Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Highly Active and Durable Nanostructured Ni-CNTs-HG Composite Electrocatalyst for Hydrogen Production

Author(s): Jing Du , Lixin Wang, Jingmei Li, Lei Cao, Shijia Dang and Xiujuan Qin*

Volume 16, Issue 2, 2020

Page: [259 - 267] Pages: 9

DOI: 10.2174/1573413715666190717150739

Price: $65

Abstract

Background: World energy crisis has triggered more attention to energy developing of clean energy carrier. To find simple, economical and effective hydrogen evolution reaction catalysts is one of the major challenges. Rational design and modification of electrocatalysts materials are of great importance for the development of low-cost and effective catalysts.

Methods: Herein, we report a Ni-CNTs-HG/NF electrode catalyst, which is fabricated on the surface of Ni foam by electrodeposition technique. The fabrication strategy allows the construction of a composite architecture with the Ni foam morphology at the macro level, and the Ni nanoparticles supported by carbon nanotubes and Hydrophilic graphene nanosheets at the nanoscopic level.

Results: Compared to NF electrocatalyst, the Ni-CNTs-HG/NF, the CNTs and HG sheets possess the largest electrocatalytic active surface area, providing Ni nanoparticles with catalytically active sites. The Ni-CNTs-HG/NF electrocatalyst exhibits better HER performance in alkaline electrolytes.

Conclusion: The Ni-CNTs-HG cathode performs its activity under alkaline conditions with an overpotential i.e 56 and 227 mV at a current density of 10 and 100mAcm-2, which is much lower than that of Ni foam electrode (423 and 278 mV). The secret of the enhanced electrochemical activity lies in its interior structure by coupling metal nanoparticles with carbon materials.

Keywords: Carbon composite catalyst, Ni-CNTs-HG, hydrophilic graphene, hydrogen evolution reaction, electrodeposition, Ni-based catalyst.

Graphical Abstract
[1]
Yang, W.; Yang, W.; Zhang, F.; Wang, G.; Shao, G. Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage. Small, 2018, 14(39), e1802221
[http://dx.doi.org/10.1002/smll.201802221] [PMID: 30152578]
[2]
Yang, W.; Yang, W.; Sun, B.; Di, S.; Yan, K.; Wang, G.; Shao, G. Mixed lithium oxynitride/oxysulfide as an interphase protective layer to stabilize lithium anodes for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 2018, 10(46), 39695-39704.
[http://dx.doi.org/10.1021/acsami.8b14045] [PMID: 30379527]
[3]
Su, L.; Gao, L.; Du, Q.; Hou, L.; Ma, Z.; Qin, X.; Shao, G. Construction of NiCo2O4 @MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J. Alloys Compd., 2018, 749, 900-908.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.353]
[4]
Ji, L.; Wang, J.; Wu, K.; Yang, N. Tunable electrochemistry of electrosynthesized copper metal-organic frameworks. Adv. Funct. Mater., 2018, 28, 1706961
[http://dx.doi.org/10.1002/adfm.201706961]
[5]
Ji, P.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J.H.; Lin, W. Tuning lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc., 2018, 140(33), 10553-10561.
[http://dx.doi.org/10.1021/jacs.8b05765] [PMID: 30045623]
[6]
Hou, L.; Du, Q.; Su, L.; Di, S.; Ma, Z.; Chen, L.; Shao, G. Ni Co layered double hydroxide with self assembled urchin like morphology for asymmetric supercapacitors. Mater. Lett., 2019, 237, 262-265.
[http://dx.doi.org/10.1016/j.matlet.2018.11.123]
[7]
Li, S.; Tuo, P.; Xie, J.; Zhang, X.; Xu, J.; Bao, J.; Pan, B.; Xie, Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 2018, 47, 512-518.
[http://dx.doi.org/10.1016/j.nanoen.2018.03.022]
[8]
Song, A.; Cao, L.; Yang, W.; Li, Y.; Qin, X.; Shao, G. Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst. ACS Sustain. Chem.& Eng., 2018, 6, 4890-4898.
[http://dx.doi.org/10.1021/acssuschemeng.7b04319]
[9]
Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc., 2013, 135(47), 17881-17888.
[http://dx.doi.org/10.1021/ja408329q] [PMID: 24191645]
[10]
Song, A.; Cao, L.; Yang, W.; Yang, W.; Wang, L.; Ma, Z.; Shao, G. In situ construction of nitrogen-doped grapheme with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction. Carbon, 2019, 142, 40-50.
[http://dx.doi.org/10.1016/j.carbon.2018.09.088]
[11]
Chen, L.; Chen, Z.; Wang, Y.; Yang, C.; Jiang, Q. Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction. ACS Catal., 2018, 8, 8107-8114.
[http://dx.doi.org/10.1021/acscatal.8b01164]
[12]
Du, C-F.; Dinh, K.N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan, Q. Self-assemble and in situ formation of Ni1-xFex PS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv. Energy Mater., 2018, 8, 1801127
[http://dx.doi.org/10.1002/aenm.201801127]
[13]
Song, A.; Yang, W.; Yang, W.; Sun, G.; Yin, X.; Gao, L.; Wang, Y.; Qin, X.; Shao, G. Facile synthesis of cobalt nanoparticles entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain. Chem.& Eng., 2017, 5, 3973-3981.
[http://dx.doi.org/10.1021/acssuschemeng.6b03173]
[14]
Du, J.; Wang, L.; Bai, L.; Zhang, P.; Song, A.; Shao, G. Effect of Ni nanoparticles on HG sheets modified by GO on the hydrogen evolution reaction. ACS Sustain. Chem.& Eng., 2018, 6, 10335-10343.
[http://dx.doi.org/10.1021/acssuschemeng.8b01684]
[15]
Du, Q.; Su, L.; Hou, L.; Sun, G.; Feng, M.; Yin, X.; Ma, Z.; Shao, G.; Gao, W. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J. Alloys Compd., 2018, 740, 1051-1059.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.069]
[16]
Li, S.; Wang, H.; Li, D.; Zhang, X.; Wang, Y.; Xie, J.; Wang, J.; Tian, Y.; Ni, W.; Xie, Y. Siloxene nanosheets: A metal-free semiconductor for water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 15841-15844.
[http://dx.doi.org/10.1039/C6TA07545B]
[17]
Li, Y.; Wang, L.; Song, A.; Xia, M.; Li, Z.; Shao, G. The study on the active origin of electrocatalytic water splitting using Ni-MoS2 as example. Electrochim. Acta, 2018, 268, 268-275.
[http://dx.doi.org/10.1016/j.electacta.2018.02.084]
[18]
Yin, X.; Sun, G.; Song, A.; Wang, L.; Wang, Y.; Dong, H.; Shao, G. A novel structure of Ni-(MoS2/GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution. Electrochim. Acta, 2017, 249, 52-63.
[http://dx.doi.org/10.1016/j.electacta.2017.08.010]
[19]
Wang, L.; Li, Y.; Xia, M.; Li, Z.; Chen, Z.; Ma, Z.; Qin, X.; Shao, G. Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sources, 2017, 347, 220-228.
[http://dx.doi.org/10.1016/j.jpowsour.2017.02.017]
[20]
Li, C.; Iqbal, M.; Lin, J.; Luo, X.; Jiang, B.; Malgras, V.; Wu, K.C.; Kim, J.; Yamauchi, Y. Electrochemical deposition: An advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res., 2018, 51(8), 1764-1773.
[http://dx.doi.org/10.1021/acs.accounts.8b00119] [PMID: 29984987]
[21]
Wang, L.; Li, Y.; Yin, X.; Wang, Y.; Song, A.; Ma, Z.; Qin, X.; Shao, G. Coral-like-structured Ni/C3N4 composite coating: An active electrocatalyst for hydrogen evolution reaction in alkaline solution. ACS Sustain. Chem.& Eng., 2017, 5, 7993-8003.
[http://dx.doi.org/10.1021/acssuschemeng.7b01576]
[22]
Zhang, C.; Shi, Y.; Yu, Y.; Du, Y.; Zhang, B. Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal., 2018, 8, 8077-8083.
[http://dx.doi.org/10.1021/acscatal.8b02056]
[23]
Zhao, M.Q.; Ren, C.E.; Ling, Z.; Lukatskaya, M.R.; Zhang, C.; Van Aken, K.L.; Barsoum, M.W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater., 2015, 27(2), 339-345.
[http://dx.doi.org/10.1002/adma.201404140] [PMID: 25405330]
[24]
Zhiani, M.; Kamali, S. Preparation and evaluation of nickel nanoparticles supported on the polyvinylpyrrolidone-graphene composite as a durable electrocatalyst for HER in alkaline media. Electrocatalysis, 2016, 7, 466-476.
[http://dx.doi.org/10.1007/s12678-016-0330-1]
[25]
Zhou, J.; Zha, X.; Zhou, X.; Chen, F.; Gao, G.; Wang, S.; Shen, C.; Chen, T.; Zhi, C.; Eklund, P.; Du, S.; Xue, J.; Shi, W.; Chai, Z.; Huang, Q. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 2017, 11(4), 3841-3850.
[http://dx.doi.org/10.1021/acsnano.7b00030] [PMID: 28375599]
[26]
Chen, C.; Xie, X.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.; Urbankowski, P.; Miao, L.; Jiang, J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. Engl., 2018, 57(7), 1846-1850.
[http://dx.doi.org/10.1002/anie.201710616] [PMID: 29292844]
[27]
Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L-X.; Wang, S.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun., 2018, 9(1), 155.
[http://dx.doi.org/10.1038/s41467-017-02529-6] [PMID: 29323113]
[28]
Liu, J.; Zhang, H.B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z.Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater., 2017, 29(38), 1702367
[http://dx.doi.org/10.1002/adma.201702367] [PMID: 28799671]
[29]
Wang, L.; Wang, P.; Liu, Y.; Zheng, L.; Sun, Q.; Qiu, S.; Liu, C. Effects of phenylhydrazine-4-sulfonic acid on the reduction of GO and preparation of hydrophilic graphene with broad pH stability and antioxidant activity. RSC Advances, 2015, 5, 38696-38705.
[http://dx.doi.org/10.1039/C4RA15454A]
[30]
Wang, H.; Jiang, S.; Chen, S.; Li, D.; Zhang, X.; Shao, W.; Sun, X.; Xie, J.; Zhao, Z.; Zhang, Q.; Tian, Y.; Xie, Y. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater., 2016, 28(32), 6940-6945.
[http://dx.doi.org/10.1002/adma.201601413] [PMID: 27271463]
[31]
Wang, H.; Zhang, X.; Xie, J.; Zhang, J.; Ma, P.; Pan, B.; Xie, Y. Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity. Nanoscale, 2015, 7(12), 5152-5156.
[http://dx.doi.org/10.1039/C4NR07645A] [PMID: 25714047]
[32]
Zhen, W.; Ma, J.; Lu, G. Small-sized Ni(1 1 1) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl. Catal. B, 2016, 190, 12-25.
[http://dx.doi.org/10.1016/j.apcatb.2016.02.061]
[33]
Zhang, J.; Liu, H.; Shi, P.; Li, Y.; Huang, L.; Mai, W.; Tan, S.; Cai, X. Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite. J. Power Sources, 2014, 267, 356-365.
[http://dx.doi.org/10.1016/j.jpowsour.2014.05.106]
[34]
Jin, Q.; Ren, B.; Li, D.; Cui, H.; Wang, C. In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy, 2018, 49, 14-22.
[http://dx.doi.org/10.1016/j.nanoen.2018.04.023]
[35]
Peng, X.; Qasim, A.M.; Jin, W.; Wang, L.; Hu, L.; Miao, Y.; Li, W.; Li, Y.; Liu, Z.; Huo, K.; Wong, K-y.; Chu, P.K. Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. Nat. Energy, 2018, 53, 66-73.
[36]
Wang, H.; Wang, X.; Yang, D.; Zheng, B.; Chen, Y. Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. J. Power Sources, 2018, 400, 232-241.
[http://dx.doi.org/10.1016/j.jpowsour.2018.08.027]
[37]
Huang, Y-g.; Fan, H-l.; Chen, Z-k.; Gu, C-b.; Sun, M-x.; Wang, H-q.; Li, Q-y. The effect of grapheme for the hydrogen evolution reaction in alkaline medium. Int. J. Hydrogen Energy, 2016, 41, 3786-3793.
[http://dx.doi.org/10.1016/j.ijhydene.2015.12.113]
[38]
Wang, J.; Qiu, T.; Chen, X.; Lu, Y.; Yang, W. N-doped carbon@Ni–Al2 O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium. J. Power Sources, 2015, 293, 178-186.
[http://dx.doi.org/10.1016/j.jpowsour.2015.05.080]
[39]
Xing, Z.; Wang, D.; Li, Q.; Asiri, A.M.; Sun, X. Self-standing Ni-WN heterostructure nanowires array: A highly efficient catalytic cathode for hydrogen evolution reaction in alkaline solution. Electrochim. Acta, 2016, 210, 729-733.
[http://dx.doi.org/10.1016/j.electacta.2016.06.003]
[40]
Du, J.; Wang, L.; Bai, L.; Dang, S.; Su, L.; Qin, X.; Shao, G. Datura-like Ni-HG-rGO as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline conditions. J. Colloid Interface Sci., 2019, 535, 75-83.
[http://dx.doi.org/10.1016/j.jcis.2018.09.063] [PMID: 30286309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy