabolomics 2014; 10(3): 414-24.
[http://dx.doi.org/10.1007/s11306-013-0595-9]
[113]
Wang X, Wang D, Wu J, et al. Metabolic characterization of myocardial infarction using GC-MS-based tissue metabolomics. Int Heart J 2017; 58(3): 441-6.
[http://dx.doi.org/10.1536/ihj.16-432] [PMID: 28484125]
[114]
Takeda H, Koike T, Izumi Y, et al. Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits. J Biosci Bioeng 2015; 120(4): 476-82.
[http://dx.doi.org/10.1016/j.jbiosc.2015.02.015] [PMID: 26162515]
[115]
Zhu X, Liu X, He P, et al. Metabolomics in serum of ovariectomised rats and those exposed to 17β-oestradiol and genistein. Gynecol Endocrinol 2010; 26(10): 760-7.
[http://dx.doi.org/10.3109/09513590.2010.487615] [PMID: 20500111]
[116]
Ma B, Zhang Q, Wang GJ, et al. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats. Acta Pharmacol Sin 2011; 32(2): 270-8.
[http://dx.doi.org/10.1038/aps.2010.196] [PMID: 21293480]
[117]
López-Grueso R, Gambini J, Abdelaziz KM, et al. Early, but not late onset estrogen replacement therapy prevents oxidative stress and metabolic alterations caused by ovariectomy. Antioxid Redox Signal 2014; 20(2): 236-46.
[http://dx.doi.org/10.1089/ars.2012.5112] [PMID: 23725100]
[118]
Tracey KJ. The inflammatory reflex. Nature 2002; 420(6917): 853-9.
[http://dx.doi.org/10.1038/nature01321] [PMID: 12490958]
[119]
Mendoza N, De Teresa C, Cano A, et al. Benefits of physical exercise in postmenopausal women. Maturitas 2016; 93: 83-8.
[http://dx.doi.org/10.1016/j.maturitas.2016.04.017] [PMID: 27137981]
[120]
Jun JK, Lee WL, Park HG, Lee SK, Jeong SH, Lee YR. Moderate intensity exercise inhibits macrophage infiltration and attenuates adipocyte inflammation in ovariectomized rats. J Exerc Nutrition Biochem 2014; 18(1): 119-27.
[http://dx.doi.org/10.5717/jenb.2014.18.1.119] [PMID: 25566447]
[121]
Pereira MR, Leite PE. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J Cell Physiol 2016; 231(9): 1862-9.
[http://dx.doi.org/10.1002/jcp.25307] [PMID: 26754950]
[122]
Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med 2012; 209(6): 1057-68.
[http://dx.doi.org/10.1084/jem.20120571] [PMID: 22665702]
[123]
Ulloa L. The anti-inflammatory potential of selective cholinergic agonistsShock 36 United States 2011; 97-8.
[http://dx.doi.org/0.1097/SHK.0b013e31821820d2]
[124]
Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 2005; 4(8): 673-84.
[http://dx.doi.org/10.1038/nrd1797] [PMID: 16056392]
[125]
Tracey KJ. Understanding immunity requires more than immunology. Nat Immunol 2010; 11(7): 561-4.
[http://dx.doi.org/10.1038/ni0710-561] [PMID: 20562838]
[126]
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 2007; 117(2): 289-96.
[http://dx.doi.org/10.1172/JCI30555] [PMID: 17273548]
[127]
Watkins LR, Goehler LE, Relton JK, et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: Evidence for vagal mediation of immune-brain communication. Neurosci Lett 1995; 183(1-2): 27-31.
[http://dx.doi.org/10.1016/0304-3940(94)11105-R] [PMID: 7746479]
[128]
Goehler LE, Relton JK, Dripps D, et al. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain communication. Brain Res Bull 1997; 43(3): 357-64.
[http://dx.doi.org/10.1016/S0361-9230(97)00020-8] [PMID: 9227848]
[129]
Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011; 334(6052): 98-101.
[http://dx.doi.org/10.1126/science.1209985] [PMID: 21921156]
[130]
Costantini TW, Dang X, Yurchyshyna MV, Coimbra R, Eliceiri BP, Baird AA. Human-Specific α7-nicotinic acetylcholine receptor gene in human leukocytes: Identification, regulation and the consequences of CHRFAM7A expression. Mol Med 2015; 21: 323-36.
[http://dx.doi.org/10.2119/molmed.2015.00018]
[131]
Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 2007; 80(24-25): 2325-9.
[http://dx.doi.org/10.1016/j.lfs.2007.01.002] [PMID: 17289087]
[132]
de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007; 151(7): 915-29.
[http://dx.doi.org/10.1038/sj.bjp.0707264] [PMID: 17502850]
[133]
Hamano R, Takahashi HK, Iwagaki H, Yoshino T, Nishibori M, Tanaka N. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 2006; 26(4): 358-64.
[http://dx.doi.org/10.1097/01.shk.0000228168.86845.60] [PMID: 16980882]
[134]
Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405(6785): 458-62.
[http://dx.doi.org/10.1038/35013070] [PMID: 10839541]
[135]
Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One 2013; 8(6)e67078
[http://dx.doi.org/10.1371/journal.pone.0067078] [PMID: 23825622]
[136]
Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Li C. PPARγ upregulation induced by vagus nerve stimulation exerts anti-inflammatory effect in cerebral ischemia/reperfusion rats. Med Sci Monit 2015; 21: 268-75.
[http://dx.doi.org/10.12659/MSM.891407] [PMID: 25619160]
[137]
Fredj S, Bescond J, Louault C, Potreau D. Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol 2005; 202(3): 891-9.
[http://dx.doi.org/10.1002/jcp.20197] [PMID: 15389635]
[138]
Bowers SL, Borg TK, Baudino TA. The dynamics of fibroblast-myocyte-capillary interactions in the heart. Ann N Y Acad Sci 2010; 1188: 143-52.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05094.x] [PMID: 20201897]
[139]
Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000; 35(3): 569-82.
[http://dx.doi.org/10.1016/S0735-1097(99)00630-0] [PMID: 10716457]
[140]
Aronson D, Mittleman MA, Burger AJ. Interleukin-6 levels are inversely correlated with heart rate variability in patients with decompensated heart failure. J Cardiovasc Electrophysiol 2001; 12(3): 294-300.
[http://dx.doi.org/10.1046/j.1540-8167.2001.00294.x] [PMID: 11291801]
[141]
Lanza GA, Sgueglia GA, Cianflone D, et al. Relation of heart rate variability to serum levels of C-reactive protein in patients with unstable angina pectoris. Am J Cardiol 2006; 97(12): 1702-6.
[http://dx.doi.org/10.1016/j.amjcard.2006.01.029] [PMID: 16765117]
[142]
Shishehbor MH, Alves C, Rajagopal V. Inflammation: Implications for understanding the heart-brain connection. Cleve Clin J Med 2007; 74(Suppl. 1): S37-41.
[http://dx.doi.org/10.3949/ccjm.74.Suppl_1.S37] [PMID: 17455542]
[143]
Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 2011; 269(1): 45-53.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02321.x] [PMID: 21158977]
[144]
Rodrigues B, Santana AA, Santamarina AB, et al. Role of training and detraining on inflammatory and metabolic profile in infarcted rats: influences of cardiovascular autonomic nervous system. Mediators Inflamm 2014.2014207131
[http://dx.doi.org/10.1155/2014/207131] [PMID: 25045207]
[145]
Vybiral T, Glaeser DH, Morris G, et al. Effects of low dose transdermal scopolamine on heart rate variability in acute myocardial infarction. J Am Coll Cardiol 1993; 22(5): 1320-6.
[http://dx.doi.org/10.1016/0735-1097(93)90537-B] [PMID: 8227787]
[146]
Casadei B, Pipilis A, Sessa F, Conway J, Sleight P. Low doses of scopolamine increase cardiac vagal tone in the acute phase of myocardial infarction. Circulation 1993; 88(2): 353-7.
[http://dx.doi.org/10.1161/01.CIR.88.2.353] [PMID: 8339398]
[147]
Androne AS, Hryniewicz K, Goldsmith R, Arwady A, Katz SD. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart 2003; 89(8): 854-8.
[http://dx.doi.org/10.1136/heart.89.8.854] [PMID: 12860856]
[148]
La Rovere MT, Bersano C, Gnemmi M, Specchia G, Schwartz PJ. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation 2002; 106(8): 945-9.
[http://dx.doi.org/10.1161/01.CIR.0000027565.12764.E1] [PMID: 12186798]
[149]
Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 2006; 16(Suppl. 1): 3-63.
[http://dx.doi.org/10.1111/j.1600-0838.2006.00520.x] [PMID: 16451303]
[150]
Lakka TA, Laaksonen DE. Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Metab 2007; 32(1): 76-88.
[http://dx.doi.org/10.1139/h06-113] [PMID: 17332786]
[151]
Mann N, Rosenzweig A. Can exercise teach us how to treat heart disease? Circulation 2012; 126(22): 2625-35.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.060376] [PMID: 23184282]
[152]
Ertek S, Cicero A. Impact of physical activity on inflammation: Effects on cardiovascular disease risk and other inflammatory conditions. Arch Med Sci 2012; 8(5): 794-804.
[http://dx.doi.org/10.5114/aoms.2012.31614] [PMID: 23185187]
[153]
Xing Y, Yang SD, Dong F, Wang MM, Feng YS, Zhang F. The beneficial role of early exercise training following stroke and possible mechanisms. Life Sci 2018; 198: 32-7.
[http://dx.doi.org/10.1016/j.lfs.2018.02.018] [PMID: 29452165]
[154]
Siddiqui NI, Nessa A, Hossain MA. Regular physical exercise: Way to healthy life. Mymensingh Med J 2010; 19(1): 154-8.
[PMID: 20046192]
[155]
Booth FW, Gordon SE, Carlson CJ, Hamilton MT. Waging war on modern chronic diseases: Primary prevention through exercise biology. J Appl Physiol 2000; 88(2): 774-87.
[156]
Joyner MJ, Green DJ. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. J Physiol 2009; 587(Pt 23): 5551-8.
[http://dx.doi.org/10.1113/jphysiol.2009.179432] [PMID: 19736305]
[157]
Blair SN, Morris JN. Healthy hearts--and the universal benefits of being physically active: Physical activity and health. Ann Epidemiol 2009; 19(4): 253-6.
[http://dx.doi.org/10.1016/j.annepidem.2009.01.019] [PMID: 19344864]
[158]
Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2012; 2(2): 1143-211.
[http://dx.doi.org/10.1002/cphy.c110025] [PMID: 23798298]
[159]
Sosa PM, Schimidt HL, Altermann C, et al. Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion. Braz J Med Biol Res 2015; 48(9): 798-804.
[http://dx.doi.org/10.1590/1414-431x20154429] [PMID: 26222650]
[160]
Tang Z, Wang Y, Zhu X, Ni X, Lu J. Exercise increases cystathionine-γ-lyase expression and decreases the status of oxidative stress in myocardium of ovariectomized Rats. Int Heart J 2016; 57(1): 96-103.
[http://dx.doi.org/10.1536/ihj.15-099] [PMID: 26673437]
[161]
Grindler NM, Santoro NF. Menopause and exercise. Menopause 2015; 22(12): 1351-8.
[http://dx.doi.org/10.1097/GME.0000000000000536] [PMID: 26382311]
[162]
Kaidah S, Soejono SK, Partadiredja G. Exercise improves hippocampal estrogen and spatial memory of ovariectomized rats. Bratisl Lek Listy 2016; 117(2): 94-9.
[http://dx.doi.org/10.4149/BLL_2016_019] [PMID: 26830040]
[163]
Vieira-Potter VJ, Zidon TM, Padilla J. Exercise and estrogen make fat cells “Fit”. Exerc Sport Sci Rev 2015; 43(3): 172-8.
[http://dx.doi.org/10.1249/JES.0000000000000046] [PMID: 25906425]
[164]
Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007; 39(8): 1423-34.
[http://dx.doi.org/10.1249/mss.0b013e3180616b27] [PMID: 17762377]
[165]
Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: Potential mediating mechanisms. Circulation 2007; 116(19): 2110-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.729939] [PMID: 17967770]
[166]
Roque FR, Hernanz R, Salaices M, Briones AM. Exercise training and cardiometabolic diseases: Focus on the vascular system. Curr Hypertens Rep 2013; 15(3): 204-14.
[http://dx.doi.org/10.1007/s11906-013-0336-5] [PMID: 23519745]
[167]
Mostarda C, Moraes-Silva IC, Salemi VM, et al. Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats. Clinics 2012; 67(7): 815-20.
[http://dx.doi.org/10.6061/clinics/2012(07)18] [PMID: 22892928]
[168]
Laughlin MH, Oltman CL, Bowles DK. Exercise training-induced adaptations in the coronary circulation. Med Sci Sports Exerc 1998; 30(3): 352-60.
[http://dx.doi.org/10.1097/00005768-199803000-00004] [PMID: 9526880]
[169]
Xi Y, Ma WH, Tian ZJ. Research advance on angiogenesis in ischemic heart induced by aerobic exercise and stem cell mobilization. Sheng Li Ke Xue Jin Zhan 2014; 45(5): 343-8.
[PMID: 25764793]
[170]
Quindry JC, Hamilton KL, French JP, et al. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol 2007; 103(3): 1056-62.
[171]
Lin YY, Chen JS, Wu XB, et al. Combined effects of 17β-estradiol and exercise training on cardiac apoptosis in ovariectomized rats. PLoS One 2018; 13(12)e0208633
[http://dx.doi.org/10.1371/journal.pone.0208633] [PMID: 30571718]
[172]
Hamilton KL, Quindry JC, French JP, et al. MnSOD antisense treatment and exercise-induced protection against arrhythmias. Free Radic Biol Med 2004; 37(9): 1360-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.07.025] [PMID: 15454275]
[173]
Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98(4): 1154-62.
[http://dx.doi.org/10.1152/japplphysiol.00164.2004]
[174]
Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011; 11(9): 607-15.
[http://dx.doi.org/10.1038/nri3041] [PMID: 21818123]
[175]
Dayan A, Feinberg MS, Holbova R, Deshet N, Scheinowitz M. Swimming exercise training prior to acute myocardial infarction attenuates left ventricular remodeling and improves left ventricular function in rats. Ann Clin Lab Sci 2005; 35(1): 73-8.
[PMID: 15830712]
[176]
Veiga EC, Antonio EL, Bocalini DS, et al. Prior exercise training does not prevent acute cardiac alterations after myocardial infarction in female rats. Clinics 2011; 66(5): 889-93.
[http://dx.doi.org/10.1590/S1807-59322011000500028] [PMID: 21789396]
[177]
Bozi LH, Maldonado IR, Baldo MP, et al. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats. Clinics 2013; 68(4): 549-56.
[http://dx.doi.org/10.6061/clinics/2013(04)18] [PMID: 23778353]
[178]
Veiga EC, Portes LA, Bocalini DS, et al. Cardiac implications after myocardial infarction in rats previously undergoing physical exercise. Arq Bras Cardiol 2013; 100(1): 37-43.
[http://dx.doi.org/10.1590/S0066-782X2012005000117] [PMID: 23224349]
[179]
Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G. Prior exercise training improves the outcome of acute myocardial infarction in the rat. Heart structure, function, and gene expression. J Am Coll Cardiol 2005; 45(6): 931-8.
[http://dx.doi.org/10.1016/j.jacc.2004.11.052] [PMID: 15766831]
[180]
Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am J Med 2004; 116(10): 682-92.
[http://dx.doi.org/10.1016/j.amjmed.2004.01.009] [PMID: 15121495]
[181]
Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Am Heart J 2011; 162(4): 571-584.e2.
[http://dx.doi.org/10.1016/j.ahj.2011.07.017] [PMID: 21982647]
[182]
Villella M, Villella A. Exercise and cardiovascular diseases. Kidney Blood Press Res 2014; 39(2-3): 147-53.
[http://dx.doi.org/10.1159/000355790] [PMID: 25117881]
[183]
Lavie CJ, Arena R, Swift DL, et al. Exercise and the cardiovascular system: Clinical science and cardiovascular outcomes. Circ Res 2015; 117(2): 207-19.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305205] [PMID: 26139859]
[184]
Almeida SA, Claudio ER, Mengal V, et al. Exercise training reduces cardiac dysfunction and remodeling in ovariectomized rats submitted to myocardial infarction. PLoS One 2014; 9(12)e115970
[http://dx.doi.org/10.1371/journal.pone.0115970] [PMID: 25551214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy