Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Therapeutic Promises of Chlorogenic Acid with Special Emphasis on its Anti-Obesity Property

Author(s): Rajnish Kumar, Anju Sharma, Mohammed Shariq Iqbal and Janmejai K. Srivastava*

Volume 13, Issue 1, 2020

Page: [7 - 16] Pages: 10

DOI: 10.2174/1874467212666190716145210

Price: $65

Abstract

Background: Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid. It is an ester formed between caffeic acid and the 3-hydroxyl of L-quinic acid. This polyphenol is naturally present in substantial amount in the green coffee beans. Minor quantities of CGA are also reported in apples, eggplant, blueberries, tomatoes, strawberries and potatoes. CGA is reported to be beneficial in hypertension, hyperglycemia, antimicrobial, antitumor, memory enhancer, weight management etc. Further, it is also reported to have anticancer, antioxidant and anti-inflammatory activities. Since the last decade, CGA drew public attention for its widely recommended use as a medicine or natural food additive supplement for the management of obesity.

Objective: The current review explores the medicinal promises of CGA and emphasizes on its antiobese property as reported by various scientific reports and publication.

Conclusion: CGA shows promises as an antioxidant, glycemic control agent, anti-hypertensive, antiinflammatory, antimicrobial, neuro-protective and anti-obesity agent. It primarily activates the AMPactivated protein kinase, inhibits 3-hydroxy 3-methylglutaryl coenzyme-A reductase and strengthens the activity of carnitine palmitoyltransferase to control the obesity.

Keywords: Chlorogenic acid, coffee, lipid, medicinal activity, obesity, CPT.

Graphical Abstract
[1]
Gonthier, M.P.; Remesy, C.; Scalbert, A.; Cheynier, V.; Souquet, J.M.; Poutanen, K.; Aura, A.M. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed. Pharmacother., 2006, 60(9), 536-540.
[http://dx.doi.org/10.1016/j.biopha.2006.07.084] [PMID: 16978827]
[2]
Suzuki, R.; Powell, W.; Richer, J. IUPAC Commission on the Nomenclature of Organic Chemistry: A guide to IUPAC Nomenclature of Organic Compounds; Blackwell Scientific Publications Ltd.: Oxford, UK, 1994, pp. 71-73.
[3]
Mills, C.E.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem., 2013, 141(4), 3335-3340.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.014] [PMID: 23993490]
[4]
Kremr, D.; Bajer, T.; Bajerová, P.; Surmová, S.; Ventura, K. Unremitting problems with chlorogenic acid nomenclature: a review. Quim. Nova, 2016, 39(4), 530-533.
[http://dx.doi.org/10.5935/0100-4042.20160063]
[5]
Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J. Agric. Food Chem., 2000, 48(11), 5496-5500.
[http://dx.doi.org/10.1021/jf000483q] [PMID: 11087508]
[6]
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur. J. Nutr., 2017, 56(7), 2215-2244.
[http://dx.doi.org/10.1007/s00394-017-1379-1] [PMID: 28391515]
[7]
Onakpoya, I.; Terry, R.; Ernst, E. The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol. Res. Pract., 2011, 2011, 6.
[http://dx.doi.org/10.1155/2011/382852] [PMID: 20871849]
[8]
Renouf, M.; Guy, P.A.; Marmet, C.; Fraering, A.L.; Longet, K.; Moulin, J.; Enslen, M.; Barron, D.; Dionisi, F.; Cavin, C.; Williamson, G.; Steiling, H. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism. Mol. Nutr. Food Res., 2010, 54(6), 760-766.
[http://dx.doi.org/10.1002/mnfr.200900056] [PMID: 19937852]
[9]
Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr., 2006, 136(5), 1192-1197.
[http://dx.doi.org/10.1093/jn/136.5.1192] [PMID: 16614403]
[10]
Vieira, O.; Laranjinha, J.; Madeira, V.; Almeida, L. Cholesteryl ester hydroperoxide formation in myoglobin-catalyzed low density lipoprotein oxidation: concerted antioxidant activity of caffeic and p-coumaric acids with ascorbate. Biochem. Pharmacol., 1998, 55(3), 333-340.
[http://dx.doi.org/10.1016/S0006-2952(97)00470-X] [PMID: 9484800]
[11]
Jin, S.; Chang, C.; Zhang, L.; Liu, Y.; Huang, X.; Chen, Z. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice. PLoS One, 2015, 10(4) e0120842
[http://dx.doi.org/10.1371/journal.pone.0120842] [PMID: 25849026]
[12]
Johnston, K.L.; Clifford, M.N.; Morgan, L.M. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr., 2003, 78(4), 728-733.
[http://dx.doi.org/10.1093/ajcn/78.4.728] [PMID: 14522730]
[13]
Suzuki, A.; Kagawa, D.; Ochiai, R.; Tokimitsu, I.; Saito, I. Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens. Res., 2002, 25(1), 99-107.
[http://dx.doi.org/10.1291/hypres.25.99] [PMID: 11924733]
[14]
Kozuma, K.; Tsuchiya, S.; Kohori, J.; Hase, T.; Tokimitsu, I. Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens. Res., 2005, 28(9), 711-718.
[http://dx.doi.org/10.1291/hypres.28.711] [PMID: 16419643]
[15]
Karunanidhi, A.; Thomas, R.; van Belkum, A.; Neela, V. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. BioMed Res. Int., 2013. 2013392058
[http://dx.doi.org/10.1155/2013/392058] [PMID: 23509719]
[16]
Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol., 2010, 48(3), 937-943.
[http://dx.doi.org/10.1016/j.fct.2010.01.003] [PMID: 20064576]
[17]
Zhao, Z.; Shin, H.S.; Satsu, H.; Totsuka, M.; Shimizu, M. 5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-α-induced secretion of interleukin-8 from Caco-2 cells. J. Agric. Food Chem., 2008, 56(10), 3863-3868.
[http://dx.doi.org/10.1021/jf073168d] [PMID: 18444659]
[18]
Liu, C.C.; Zhang, Y.; Dai, B.L.; Ma, Y.J.; Zhang, Q.; Wang, Y.; Yang, H. Chlorogenic acid prevents inflammatory responses in IL-1β-stimulated human SW-1353 chondrocytes, a model for osteoarthritis. Mol. Med. Rep., 2017, 16(2), 1369-1375.
[http://dx.doi.org/10.3892/mmr.2017.6698] [PMID: 28586061]
[19]
Yang, F.; Luo, L.; Zhu, Z.D.; Zhou, X.; Wang, Y.; Xue, J.; Zhang, J.; Cai, X.; Chen, Z.L.; Ma, Q.; Chen, Y.F.; Wang, Y.J.; Luo, Y.Y.; Liu, P.; Zhao, L. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in vitro and in vivo. Front. Pharmacol., 2017, 8, 929.
[http://dx.doi.org/10.3389/fphar.2017.00929] [PMID: 29311932]
[20]
Yun, N.; Kang, J.W.; Lee, S.M. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J. Nutr. Biochem., 2012, 23(10), 1249-1255.
[http://dx.doi.org/10.1016/j.jnutbio.2011.06.018] [PMID: 22209001]
[21]
Zhang, L.T.; Chang, C.Q.; Liu, Y.; Chen, Z.M. Effect of chlorogenic acid on disordered glucose and lipid metabolism in db/db mice and its mechanism Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2011, 33(3), 281-286.
[PMID: 21718611]
[22]
Hemmerle, H.; Burger, H.J.; Below, P.; Schubert, G.; Rippel, R.; Schindler, P.W.; Paulus, E.; Herling, A.W. Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase. J. Med. Chem., 1997, 40(2), 137-145.
[http://dx.doi.org/10.1021/jm9607360] [PMID: 9003513]
[23]
Yuan, Y.; Gong, X.; Zhang, L.; Jiang, R.; Yang, J.; Wang, B.; Wan, J. Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. Int. Immunopharmacol., 2017, 44, 97-104.
[http://dx.doi.org/10.1016/j.intimp.2017.01.017] [PMID: 28088700]
[24]
Shi, H.; Dong, L.; Jiang, J.; Zhao, J.; Zhao, G.; Dang, X.; Lu, X.; Jia, M. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology, 2013, 303, 107-114.
[http://dx.doi.org/10.1016/j.tox.2012.10.025] [PMID: 23146752]
[25]
Hwang, S.J.; Kim, Y.W.; Park, Y.; Lee, H.J.; Kim, K.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res., 2014, 63(1), 81-90.
[http://dx.doi.org/10.1007/s00011-013-0674-4] [PMID: 24127072]
[26]
Suzuki, A.; Fujii, A.; Jokura, H.; Tokimitsu, I.; Hase, T.; Saito, I. Hydroxyhydroquinone interferes with the chlorogenic acid-induced restoration of endothelial function in spontaneously hypertensive rats. Am. J. Hypertens., 2008, 21(1), 23-27.
[http://dx.doi.org/10.1038/ajh.2007.3] [PMID: 18091740]
[27]
Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin. Exp. Hypertens., 2006, 28(5), 439-449.
[http://dx.doi.org/10.1080/10641960600798655] [PMID: 16820341]
[28]
Onakpoya, I.J.; Spencer, E.A.; Thompson, M.J.; Heneghan, C.J. The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J. Hum. Hypertens., 2015, 29(2), 77-81.
[http://dx.doi.org/10.1038/jhh.2014.46] [PMID: 24943289]
[29]
Liu, Y.; Wang, Z.; Zhou, A. Effects of hesperidin and chlorogenic acid on performance, antioxidance and immunity of weaned piglets. Chin. J. Vet. Sci., 2009, 29(9), 1233-1236.
[30]
Laguerre, M.; Chen, B.; Lecomte, J.; Villeneuve, P.; McClements, D.J.; Decker, E.A. Antioxidant properties of chlorogenic acid and its alkyl esters in stripped corn oil in combination with phospholipids and/or water. J. Agric. Food Chem., 2011, 59(18), 10361-10366.
[http://dx.doi.org/10.1021/jf2026742] [PMID: 21851125]
[31]
Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm., 2011, 403(1-2), 136-138.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035] [PMID: 20933071]
[32]
Jeszka-Skowron, M.; Sentkowska, A.; Pyrzyńska, K.; Paz De Peña, M. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur. Food Res. Technol., 2016, 242(8), 1403-1409.
[http://dx.doi.org/10.1007/s00217-016-2643-y]
[33]
van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 2009, 32(6), 1023-1025.
[http://dx.doi.org/10.2337/dc09-0207] [PMID: 19324944]
[34]
Zuñiga, L.Y.; Aceves-de la Mora, M.C.A.; González-Ortiz, M.; Ramos-Núñez, J.L.; Martínez-Abundis, E. Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food, 2018, 21(5), 469-473.
[http://dx.doi.org/10.1089/jmf.2017.0110] [PMID: 29261010]
[35]
Yadav, M.; Kaushik, M.; Roshni, R.; Reddy, P.; Mehra, N.; Jain, V.; Rana, R. Effect of green coffee bean extract on Streptococcus mutans count: a randomised control trial. J. Clin. Diagn. Res., 2017, 11(5), ZC68-ZC71.
[http://dx.doi.org/10.7860/JCDR/2017/25743.9898] [PMID: 28658911]
[36]
Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci., 2011, 76(6), M398-M403.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02213.x] [PMID: 22417510]
[37]
Kabir, F.; Katayama, S.; Tanji, N.; Nakamura, S. Antimicrobial effects of chlorogenic acid and related compounds. J. Korean Soc. Appl. Biol. Chem., 2014, 57(3), 359-365.
[http://dx.doi.org/10.1007/s13765-014-4056-6]
[38]
Huang, M.T.; Smart, R.C.; Wong, C.Q.; Conney, A.H. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res., 1988, 48(21), 5941-5946.
[PMID: 3139287]
[39]
Kang, T.Y.; Yang, H.R.; Zhang, J.; Li, D.; Lin, J.; Wang, L.; Xu, X. The studies of chlorogenic Acid antitumor mechanism by gene chip detection: the immune pathway gene expression. J. Anal. Methods Chem., 2013. 2013617243
[http://dx.doi.org/10.1155/2013/617243] [PMID: 23762780]
[40]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[http://dx.doi.org/10.1038/35007508] [PMID: 10766250]
[41]
Deka, S.J.; Gorai, S.; Manna, D.; Trivedi, V. Evidence of PKC Binding and Translocation to Explain the Anticancer Mechanism of Chlorogenic Acid in Breast Cancer Cells. Curr. Mol. Med., 2017, 17(1), 79-89.
[http://dx.doi.org/10.2174/1566524017666170209160619] [PMID: 28190385]
[42]
Ben-Ami, H.; Nagachandran, P.; Mendelson, A.; Edoute, Y. Drug-induced hypoglycemic coma in 102 diabetic patients. Arch. Intern. Med., 1999, 159(3), 281-284.
[http://dx.doi.org/10.1001/archinte.159.3.281] [PMID: 9989540]
[43]
Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med., 2004, 351(11), 1106-1118.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[44]
Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA, 2007, 298(10), 1180-1188.
[http://dx.doi.org/10.1001/jama.298.10.1180] [PMID: 17848652]
[45]
Radtke, J.; Linseisen, J.; Wolfram, G. Phenolic acid intake of adults in a Bavarian subgroup of the national food consumption survey. Z. Ernahrungswiss., 1998, 37(2), 190-197.
[http://dx.doi.org/10.1007/s003940050016] [PMID: 9698647]
[46]
Clifford, M.N. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J. Sci. Food Agric., 1999, 320, 362-372.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362:AID-JSFA256>3.0.CO;2-D]
[47]
Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A.L.; Cisneros-Zevallos, D.A. Jacobo-Velázquez. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 2017, 22(3), 358.
[http://dx.doi.org/10.3390/molecules22030358] [PMID: 28245635]
[48]
Clifford, M.N. Chlorogenic acids and other cinnamates-nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric., 2000, 80(7), 1033-1043.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033:AID-JSFA595>3.0.CO;2-T]
[49]
Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; Di Felice, M.; Scaccini, C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med., 1995, 19(5), 541-552.
[http://dx.doi.org/10.1016/0891-5849(95)00052-Y] [PMID: 8529913]
[50]
Hsu, C.L.; Huang, S.L.; Yen, G.C. Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J. Agric. Food Chem., 2006, 54(12), 4191-4197.
[http://dx.doi.org/10.1021/jf0609882] [PMID: 16756346]
[51]
Rodriguez de Sotillo, D.V.; Hadley, M. Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J. Nutr. Biochem., 2002, 13(12), 717-726.
[http://dx.doi.org/10.1016/S0955-2863(02)00231-0] [PMID: 12550056]
[52]
Rodriguez de Sotillo, D.V.; Hadley, M.; Sotillo, J.E. Insulin receptor exon 11+/- is expressed in Zucker (fa/fa) rats, and chlorogenic acid modifies their plasma insulin and liver protein and DNA. J. Nutr. Biochem., 2006, 17(1), 63-71.
[http://dx.doi.org/10.1016/j.jnutbio.2005.06.004] [PMID: 16169204]
[53]
Nicasio, P.; Aguilar-Santamaría, L.; Aranda, E.; Ortiz, S.; González, M. Hypoglycemic effect and chlorogenic acid content in two Cecropia species. Phytother. Res., 2005, 19(8), 661-664.
[http://dx.doi.org/10.1002/ptr.1722] [PMID: 16177966]
[54]
Karthikesan, K.; Pari, L.; Menon, V.P. Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem. Biol. Interact., 2010, 188(3), 643-650.
[http://dx.doi.org/10.1016/j.cbi.2010.07.026] [PMID: 20696151]
[55]
Olthof, M.R.; Hollman, P.C.; Zock, P.L.; Katan, M.B. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am. J. Clin. Nutr., 2001, 73(3), 532-538.
[http://dx.doi.org/10.1093/ajcn/73.3.532] [PMID: 11237928]
[56]
Cropley, V.; Croft, R.; Silber, B.; Neale, C.; Scholey, A.; Stough, C.; Schmitt, J. Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study. Psychopharmacology (Berl.), 2012, 219(3), 737-749.
[http://dx.doi.org/10.1007/s00213-011-2395-0] [PMID: 21773723]
[57]
Thom, E. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J. Int. Med. Res., 2007, 35(6), 900-908.
[http://dx.doi.org/10.1177/147323000703500620] [PMID: 18035001]
[58]
Kato, M.; Ochiai, R.; Kozuma, K.; Sato, H.; Katsuragi, Y. Effect of chlorogenic acid intake on cognitive function in the elderly: A pilot study. Evid. Based Complement. Alternat. Med., 2018. 20188608497
[http://dx.doi.org/10.1155/2018/8608497] [PMID: 29707036]
[59]
Gómez-Ruiz, J.A.; Leake, D.S.; Ames, J.M. In vitro antioxidant activity of coffee compounds and their metabolites. J. Agric. Food Chem., 2007, 55(17), 6962-6969.
[http://dx.doi.org/10.1021/jf0710985] [PMID: 17655324]
[60]
Katada, S.; Watanabe, T.; Mizuno, T.; Kobayashi, S.; Takeshita, M.; Osaki, N.; Kobayashi, S.; Katsuragi, Y. Effects of chlorogenic acid-enriched and hydroxyhydroquinone-reduced coffee on postprandial fat oxidation and antioxidative capacity in healthy men: a randomized, double-blind, placebo-controlled, crossover trial. Nutrients, 2018, 10(4), 525.
[http://dx.doi.org/10.3390/nu10040525] [PMID: 29690626]
[61]
Sasaki, K.; Alamed, J.; Weiss, J.; Villeneuve, P.; Giraldo, L.J.L.; Lecomte, J.; Figueroa-Espinoza, M.C.; Decker, E.A. Relationship between the physical properties of chlorogenic acid esters and their ability to inhibit lipid oxidation in oil-in-water emulsions. Food Chem., 2010, 118(3), 830-835.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.070]
[62]
Goldstein, J.L.; Ho, Y.K.; Basu, S.K.; Brown, M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA, 1979, 76(1), 333-337.
[http://dx.doi.org/10.1073/pnas.76.1.333] [PMID: 218198]
[63]
Yukawa, G.S.; Mune, M.; Otani, H.; Tone, Y.; Liang, X.M.; Iwahashi, H.; Sakamoto, W. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. Biochemistry (Mosc.), 2004, 69(1), 70-74.
[http://dx.doi.org/10.1023/B:BIRY.0000016354.05438.0f] [PMID: 14972021]
[64]
Laranjinha, J.A.N.; Almeida, L.M.; Madeira, V.M.C. Reactivity of dietary phenolic acids with peroxyl radicals: antioxidant activity upon low density lipoprotein peroxidation. Biochem. Pharmacol., 1994, 48(3), 487-494.
[http://dx.doi.org/10.1016/0006-2952(94)90278-X] [PMID: 8068036]
[65]
Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr. Neuropharmacol., 2017, 15(4), 471-479.
[http://dx.doi.org/10.2174/1570159X14666160325120625] [PMID: 27012954]
[66]
Shimoda, H.; Seki, E.; Aitani, M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement. Altern. Med., 2006, 6, 9.
[http://dx.doi.org/10.1186/1472-6882-6-9] [PMID: 16545124]
[67]
Habtemariam, S. Protective Effects of Caffeic Acid and the Alzheimer’s Brain: An Update. Mini Rev. Med. Chem., 2017, 17(8), 667-674.
[http://dx.doi.org/10.2174/1389557516666161130100947] [PMID: 27903226]
[68]
Bailly, F.; Cotelle, P. Anti-HIV activities of natural antioxidant caffeic acid derivatives: toward an antiviral supplementation diet. Curr. Med. Chem., 2005, 12(15), 1811-1818.
[http://dx.doi.org/10.2174/0929867054367239] [PMID: 16029149]
[69]
Wan, C.W.; Wong, C.N.Y.; Pin, W.K.; Wong, M.H.Y.; Kwok, C.Y.; Chan, R.Y.K.; Yu, P.H.F.; Chan, S.W. Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother. Res., 2013, 27(4), 545-551.
[http://dx.doi.org/10.1002/ptr.4751] [PMID: 22674675]
[70]
Li, W.N.; Han, Y.D.; Liu, Y.H. Effects of Chlorogenic acid extract fromleaves of Eucommia ulmoides on key enzyme activities in lipid metabolism. Zhongyao Xinyao Yu Linchuang Yaoli, 2012, 23(1), 30-33.
[71]
Wang, J.H.; Liu, Y.L.; Li, C.L. Effect of chlorogenic acid extracted from Eucommia Ulmoides Oliv on hyperlipemia of mice induced by high fat diet. Science and Technology of Food Industry, 2012, 15, 360-362.
[72]
Ong, K.W.; Hsu, A.; Tan, B.K. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol., 2013, 85(9), 1341-1351.
[http://dx.doi.org/10.1016/j.bcp.2013.02.008] [PMID: 23416115]
[73]
Hamden, K.; Allouche, N.; Damak, M.; Elfeki, A. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact., 2009, 180(3), 421-432.
[http://dx.doi.org/10.1016/j.cbi.2009.04.002] [PMID: 19393637]
[74]
Kahn, B.B.; Alquier, T.; Carling, D.; Hardie, D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab., 2005, 1(1), 15-25.
[http://dx.doi.org/10.1016/j.cmet.2004.12.003] [PMID: 16054041]
[75]
Prabhakar, P.K.; Doble, M. Effect of Natural Products on Commercial Oral Antidiabetic Drugs in Enhancing 2-Deoxyglucose Uptake by 3T3-L1 Adipocytes. Ther. Adv. Endocrinol. Metab., 2011, 2(3), 103-114.
[http://dx.doi.org/10.1177/2042018811411356] [PMID: 23148176]
[76]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D. FangFang, X.; Modarresi-Ghazani, F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[77]
Gebhardt, R. Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J. Pharmacol. Exp. Ther., 1998, 286(3), 1122-1128.
[PMID: 9732368]
[78]
Falé, P.L.; Ferreira, C.; Maruzzella, F.; Helena Florêncio, M.; Frazão, F.N.; Serralheiro, M.L.M. Evaluation of cholesterol absorption and biosynthesis by decoctions of Annona cherimola leaves. J. Ethnopharmacol., 2013, 150(2), 718-723.
[http://dx.doi.org/10.1016/j.jep.2013.09.029] [PMID: 24095697]
[79]
Iqbal, D.; Khan, M.S.; Khan, M.S.; Ahmad, S.; Srivastava, A.K. An in vitro and molecular informatics study to evaluate the antioxidative and β-hydroxy-β-methylglutaryl-CoA reductase inhibitory property of Ficus virens Ait. Phytother. Res., 2014, 28(6), 899-908.
[http://dx.doi.org/10.1002/ptr.5077] [PMID: 24151056]
[80]
Navarro-González, I.; Pérez-Sánchez, H.; Martín-Pozuelo, G.; García-Alonso, J.; Periago, M.J. The inhibitory effects of bioactive compounds of tomato juice binding to hepatic HMGCR: in vivo study and molecular modelling. PLoS One, 2014, 9(1)e83968
[http://dx.doi.org/10.1371/journal.pone.0083968] [PMID: 24392102]
[81]
Bieber, L.L. Carnitine. Annu. Rev. Biochem., 1988, 57, 261-283.
[http://dx.doi.org/10.1146/annurev.bi.57.070188.001401] [PMID: 3052273]
[82]
Kerner, J.; Hoppel, C. Fatty acid import into mitochondria. Biochim. Biophys. Acta, 2000, 1486(1), 1-17.
[http://dx.doi.org/10.1016/S1388-1981(00)00044-5] [PMID: 10856709]
[83]
Ramsay, R.R.; Gandour, R.D.; van der Leij, F.R. Molecular enzymology of carnitine transfer and transport. Biochim. Biophys. Acta, 2001, 1546(1), 21-43.
[http://dx.doi.org/10.1016/S0167-4838(01)00147-9] [PMID: 11257506]
[84]
Seiler, S.E.; Martin, O.J.; Noland, R.C.; Slentz, D.H.; DeBalsi, K.L.; Ilkayeva, O.R.; An, J.; Newgard, C.B.; Koves, T.R.; Muoio, D.M. Obesity and lipid stress inhibit carnitine acetyltransferase activity. J. Lipid Res., 2014, 55(4), 635-644.
[http://dx.doi.org/10.1194/jlr.M043448] [PMID: 24395925]
[85]
Frank, J.; Kamal-Eldin, A.; Razdan, A.; Lundh, T.; Vessby, B. The dietary hydroxycinnamate caffeic acid and its conjugate chlorogenic acid increase vitamin e and cholesterol concentrations in Sprague-Dawley rats. J. Agric. Food Chem., 2003, 51(9), 2526-2531.
[http://dx.doi.org/10.1021/jf026127k] [PMID: 12696931]
[86]
Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis., 2016, 7(5)e2226
[http://dx.doi.org/10.1038/cddis.2016.132] [PMID: 27195673]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy