Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Polymeric Nanogels for Theranostic Applications: A Mini-Review

Author(s): Vineeth M. Vijayan*, Pradipika Natamai Vasudevan and Vinoy Thomas*

Volume 16, Issue 3, 2020

Page: [392 - 398] Pages: 7

DOI: 10.2174/1573413715666190717145040

Abstract

Theranostics is a recently emerging area in nanomedicine. Nanoparticles which can combine both diagnostic and therapy in one single platform serve as theranostic agents. Some of the currently explored nanoparticles are metallic nanoparticles, mesoporous silica nanoparticles, carbonbased nanoparticles, and polymer nanogels. Polymeric nanogels are receiving considerable attention due to their high biocompatibility and functional performance. The present review article briefly summarizes the scopes and challenges of the state of art of using polymeric nanogels for theranostic applications. Among the different polymer nanogels, a special emphasis is given to polymeric nanogels with innate imaging potential.

Keywords: Theranostics, nanogel, fluorescence, imaging agent, therapeutic agent, nanoparticles.

Graphical Abstract
[1]
Kulshrestha, A.S.; Mahapatro, A. Polymers for biomedical applications; American Chemical Society Washington: DC, 2008.
[http://dx.doi.org/10.1021/bk-2008-0977.ch001]
[2]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[3]
Oh, J.K. Polymers in drug delivery: Chemistry and applications. Mol. Pharm., 2017, 14(8), 2459-2459.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00567] [PMID: 28780874]
[4]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[5]
Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res., 2009, 26(5), 1025-1058.
[http://dx.doi.org/10.1007/s11095-008-9800-3] [PMID: 19107579]
[6]
Wang, Z.; Niu, G.; Chen, X. Polymeric materials for theranostic applications. Pharm. Res., 2014, 31(6), 1358-1376.
[http://dx.doi.org/10.1007/s11095-013-1103-7] [PMID: 23765400]
[7]
Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol., 2015, 88(1054) 20150207
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[8]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[9]
Kim, H.; Kang, Y.J.; Kang, S.; Kim, K.T. Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH. J. Am. Chem. Soc., 2012, 134(9), 4030-4033.
[http://dx.doi.org/10.1021/ja211728x] [PMID: 22339262]
[10]
Augustine, R.; John, J.V.; Kim, I. Nanoparticle-Homing Polymers as Platforms for Theranostic Applications. In: Mishra, V.; Kesharwani, P.; Amin, M.C.I.M.; Iyer, A., (Eds.). Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes; Elsevier Science B. V: Amsterdam, 2017; pp. 203-222.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00007-5]
[11]
Parisi, O.I.; Scrivano, L.; Sinicropi, M.S.; Picci, N.; Puoci, F. Engineered polymer-based nanomaterials for diagnostic, therapeutic and theranostic applications. Mini Rev. Med. Chem., 2016, 16(9), 754-761.
[http://dx.doi.org/10.2174/1389557515666150709112122] [PMID: 26156541]
[12]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[13]
Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[14]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851.
[http://dx.doi.org/10.1016/j.addr.2012.02.002] [PMID: 22342438]
[15]
Chambre, L.; Degirmenci, A.; Sanyal, R.; Sanyal, A. Multi-functional nanogels as theranostic platforms: exploiting reversible and nonreversible linkages for targeting, imaging, and drug delivery. Bioconjug. Chem., 2018, 29(6), 1885-1896.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00085] [PMID: 29727179]
[16]
Khoee, S.; Asadi, H. Nanogels: Chemical approaches to preparation. In: Mishra, M., (Ed.). Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; CRC Press, 2016; pp. 5266-5293.
[http://dx.doi.org/10.1081/E-EBPP-120050693]
[17]
Vashist, A.; Kaushik, A.K.; Ahmad, S.; Nair, M. Nanogels for Biomedical Applications. Royal Society of Chemistry, 2017, vol 30
[http://dx.doi.org/10.1039/9781788010481]
[18]
Vashist, A.; Vashist, A.; Gupta, Y.; Ahmad, S. Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(2), 147-166.
[http://dx.doi.org/10.1039/C3TB21016B]
[19]
Lu, S.; Neoh, K.G.; Huang, C.; Shi, Z.; Kang, E-T. Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. J. Colloid Interface Sci., 2013, 412, 46-55.
[http://dx.doi.org/10.1016/j.jcis.2013.09.011] [PMID: 24144373]
[20]
Vijayan, V.M.; Muthu, J. Polymeric nanocarriers for cancer theranostics. Polym. Adv. Technol., 2017, 28(12), 1572-1582.
[http://dx.doi.org/10.1002/pat.4070]
[21]
Vijayan, V.M.; Shenoy, S.J.; Muthu, J. Octreotide-conjugated fluorescent PEGylated polymeric nanogel for theranostic applications. Mater. Sci. Eng. C, 2017, 76, 490-500.
[http://dx.doi.org/10.1016/j.msec.2017.03.125] [PMID: 28482555]
[22]
Ghaffarlou, M.; Sütekin, S.D.; Güven, O. Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly (acrylic acid) with poly (vinyl pyrrolidone) in aqueous medium. Radiat. Phys. Chem., 2018, 142, 130-136.
[http://dx.doi.org/10.1016/j.radphyschem.2017.04.019]
[23]
Khutoryanskiy, V.V.; Mun, G.A.; Nurkeeva, Z.S.; Dubolazov, A.V. pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions. Polym. Int., 2004, 53(9), 1382-1387.
[http://dx.doi.org/10.1002/pi.1549]
[24]
Li, Y.; Li, H.; Chen, X.; Zhu, F.; Yang, J.; Zhu, Y. Complexation of poly (acrylic acid) and poly (ethylene oxide) investigated by enhanced Rayleigh scattering method. J. Polym. Sci., B, Polym. Phys., 2010, 48(16), 1847-1852.
[http://dx.doi.org/10.1002/polb.22058]
[25]
Pinteala, M.; Budtova, T.; Epure, V.; Belnikevich, N.; Harabagiu, V.; Simionescu, B.C. Interpolymer complexes between hydrophobically modified poly (methacrylic acid) and poly (N-vinylpyrrolidone). Polymer (Guildf.), 2005, 46(18), 7047-7054.
[http://dx.doi.org/10.1016/j.polymer.2005.05.099]
[26]
Poe, G.D.; Jarrett, W.L.; Scales, C.W.; McCormick, C.L. Enhanced coil expansion and intrapolymer complex formation of linear poly (methacrylic acid) containing poly (ethylene glycol) grafts. Macromolecules, 2004, 37(7), 2603-2612.
[http://dx.doi.org/10.1021/ma035261i]
[27]
Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[28]
Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev., 2002, 54(1), 135-147.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[29]
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[30]
Vijayan, V.M.; Muthu, J. Polymeric nanocarriers for cancer theranostics: Nanocarriers for cancer theranostics. Polym. Adv. Technol., 2017, 28(12), 1572-1582.
[http://dx.doi.org/10.1002/pat.4070]
[31]
Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter, 2011, 7(13), 5908-5916.
[http://dx.doi.org/10.1039/c0sm01307b]
[32]
Vinogradov, S.V. Nanogels in the race for drug delivery. Nanomedicine (Lond.), 2010, 5(2), 165-168.
[http://dx.doi.org/10.2217/nnm.09.103] [PMID: 20148627]
[33]
Zan, M.; Li, J.; Luo, S.; Ge, Z. Dual pH-triggered multistage drug delivery systems based on host-guest interaction-associated polymeric nanogels. Chem. Commun. (Camb.), 2014, 50(58), 7824-7827.
[http://dx.doi.org/10.1039/C4CC03120B] [PMID: 24909859]
[34]
Wang, H.; Chen, Q.; Zhou, S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev., 2018, 47(11), 4198-4232.
[http://dx.doi.org/10.1039/C7CS00399D] [PMID: 29667656]
[35]
Li, F.; Liang, Z.; Ling, D. Smart organic-inorganic nanogels for activatable theranostics. Curr. Med. Chem., 2019, 26(8), 1366-1376.
[http://dx.doi.org/10.2174/0929867324666170920164614] [PMID: 28933302]
[36]
Zhou, Y.; Hu, Y.; Sun, W.; Lu, S.; Cai, C.; Peng, C.; Yu, J.; Popovtzer, R.; Shen, M.; Shi, X. Radiotherapy-sensitized tumor photothermal ablation using Γ-polyglutamic acid nanogels loaded with polypyrrole. Biomacromolecules, 2018, 19(6), 2034-2042.
[http://dx.doi.org/10.1021/acs.biomac.8b00184] [PMID: 29601720]
[37]
Park, J.S.; Yi, S.W.; Kim, H.J.; Kim, S.M.; Shim, S.H.; Park, K-H. Sunflower-type nanogels carrying a quantum dot nanoprobe for both superior gene delivery efficacy and tracing of human mesenchymal stem cells. Biomaterials, 2016, 77, 14-25.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.002] [PMID: 26576046]
[38]
Nagahama, K.; Sano, Y.; Kumano, T. Anticancer drug-based multifunctional nanogels through self-assembly of dextran-curcumin conjugates toward cancer theranostics. Bioorg. Med. Chem. Lett., 2015, 25(12), 2519-2522.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.062] [PMID: 25958243]
[39]
Chiang, W-H.; Ho, V.T.; Chen, H-H.; Huang, W-C.; Huang, Y-F.; Lin, S-C.; Chern, C-S.; Chiu, H-C. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir, 2013, 29(21), 6434-6443.
[http://dx.doi.org/10.1021/la4001957] [PMID: 23627806]
[40]
Su, S.; Wang, H.; Liu, X.; Wu, Y.; Nie, G. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34(13), 3523-3533.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.083] [PMID: 23410678]
[41]
Xing, T.; Mao, C.; Lai, B.; Yan, L. Synthesis of disulfide-cross-linked polypeptide nanogel conjugated with a near-infrared fluorescence probe for direct imaging of reduction-induced drug release. ACS Appl. Mater. Interfaces, 2012, 4(10), 5662-5672.
[http://dx.doi.org/10.1021/am301600u] [PMID: 22974285]
[42]
Wu, W.; Shen, J.; Gai, Z.; Hong, K.; Banerjee, P.; Zhou, S. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery. Biomaterials, 2011, 32(36), 9876-9887.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.082] [PMID: 21944827]
[43]
Rejinold, N.S.; Chennazhi, K.P.; Tamura, H.; Nair, S.V.; Rangasamy, J. Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl. Mater. Interfaces, 2011, 3(9), 3654-3665.
[http://dx.doi.org/10.1021/am200844m] [PMID: 21863797]
[44]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Biomaterials, 2011, 32(2), 598-609.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.112] [PMID: 20933280]
[45]
Zhu, H.; Li, Y.; Qiu, R.; Shi, L.; Wu, W.; Zhou, S. Responsive fluorescent Bi(2)O(3)@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials, 2012, 33(10), 3058-3069.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.003] [PMID: 22257723]
[46]
Quan, S.; Wang, Y.; Zhou, A.; Kumar, P.; Narain, R. Galactose-based thermosensitive nanogels for targeted drug delivery of iodoazomycin arabinofuranoside (IAZA) for theranostic management of hypoxic hepatocellular carcinoma. Biomacromolecules, 2015, 16(7), 1978-1986.
[http://dx.doi.org/10.1021/acs.biomac.5b00576] [PMID: 25996799]
[47]
Podgórna, K.; Szczepanowicz, K.; Piotrowski, M.; Gajdošová, M.; Štěpánek, F.; Warszyński, P. Gadolinium alginate nanogels for theranostic applications. Colloids Surf. B Biointerfaces, 2017, 153, 183-189.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.026] [PMID: 28242371]
[48]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 2010, 31(32), 8371-8381.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.061] [PMID: 20701965]
[49]
Asadian-Birjand, M.; Bergueiro, J.; Wedepohl, S.; Calderón, M. Near infrared dye conjugated nanogels for combined photodynamic and photothermal therapies. Macromol. Biosci., 2016, 16(10), 1432-1441.
[http://dx.doi.org/10.1002/mabi.201600117] [PMID: 27297134]
[50]
Yang, J.; Zhang, Y.; Gautam, S.; Liu, L.; Dey, J.; Chen, W.; Mason, R.P.; Serrano, C.A.; Schug, K.A.; Tang, L. Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl. Acad. Sci. USA, 2009, 106(25), 10086-10091.
[http://dx.doi.org/10.1073/pnas.0900004106] [PMID: 19506254]
[51]
Gyawali, D.; Kim, J.P.; Yang, J. Highly photostable nanogels for fluorescence-based theranostics. Bioact. Mater., 2018, 3(1), 39-47.
[http://dx.doi.org/10.1016/j.bioactmat.2017.03.001] [PMID: 29527581]
[52]
Vijayan, V.M.; Komeri, R.; Victor, S.P.; Muthu, J. Photoluminescent PEG based comacromers as excitation dependent fluorophores for biomedical applications. Colloids Surf. B Biointerfaces, 2015, 135, 243-252.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.027] [PMID: 26263212]
[53]
Vijayan, V.M.; Shenoy, S.J.; Victor, S.P.; Muthu, J. Stimulus responsive nanogel with innate near IR fluorescent capability for drug delivery and bioimaging. Colloids Surf. B Biointerfaces, 2016, 146, 84-96.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.059] [PMID: 27262258]
[54]
Štular, D.; Primc, G.; Mozetič, M.; Jerman, I.; Mihelčič, M.; Ruiz-Zepeda, F.; Tomšič, B.; Simončič, B.; Gorjanc, M. Influence of non-thermal plasma treatement on the adsorption of a stimuli-responsive nanogel onto polyethylene terephthalate fabric. Prog. Org. Coat., 2018, 120, 198-207.
[http://dx.doi.org/10.1016/j.porgcoat.2018.03.023]

© 2024 Bentham Science Publishers | Privacy Policy