Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

PET Imaging of Adenosine Receptors in Diseases

Author(s): Jindian Li, Xingfang Hong, Guoquan Li, Peter S. Conti, Xianzhong Zhang* and Kai Chen*

Volume 19, Issue 16, 2019

Page: [1445 - 1463] Pages: 19

DOI: 10.2174/1568026619666190708163407

Price: $65

Abstract

Adenosine receptors (ARs) are a class of purinergic G-protein-coupled receptors (GPCRs). Extracellular adenosine is a pivotal regulation molecule that adjusts physiological function through the interaction with four ARs: A1R, A2AR, A2BR, and A3R. Alterations of ARs function and expression have been studied in neurological diseases (epilepsy, Alzheimer’s disease, and Parkinson’s disease), cardiovascular diseases, cancer, and inflammation and autoimmune diseases. A series of Positron Emission Tomography (PET) probes for imaging ARs have been developed. The PET imaging probes have provided valuable information for diagnosis and therapy of diseases related to alterations of ARs expression. This review presents a concise overview of various ARs-targeted radioligands for PET imaging in diseases. The most recent advances in PET imaging studies by using ARs-targeted probes are briefly summarized.

Keywords: Positron emission tomography (PET), Molecular imaging probe, G-protein-coupled receptors (GPCRs), Adenosine receptors (ARs), Diseases, ATP.

Graphical Abstract
[1]
Jameson, J.L.; Longo, D.L. Precision medicine-personalized, problematic, and promising. N. Engl. J. Med., 2015, 372(23), 2229-2234.
[http://dx.doi.org/10.1056/NEJMsb1503104] [PMID: 26014593]
[2]
Weissleder, R.; Mahmood, U. Molecular imaging. Radiology, 2001, 219(2), 316-333.
[http://dx.doi.org/10.1148/radiology.219.2.r01ma19316] [PMID: 11323453]
[3]
Elmenhorst, D.; Bier, D.; Holschbach, M.; Bauer, A. Imaging of adenosine receptors. PET and SPECT of Neurobiological Systems; Dierckx, R.A.J.O.; Otte, A.; de Vries, E.F.J.; van Waarde, A; Luiten, P.G.M., Ed.; Springer, 2014, pp. 181-198.
[http://dx.doi.org/10.1007/978-3-642-42014-6_7]
[4]
Haskó, G.; Linden, J.; Cronstein, B.; Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov., 2008, 7(9), 759-770.
[http://dx.doi.org/10.1038/nrd2638] [PMID: 18758473]
[5]
Jacobson, K.A.; Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov., 2006, 5(3), 247-264.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[6]
Linden, J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 775-787.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.775] [PMID: 11264476]
[7]
Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Klotz, K.N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev., 2001, 53(4), 527-552.
[PMID: 11734617]
[8]
van Waarde, A.; Dierckx, R.A.J.O.; Zhou, X.; Khanapur, S.; Tsukada, H.; Ishiwata, K.; Luurtsema, G.; de Vries, E.F.J.; Elsinga, P.H. Potential therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med. Res. Rev., 2018, 38(1), 5-56.
[http://dx.doi.org/10.1002/med.21432] [PMID: 28128443]
[9]
Collis, M.G.; Hourani, S.M. Adenosine receptor subtypes. Trends Pharmacol. Sci., 1993, 14(10), 360-366.
[http://dx.doi.org/10.1016/0165-6147(93)90094-Z] [PMID: 8296392]
[10]
Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol. Rev., 2011, 63(1), 1-34.
[http://dx.doi.org/10.1124/pr.110.003285] [PMID: 21303899]
[11]
Biber, K.; Klotz, K.N.; Berger, M.; Gebicke-Härter, P.J.; van Calker, D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J. Neurosci., 1997, 17(13), 4956-4964.
[http://dx.doi.org/10.1523/JNEUROSCI.17-13-04956.1997] [PMID: 9185533]
[12]
Ballesteros-Yáñez, I.; Castillo, C.A.; Merighi, S.; Gessi, S. The role of adenosine receptors in psychostimulant addiction. Front. Pharmacol., 2018, 8, 985.
[http://dx.doi.org/10.3389/fphar.2017.00985] [PMID: 29375384]
[13]
Varani, K.; Vincenzi, F.; Merighi, S.; Gessi, S.; Borea, P.A. Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy. Adv. Exp. Med. Biol., 2017, 1051, 193-232.
[http://dx.doi.org/10.1007/5584_2017_61] [PMID: 28676923]
[14]
Headrick, J.P.; Ashton, K.J.; Rose’meyer, R.B.; Peart, J.N. Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol. Ther., 2013, 140(1), 92-111.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.002] [PMID: 23764371]
[15]
Sun, C.X.; Young, H.W.; Molina, J.G.; Volmer, J.B.; Schnermann, J.; Blackburn, M.R. A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J. Clin. Invest., 2005, 115(1), 35-43.
[http://dx.doi.org/10.1172/JCI22656] [PMID: 15630442]
[16]
Soni, H.; Peixoto-Neves, D.; Buddington, R.K.; Adebiyi, A. Adenosine A1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am. J. Physiol. Renal Physiol., 2017, 313(6), F1216-F1222.
[http://dx.doi.org/10.1152/ajprenal.00335.2017] [PMID: 28855189]
[17]
Boros, D.; Thompson, J.; Larson, D.F. Adenosine regulation of the immune response initiated by ischemia reperfusion injury. Perfusion, 2016, 31(2), 103-110.
[http://dx.doi.org/10.1177/0267659115586579] [PMID: 25987550]
[18]
Preti, D.; Baraldi, P.G.; Moorman, A.R.; Borea, P.A.; Varani, K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med. Res. Rev., 2015, 35(4), 790-848.
[http://dx.doi.org/10.1002/med.21344] [PMID: 25821194]
[19]
Chen, J.F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets--what are the challenges? Nat. Rev. Drug Discov., 2013, 12(4), 265-286.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[20]
Giambelluca, M.S.; Pouliot, M. Early tyrosine phosphorylation events following adenosine A2A receptor in human neutrophils: identification of regulated pathways. J. Leukoc. Biol., 2017, 102(3), 829-836.
[http://dx.doi.org/10.1189/jlb.2VMA1216-517R] [PMID: 28179537]
[21]
Ferré, S.; Fredholm, B.B.; Morelli, M.; Popoli, P.; Fuxe, K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci., 1997, 20(10), 482-487.
[http://dx.doi.org/10.1016/S0166-2236(97)01096-5] [PMID: 9347617]
[22]
Vuorimaa, A.; Rissanen, E.; Airas, L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease. Contrast Media Mol. Imaging, 2017, 2017(4)6975841
[http://dx.doi.org/10.1155/2017/6975841] [PMID: 29348737]
[23]
Rissanen, E.; Virta, J.R.; Paavilainen, T.; Tuisku, J.; Helin, S.; Luoto, P.; Parkkola, R.; Rinne, J.O.; Airas, L. Adenosine A2A receptors in secondary progressive multiple sclerosis: a [(11)C]TMSX brain PET study. J. Cereb. Blood Flow Metab., 2013, 33(9), 1394-1401.
[http://dx.doi.org/10.1038/jcbfm.2013.85] [PMID: 23695433]
[24]
Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pathological overproduction: the bad side of adenosine. Br. J. Pharmacol., 2017, 174(13), 1945-1960.
[http://dx.doi.org/10.1111/bph.13763] [PMID: 28252203]
[25]
Gessi, S.; Varani, K.; Merighi, S.; Ongini, E.; Borea, P.A.A. (2A) adenosine receptors in human peripheral blood cells. Br. J. Pharmacol., 2000, 129(1), 2-11.
[http://dx.doi.org/10.1038/sj.bjp.0703045] [PMID: 10694196]
[26]
Peakman, M.C.; Hill, S.J. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br. J. Pharmacol., 1994, 111(1), 191-198.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14043.x] [PMID: 8012696]
[27]
Daly, J.W.; Butts-Lamb, P.; Padgett, W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell. Mol. Neurobiol., 1983, 3(1), 69-80.
[http://dx.doi.org/10.1007/BF00734999] [PMID: 6309393]
[28]
Gao, Z.; Chen, T.; Weber, M.J.; Linden, J. A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. cross-talk between cyclic AMP and protein kinase c pathways. J. Biol. Chem., 1999, 274(9), 5972-5980.
[http://dx.doi.org/10.1074/jbc.274.9.5972] [PMID: 10026223]
[29]
Rosenberger, P.; Schwab, J.M.; Mirakaj, V.; Masekowsky, E.; Mager, A.; Morote-Garcia, J.C.; Unertl, K.; Eltzschig, H.K. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat. Immunol., 2009, 10(2), 195-202.
[http://dx.doi.org/10.1038/ni.1683] [PMID: 19122655]
[30]
Merighi, S.; Borea, P.A.; Stefanelli, A.; Bencivenni, S.; Castillo, C.A.; Varani, K.; Gessi, S. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells. Glia, 2015, 63(11), 1933-1952.
[http://dx.doi.org/10.1002/glia.22861] [PMID: 25980546]
[31]
Stein, E.; Zou, Y.; Poo, M.; Tessier-Lavigne, M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science, 2001, 291(5510), 1976-1982.
[http://dx.doi.org/10.1126/science.1059391] [PMID: 11239160]
[32]
Wei, C.J.; Li, W.; Chen, J.F. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim. Biophys. Acta, 2011, 1808(5), 1358-1379.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.018] [PMID: 21185258]
[33]
Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 362(4-5), 364-374.
[http://dx.doi.org/10.1007/s002100000313] [PMID: 11111830]
[34]
Dixon, A.K.; Gubitz, A.K.; Sirinathsinghji, D.J.; Richardson, P.J.; Freeman, T.C. Tissue distribution of adenosine receptor mRNAs in the rat. Br. J. Pharmacol., 1996, 118(6), 1461-1468.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15561.x] [PMID: 8832073]
[35]
Puffinbarger, N.K.; Hansen, K.R.; Resta, R.; Laurent, A.B.; Knudsen, T.B.; Madara, J.L.; Thompson, L.F. Production and characterization of multiple antigenic peptide antibodies to the adenosine A2b receptor. Mol. Pharmacol., 1995, 47(6), 1126-1132.
[PMID: 7603451]
[36]
Gessi, S.; Merighi, S.; Varani, K.; Leung, E.; Mac Lennan, S.; Borea, P.A. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol. Ther., 2008, 117(1), 123-140.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.002] [PMID: 18029023]
[37]
Borea, P.A.; Varani, K.; Vincenzi, F.; Baraldi, P.G.; Tabrizi, M.A.; Merighi, S.; Gessi, S. The A3 adenosine receptor: history and perspectives. Pharmacol. Rev., 2015, 67(1), 74-102.
[http://dx.doi.org/10.1124/pr.113.008540] [PMID: 25387804]
[38]
Boison, D. Regulation of Extracellular Adenosine.The Adenosine Receptors; Borea, P.A.; Varani, K.; Gessi, S.; Merighi, S; Vincenzi, F., Ed.; Humana Press, 2018, pp. 13-32.
[http://dx.doi.org/10.1007/978-3-319-90808-3_2]
[39]
Merighi, S.; Simioni, C.; Lane, R.; Ijzerman, A.P. Regulation of second messenger systems and intracellular pathways. In: A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics; Borea, P.A., Ed.; Springer, 2010, pp. 61-73.
[http://dx.doi.org/10.1007/978-90-481-3144-0_4]
[40]
Jacobson, K.A.; Merighi, S.; Varani, K.; Borea, P.A.; Baraldi, S.; Aghazadeh Tabrizi, M.; Romagnoli, R.; Baraldi, P.G.; Ciancetta, A.; Tosh, D.K.; Gao, Z.G.; Gessi, S. A3 adenosine receptors as modulators of inflammation: From medicinal chemistry to therapy. Med. Res. Rev., 2018, 38(4), 1031-1072.
[http://dx.doi.org/10.1002/med.21456] [PMID: 28682469]
[41]
Uribe, D.; Torres, Á.; Rocha, J.D.; Niechi, I.; Oyarzún, C.; Sobrevia, L.; San Martín, R.; Quezada, C. Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol. Aspects Med., 2017, 55, 140-151.
[http://dx.doi.org/10.1016/j.mam.2017.01.009] [PMID: 28223127]
[42]
Lopes, L.V.; Rebola, N.; Pinheiro, P.C.; Richardson, P.J.; Oliveira, C.R.; Cunha, R.A. Adenosine A3 receptors are located in neurons of the rat hippocampus. Neuroreport, 2003, 14(12), 1645-1648.
[http://dx.doi.org/10.1097/00001756-200308260-00021] [PMID: 14502093]
[43]
Di Tullio, M.A.; Tayebati, S.K.; Amenta, F. Identification of adenosine A1 and A3 receptor subtypes in rat pial and intracerebral arteries. Neurosci. Lett., 2004, 366(1), 48-52.
[http://dx.doi.org/10.1016/j.neulet.2004.05.007] [PMID: 15265588]
[44]
Zhou, Q.Y.; Li, C.; Olah, M.E.; Johnson, R.A.; Stiles, G.L.; Civelli, O. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc. Natl. Acad. Sci. USA, 1992, 89(16), 7432-7436.
[http://dx.doi.org/10.1073/pnas.89.16.7432] [PMID: 1323836]
[45]
Salvatore, C.A.; Tilley, S.L.; Latour, A.M.; Fletcher, D.S.; Koller, B.H.; Jacobson, M.A. Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J. Biol. Chem., 2000, 275(6), 4429-4434.
[http://dx.doi.org/10.1074/jbc.275.6.4429] [PMID: 10660615]
[46]
Cunha, R.A. How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem., 2016, 139(6), 1019-1055.
[http://dx.doi.org/10.1111/jnc.13724] [PMID: 27365148]
[47]
Reppert, S.M.; Weaver, D.R.; Stehle, J.H.; Rivkees, S.A. Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol. Endocrinol., 1991, 5(8), 1037-1048.
[http://dx.doi.org/10.1210/mend-5-8-1037] [PMID: 1658635]
[48]
Dixon, A.K.; Gubitz, A.K.; Sirinathsinghji, D.J.; Richardson, P.J.; Freeman, T.C. Tissue distribution of adenosine receptor mRNAs in the rat. Br. J. Pharmacol., 1996, 118(6), 1461-1468.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15561.x] [PMID: 8832073]
[49]
Gomes, C.V.; Kaster, M.P.; Tomé, A.R.; Agostinho, P.M.; Cunha, R.A. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim. Biophys. Acta, 2011, 1808(5), 1380-1399.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.001] [PMID: 21145878]
[50]
Dunwiddie, T.V.; Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci., 2001, 24, 31-55.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.31] [PMID: 11283304]
[51]
Kim, C.S.; Johnston, D. A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus. J. Neurophysiol., 2015, 113(7), 2511-2523.
[http://dx.doi.org/10.1152/jn.00951.2014] [PMID: 25652929]
[52]
Pagonopoulou, O.; Angelatou, F. Reduction of A1 adenosine receptors in cortex, hippocampus and cerebellum in ageing mouse brain. Neuroreport, 1992, 3(9), 735-737.
[http://dx.doi.org/10.1097/00001756-199209000-00003] [PMID: 1421127]
[53]
Cheng, J.T.; Liu, I.M.; Juang, S.W.; Jou, S.B. Decrease of adenosine A-1 receptor gene expression in cerebral cortex of aged rats. Neurosci. Lett., 2000, 283(3), 227-229.
[http://dx.doi.org/10.1016/S0304-3940(00)00961-7] [PMID: 10754229]
[54]
Meerlo, P.; Roman, V.; Farkas, E.; Keijser, J.N.; Nyakas, C.; Luiten, P.G. Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J. Neurosci. Res., 2004, 78(5), 742-748.
[http://dx.doi.org/10.1002/jnr.20314] [PMID: 15470722]
[55]
Angulo, E.; Casadó, V.; Mallol, J.; Canela, E.I.; Viñals, F.; Ferrer, I.; Lluis, C.; Franco, R. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol., 2003, 13(4), 440-451.
[http://dx.doi.org/10.1111/j.1750-3639.2003.tb00475.x] [PMID: 14655750]
[56]
Fredholm, B.B.; Chen, J.F.; Cunha, R.A.; Svenningsson, P.; Vaugeois, J.M. Adenosine and brain function. Int. Rev. Neurobiol., 2005, 63, 191-270.
[http://dx.doi.org/10.1016/S0074-7742(05)63007-3] [PMID: 15797469]
[57]
Orr, A.G.; Hsiao, E.C.; Wang, M.M.; Ho, K.; Kim, D.H.; Wang, X.; Guo, W.; Kang, J.; Yu, G.Q.; Adame, A.; Devidze, N.; Dubal, D.B.; Masliah, E.; Conklin, B.R.; Mucke, L. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat. Neurosci., 2015, 18(3), 423-434.
[http://dx.doi.org/10.1038/nn.3930] [PMID: 25622143]
[58]
Albasanz, J.L.; Perez, S.; Barrachina, M.; Ferrer, I.; Martín, M. Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol., 2008, 18(2), 211-219.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00112.x] [PMID: 18241242]
[59]
Li, P.; Rial, D.; Canas, P.M.; Yoo, J.H.; Li, W.; Zhou, X.; Wang, Y.; van Westen, G.J.; Payen, M.P.; Augusto, E.; Gonçalves, N.; Tomé, A.R.; Li, Z.; Wu, Z.; Hou, X.; Zhou, Y.; IJzerman, A.P.; Boyden, E.S.; Cunha, R.A.; Qu, J.; Chen, J.F. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol. Psychiatry, 2015, 20(11), 1339-1349.
[http://dx.doi.org/10.1038/mp.2014.182] [PMID: 25687775]
[60]
Viana da Silva, S.; Haberl, M.G.; Zhang, P.; Bethge, P.; Lemos, C.; Gonçalves, N.; Gorlewicz, A.; Malezieux, M.; Gonçalves, F.Q.; Grosjean, N.; Blanchet, C.; Frick, A.; Nägerl, U.V.; Cunha, R.A.; Mulle, C. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nat. Commun., 2016, 7, 11915.
[http://dx.doi.org/10.1038/ncomms11915] [PMID: 27312972]
[61]
Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol., 2007, 203(1), 241-245.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.008] [PMID: 17007839]
[62]
Cunha, G.M.; Canas, P.M.; Melo, C.S.; Hockemeyer, J.; Müller, C.E.; Oliveira, C.R.; Cunha, R.A. Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801. Exp. Neurol., 2008, 210(2), 776-781.
[http://dx.doi.org/10.1016/j.expneurol.2007.11.013] [PMID: 18191838]
[63]
Laurent, C.; Burnouf, S.; Ferry, B.; Batalha, V.L.; Coelho, J.E.; Baqi, Y.; Malik, E.; Mariciniak, E.; Parrot, S.; Van der Jeugd, A.; Faivre, E.; Flaten, V.; Ledent, C.; D’Hooge, R.; Sergeant, N.; Hamdane, M.; Humez, S.; Müller, C.E.; Lopes, L.V.; Buée, L.; Blum, D. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol. Psychiatry, 2016, 21(1), 97-107.
[http://dx.doi.org/10.1038/mp.2014.151] [PMID: 25450226]
[64]
Lu, J.; Cui, J.; Li, X.; Wang, X.; Zhou, Y.; Yang, W.; Chen, M.; Zhao, J.; Pei, G. An anti-parkinson’s disease drug via targeting adenosine A2A receptor enhances amyloid-beta generation and gamma-secretase activity. PLoS One, 2016, 11(11)e0166415
[http://dx.doi.org/10.1371/journal.pone.0166415] [PMID: 27835671]
[65]
Boison, D. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol. Sci., 2006, 27(12), 652-658.
[http://dx.doi.org/10.1016/j.tips.2006.10.008] [PMID: 17056128]
[66]
de Mendonça, A.; Sebastião, A.M.; Ribeiro, J.A. Adenosine: does it have a neuroprotective role after all? Brain Res. Brain Res. Rev., 2000, 33(2-3), 258-274.
[http://dx.doi.org/10.1016/S0165-0173(00)00033-3] [PMID: 11011069]
[67]
Glass, M.; Faull, R.L.; Bullock, J.Y.; Jansen, K.; Mee, E.W.; Walker, E.B.; Synek, B.J.; Dragunow, M. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res., 1996, 710(1-2), 56-68.
[http://dx.doi.org/10.1016/0006-8993(95)01313-X] [PMID: 8963679]
[68]
Boison, D. Adenosinergic signaling in epilepsy. Neuropharmacology, 2016, 104, 131-139.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.046] [PMID: 26341819]
[69]
Hargus, N.J.; Jennings, C.; Perez-Reyes, E.; Bertram, E.H.; Patel, M.K. Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. Epilepsia, 2012, 53(1), 168-176.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03337.x] [PMID: 22126400]
[70]
Wagner, A.K.; Miller, M.A.; Scanlon, J.; Ren, D.; Kochanek, P.M.; Conley, Y.P. Adenosine A1 receptor gene variants associated with post-traumatic seizures after severe TBI. Epilepsy Res., 2010, 90(3), 259-272.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.06.001] [PMID: 20609566]
[71]
Silva, C.G.; Porciúncula, L.O.; Canas, P.M.; Oliveira, C.R.; Cunha, R.A. Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol. Dis., 2007, 27(2), 182-189.
[http://dx.doi.org/10.1016/j.nbd.2007.04.018] [PMID: 17596953]
[72]
Shinohara, M.; Saitoh, M.; Nishizawa, D.; Ikeda, K.; Hirose, S.; Takanashi, J.; Takita, J.; Kikuchi, K.; Kubota, M.; Yamanaka, G.; Shiihara, T.; Kumakura, A.; Kikuchi, M.; Toyoshima, M.; Goto, T.; Yamanouchi, H.; Mizuguchi, M. ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus. Neurology, 2013, 80(17), 1571-1576.
[http://dx.doi.org/10.1212/WNL.0b013e31828f18d8] [PMID: 23535492]
[73]
Roseti, C.; Martinello, K.; Fucile, S.; Piccari, V.; Mascia, A.; Di Gennaro, G.; Quarato, P.P.; Manfredi, M.; Esposito, V.; Cantore, G.; Arcella, A.; Simonato, M.; Fredholm, B.B.; Limatola, C.; Miledi, R.; Eusebi, F. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(39), 15118-15123.
[http://dx.doi.org/10.1073/pnas.0807277105] [PMID: 18809912]
[74]
Svenningsson, P.; Hall, H.; Sedvall, G.; Fredholm, B.B. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse, 1997, 27(4), 322-335.
[http://dx.doi.org/10.1002/(SICI)1098-2396(199712)27:4<322:AID-SYN6>3.0.CO;2-E] [PMID: 9372555]
[75]
Mishina, M.; Ishiwata, K.; Kimura, Y.; Naganawa, M.; Oda, K.; Kobayashi, S.; Katayama, Y.; Ishii, K. Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse, 2007, 61(9), 778-784.
[http://dx.doi.org/10.1002/syn.20423] [PMID: 17568431]
[76]
Schiffmann, S.N.; Jacobs, O.; Vanderhaeghen, J.J. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J. Neurochem., 1991, 57(3), 1062-1067.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb08257.x] [PMID: 1713612]
[77]
Fink, J.S.; Weaver, D.R.; Rivkees, S.A.; Peterfreund, R.A.; Pollack, A.E.; Adler, E.M.; Reppert, S.M. Molecular cloning of the rat A2 adenosine receptor: Selective co-expression with D2 dopamine receptors in rat striatum. Brain Res. Mol. Brain Res., 1992, 14(3), 186-195.
[http://dx.doi.org/10.1016/0169-328X(92)90173-9] [PMID: 1279342]
[78]
Fredholm, B.B.; Svenningsson, P. Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology, 2003, 61(11)(Suppl. 6), S5-S9.
[http://dx.doi.org/10.1212/01.WNL.0000095204.89871.FF] [PMID: 14663001]
[79]
Schwarzschild, M.A.; Agnati, L.; Fuxe, K.; Chen, J.F.; Morelli, M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci., 2006, 29(11), 647-654.
[http://dx.doi.org/10.1016/j.tins.2006.09.004] [PMID: 17030429]
[80]
Richardson, P.J.; Kase, H.; Jenner, P.G. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol. Sci., 1997, 18(9), 338-344.
[http://dx.doi.org/10.1016/S0165-6147(97)01096-1] [PMID: 9345853]
[81]
Ciruela, F.; Casadó, V.; Rodrigues, R.J.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.R.; Mallol, J.; Cortés, A.; Canela, E.I.; López-Giménez, J.F.; Milligan, G.; Lluis, C.; Cunha, R.A.; Ferré, S.; Franco, R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci., 2006, 26(7), 2080-2087.
[http://dx.doi.org/10.1523/JNEUROSCI.3574-05.2006] [PMID: 16481441]
[82]
Ciruela, F.; Ferré, S.; Casadó, V.; Cortés, A.; Cunha, R.A.; Lluis, C.; Franco, R. Heterodimeric adenosine receptors: A device to regulate neurotransmitter release. Cell. Mol. Life Sci., 2006, 63(21), 2427-2431.
[http://dx.doi.org/10.1007/s00018-006-6216-2] [PMID: 17058035]
[83]
Fernández-Dueñas, V.; Pérez-Arévalo, A.; Altafaj, X.; Ferré, S.; Ciruela, F. Adenosine A1-A2A receptor heteromer as a possible target for early-onset Parkinson’s disease. Front. Neurosci., 2017, 11, 652.
[http://dx.doi.org/10.3389/fnins.2017.00652] [PMID: 29213228]
[84]
Hesse, J.; Alter, C.; Schrader, J. Adenosine Signalling in the Injured Heart.The Adenosine Receptors; Borea, P.A.; Varani, K.; Gessi, S.; Merighi, S; Vincenzi, F., Ed.; Humana Press, 2018, pp. 439-460.
[http://dx.doi.org/10.1007/978-3-319-90808-3_17]
[85]
Bowser, J.L.; Lee, J.W.; Yuan, X.; Eltzschig, H.K. The hypoxia-adenosine link during inflammation. J. Appl. Physiol., 2017, 123(5), 1303-1320.
[http://dx.doi.org/10.1152/japplphysiol.00101.2017] [PMID: 28798196]
[86]
Synnestvedt, K.; Furuta, G.T.; Comerford, K.M.; Louis, N.; Karhausen, J.; Eltzschig, H.K.; Hansen, K.R.; Thompson, L.F.; Colgan, S.P. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest., 2002, 110(7), 993-1002.
[http://dx.doi.org/10.1172/JCI0215337] [PMID: 12370277]
[87]
Eltzschig, H.K.; Köhler, D.; Eckle, T.; Kong, T.; Robson, S.C.; Colgan, S.P. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood, 2009, 113(1), 224-232.
[http://dx.doi.org/10.1182/blood-2008-06-165746] [PMID: 18812468]
[88]
Bertolet, B.D.; Hill, J.A.; Kerensky, R.A.; Belardinelli, L. Myocardial infarction related atrial fibrillation: role of endogenous adenosine. Heart, 1997, 78(1), 88-90.
[http://dx.doi.org/10.1136/hrt.78.1.88] [PMID: 9290409]
[89]
Wesley, R.C., Jr; Lerman, B.B.; DiMarco, J.P.; Berne, R.M.; Belardinelli, L. Mechanism of atropine-resistant atrioventricular block during inferior myocardial infarction: possible role of adenosine. J. Am. Coll. Cardiol., 1986, 8(5), 1232-1234.
[http://dx.doi.org/10.1016/S0735-1097(86)80406-5] [PMID: 3760393]
[90]
Yavuz, T.; Bertolet, B.; Bebooul, Y.; Tunerir, B.; Aslan, R.; Ocal, A.; Ybribim, E.; Kutsal, A. Role of endogenous adenosine in atrial fibrillation after coronary artery bypass graft. Clin. Cardiol., 2004, 27(6), 343-346.
[http://dx.doi.org/10.1002/clc.4960270609] [PMID: 15237694]
[91]
Kong, T.; Westerman, K.A.; Faigle, M.; Eltzschig, H.K.; Colgan, S.P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J., 2006, 20(13), 2242-2250.
[http://dx.doi.org/10.1096/fj.06-6419com] [PMID: 17077301]
[92]
Ahmad, A.; Ahmad, S.; Glover, L.; Miller, S.M.; Shannon, J.M.; Guo, X.; Franklin, W.A.; Bridges, J.P.; Schaack, J.B.; Colgan, S.P.; White, C.W. Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc. Natl. Acad. Sci. USA, 2009, 106(26), 10684-10689.
[http://dx.doi.org/10.1073/pnas.0901326106] [PMID: 19541651]
[93]
Kuno, A.; Critz, S.D.; Cui, L.; Solodushko, V.; Yang, X.M.; Krahn, T.; Albrecht, B.; Philipp, S.; Cohen, M.V.; Downey, J.M. Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J. Mol. Cell. Cardiol., 2007, 43(3), 262-271.
[http://dx.doi.org/10.1016/j.yjmcc.2007.05.016] [PMID: 17632123]
[94]
Reiss, A.B.; Rahman, M.M.; Chan, E.S.; Montesinos, M.C.; Awadallah, N.W.; Cronstein, B.N. Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. J. Leukoc. Biol., 2004, 76(3), 727-734.
[http://dx.doi.org/10.1189/jlb.0204107] [PMID: 15197231]
[95]
Gessi, S.; Fogli, E.; Sacchetto, V.; Merighi, S.; Varani, K.; Preti, D.; Leung, E.; Maclennan, S.; Borea, P.A. Adenosine modulates HIF-1alpha, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler. Thromb. Vasc. Biol., 2010, 30(1), 90-97.
[http://dx.doi.org/10.1161/ATVBAHA.109.194902] [PMID: 19834107]
[96]
Edwards, J.M.; Alloosh, M.A.; Long, X.L.; Dick, G.M.; Lloyd, P.G.; Mokelke, E.A.; Sturek, M. Adenosine A1 receptors in neointimal hyperplasia and in-stent stenosis in Ossabaw miniature swine. Coron. Artery Dis., 2008, 19(1), 27-31.
[http://dx.doi.org/10.1097/MCA.0b013e3282f262b4] [PMID: 18281812]
[97]
Xaus, J.; Mirabet, M.; Lloberas, J.; Soler, C.; Lluis, C.; Franco, R.; Celada, A. IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J. Immunol., 1999, 162(6), 3607-3614.
[PMID: 10092821]
[98]
Jones, M.R.; Zhao, Z.; Sullivan, C.P.; Schreiber, B.M.; Stone, P.J.; Toselli, P.A.; Kagan, H.M.; Cohen, R.A.; Ravid, K.A. (3) adenosine receptor deficiency does not influence atherogenesis. J. Cell. Biochem., 2004, 92(5), 1034-1043.
[http://dx.doi.org/10.1002/jcb.20122] [PMID: 15258925]
[99]
Epperson, S.A.; Brunton, L.L.; Ramirez-Sanchez, I.; Villarreal, F. Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am. J. Physiol. Cell Physiol., 2009, 296(5), C1171-C1177.
[http://dx.doi.org/10.1152/ajpcell.00290.2008] [PMID: 19244482]
[100]
Dubey, R.K.; Gillespie, D.G.; Jackson, E.K. Adenosine inhibits collagen and protein synthesis in cardiac fibroblasts: role of A2B receptors. Hypertension, 1998, 31(4), 943-948.
[http://dx.doi.org/10.1161/01.HYP.31.4.943] [PMID: 9535419]
[101]
Chen, Y.; Epperson, S.; Makhsudova, L.; Ito, B.; Suarez, J.; Dillmann, W.; Villarreal, F. Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(6), H2478-H2486.
[http://dx.doi.org/10.1152/ajpheart.00217.2004] [PMID: 15284071]
[102]
Dubey, R.K.; Gillespie, D.G.; Mi, Z.; Jackson, E.K. Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation, 1997, 96(8), 2656-2666.
[http://dx.doi.org/10.1161/01.CIR.96.8.2656] [PMID: 9355907]
[103]
Dubey, R.K.; Gillespie, D.G.; Zacharia, L.C.; Mi, Z.; Jackson, E.K.A. (2b) receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension, 2001, 37(2 Pt 2), 716-721.
[http://dx.doi.org/10.1161/01.HYP.37.2.716] [PMID: 11230362]
[104]
Phosri, S.; Arieyawong, A.; Bunrukchai, K.; Parichatikanond, W.; Nishimura, A.; Nishida, M.; Mangmool, S. Stimulation of adenosine A2B receptor inhibits endothelin-1-induced cardiac fibroblast proliferation and α-smooth muscle actin synthesis through the cAMP/Epac/PI3K/Akt-signaling pathway. Front. Pharmacol., 2017, 8, 428.
[http://dx.doi.org/10.3389/fphar.2017.00428] [PMID: 28713274]
[105]
Villarreal, F.; Epperson, S.A.; Ramirez-Sanchez, I.; Yamazaki, K.G.; Brunton, L.L. Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am. J. Physiol. Cell Physiol., 2009, 296(5), C1178-C1184.
[http://dx.doi.org/10.1152/ajpcell.00291.2008] [PMID: 19279233]
[106]
Gessi, S.; Merighi, S.; Borea, P.A.; Cohen, S.; Fishman, P. Adenosine Receptors and Current Opportunities to Treat Cancer.The Adenosine Receptors; Borea, P.A.; Varani, K.; Gessi, S.; Merighi, S; Vincenzi, F., Ed.; Humana Press, 2018, pp. 543-555.
[http://dx.doi.org/10.1007/978-3-319-90808-3_23]
[107]
Kazemi, M.H.; Raoofi Mohseni, S.; Hojjat-Farsangi, M.; Anvari, E.; Ghalamfarsa, G.; Mohammadi, H.; Jadidi-Niaragh, F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J. Cell. Physiol., 2018, 233(3), 2032-2057.
[http://dx.doi.org/10.1002/jcp.25873] [PMID: 28233320]
[108]
Borea, P.A.; Gessi, S.; Merighi, S.; Varani, K. Adenosine as a multi-signalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends Pharmacol. Sci., 2016, 37(6), 419-434.
[http://dx.doi.org/10.1016/j.tips.2016.02.006] [PMID: 26944097]
[109]
Khoo, H.E.; Ho, C.L.; Chhatwal, V.J.; Chan, S.T.; Ngoi, S.S.; Moochhala, S.M. Differential expression of adenosine A1 receptors in colorectal cancer and related mucosa. Cancer Lett., 1996, 106(1), 17-21.
[http://dx.doi.org/10.1016/0304-3835(96)04289-9] [PMID: 8827042]
[110]
Bauer, A.; Langen, K.J.; Bidmon, H.; Holschbach, M.H.; Weber, S.; Olsson, R.A.; Coenen, H.H.; Zilles, K. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J. Nucl. Med., 2005, 46(3), 450-454.
[PMID: 15750158]
[111]
Lin, Z.; Yin, P.; Reierstad, S.; O’Halloran, M.; Coon, V.J.; Pearson, E.K.; Mutlu, G.M.; Bulun, S.E. Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene, 2010, 29(8), 1114-1122.
[http://dx.doi.org/10.1038/onc.2009.409] [PMID: 19935720]
[112]
Bowser, J.L.; Blackburn, M.R.; Shipley, G.L.; Molina, J.G.; Dunner, K., Jr; Broaddus, R.R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J. Clin. Invest., 2016, 126(1), 220-238.
[http://dx.doi.org/10.1172/JCI79380] [PMID: 26642367]
[113]
Koshiba, M.; Kojima, H.; Huang, S.; Apasov, S.; Sitkovsky, M.V. Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J. Biol. Chem., 1997, 272(41), 25881-25889.
[http://dx.doi.org/10.1074/jbc.272.41.25881] [PMID: 9325320]
[114]
Sexl, V.; Mancusi, G.; Höller, C.; Gloria-Maercker, E.; Schütz, W.; Freissmuth, M. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J. Biol. Chem., 1997, 272(9), 5792-5799.
[http://dx.doi.org/10.1074/jbc.272.9.5792] [PMID: 9038193]
[115]
Cekic, C.; Sag, D.; Li, Y.; Theodorescu, D.; Strieter, R.M.; Linden, J. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol., 2012, 188(1), 198-205.
[http://dx.doi.org/10.4049/jimmunol.1101845] [PMID: 22116822]
[116]
Ma, D.F.; Kondo, T.; Nakazawa, T.; Niu, D.F.; Mochizuki, K.; Kawasaki, T.; Yamane, T.; Katoh, R. Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells. Hum. Pathol., 2010, 41(11), 1550-1557.
[http://dx.doi.org/10.1016/j.humpath.2010.04.008] [PMID: 20619442]
[117]
Wei, Q.; Costanzi, S.; Balasubramanian, R.; Gao, Z.G.; Jacobson, K.A. A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal., 2013, 9(2), 271-280.
[http://dx.doi.org/10.1007/s11302-012-9350-3] [PMID: 23315335]
[118]
Kasama, H.; Sakamoto, Y.; Kasamatsu, A.; Okamoto, A.; Koyama, T.; Minakawa, Y.; Ogawara, K.; Yokoe, H.; Shiiba, M.; Tanzawa, H.; Uzawa, K. Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer, 2015, 15, 563.
[http://dx.doi.org/10.1186/s12885-015-1577-2] [PMID: 26228921]
[119]
Feoktistov, I.; Goldstein, A.E.; Ryzhov, S.; Zeng, D.; Belardinelli, L.; Voyno-Yasenetskaya, T.; Biaggioni, I. Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ. Res., 2002, 90(5), 531-538.
[http://dx.doi.org/10.1161/01.RES.0000012203.21416.14] [PMID: 11909816]
[120]
Merighi, S.; Benini, A.; Mirandola, P.; Gessi, S.; Varani, K.; Simioni, C.; Leung, E.; Maclennan, S.; Baraldi, P.G.; Borea, P.A. Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol. Pharmacol., 2007, 72(2), 395-406.
[http://dx.doi.org/10.1124/mol.106.032920] [PMID: 17488804]
[121]
Zeng, D.; Maa, T.; Wang, U.; Feoktistov, I.; Biaggioni, I.; Belardinelli, L. Expression and function of A2B adenosine receptors in the U87MG tumor cells. Drug Dev. Res., 2003, 58(4), 405-411.
[http://dx.doi.org/10.1002/ddr.10212]
[122]
Novitskiy, S.V.; Ryzhov, S.; Zaynagetdinov, R.; Goldstein, A.E.; Huang, Y.; Tikhomirov, O.Y.; Blackburn, M.R.; Biaggioni, I.; Carbone, D.P.; Feoktistov, I.; Dikov, M.M. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood, 2008, 112(5), 1822-1831.
[http://dx.doi.org/10.1182/blood-2008-02-136325] [PMID: 18559975]
[123]
Yang, M.; Ma, C.; Liu, S.; Shao, Q.; Gao, W.; Song, B.; Sun, J.; Xie, Q.; Zhang, Y.; Feng, A.; Liu, Y.; Hu, W.; Qu, X. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol. Cell Biol., 2010, 88(2), 165-171.
[http://dx.doi.org/10.1038/icb.2009.77] [PMID: 19841638]
[124]
Bar-Yehuda, S.; Stemmer, S.M.; Madi, L.; Castel, D.; Ochaion, A.; Cohen, S.; Barer, F.; Zabutti, A.; Perez-Liz, G.; Del Valle, L.; Fishman, P. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int. J. Oncol., 2008, 33(2), 287-295.
[PMID: 18636149]
[125]
Madi, L.; Ochaion, A.; Rath-Wolfson, L.; Bar-Yehuda, S.; Erlanger, A.; Ohana, G.; Harish, A.; Merimski, O.; Barer, F.; Fishman, P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin. Cancer Res., 2004, 10(13), 4472-4479.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0651] [PMID: 15240539]
[126]
Morello, S.; Petrella, A.; Festa, M.; Popolo, A.; Monaco, M.; Vuttariello, E.; Chiappetta, G.; Parente, L.; Pinto, A. Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol. Ther., 2008, 7(2), 278-284.
[http://dx.doi.org/10.4161/cbt.7.2.5301] [PMID: 18059189]
[127]
Gessi, S.; Varani, K.; Merighi, S.; Morelli, A.; Ferrari, D.; Leung, E.; Baraldi, P.G.; Spalluto, G.; Borea, P.A. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br. J. Pharmacol., 2001, 134(1), 116-126.
[http://dx.doi.org/10.1038/sj.bjp.0704254] [PMID: 11522603]
[128]
Peakman, M.C.; Hill, S.J. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br. J. Pharmacol., 1994, 111(1), 191-198.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14043.x] [PMID: 8012696]
[129]
Bar-Yehuda, S.; Stemmer, S.M.; Madi, L.; Castel, D.; Ochaion, A.; Cohen, S.; Barer, F.; Zabutti, A.; Perez-Liz, G.; Del Valle, L.; Fishman, P. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int. J. Oncol., 2008, 33(2), 287-295.
[PMID: 18636149]
[130]
Jajoo, S.; Mukherjea, D.; Watabe, K.; Ramkumar, V. Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia, 2009, 11(11), 1132-1145.
[http://dx.doi.org/10.1593/neo.09744] [PMID: 19881949]
[131]
Naganuma, M.; Wiznerowicz, E.B.; Lappas, C.M.; Linden, J.; Worthington, M.T.; Ernst, P.B. Cutting edge: Critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J. Immunol., 2006, 177(5), 2765-2769.
[http://dx.doi.org/10.4049/jimmunol.177.5.2765] [PMID: 16920910]
[132]
Sevigny, C.P.; Li, L.; Awad, A.S.; Huang, L.; McDuffie, M.; Linden, J.; Lobo, P.I.; Okusa, M.D. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J. Immunol., 2007, 178(7), 4240-4249.
[http://dx.doi.org/10.4049/jimmunol.178.7.4240] [PMID: 17371980]
[133]
Lappas, C.M.; Rieger, J.M.; Linden, J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J. Immunol., 2005, 174(2), 1073-1080.
[http://dx.doi.org/10.4049/jimmunol.174.2.1073] [PMID: 15634932]
[134]
Csóka, B.; Himer, L.; Selmeczy, Z.; Vizi, E.S.; Pacher, P.; Ledent, C.; Deitch, E.A.; Spolarics, Z.; Németh, Z.H.; Haskó, G. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J., 2008, 22(10), 3491-3499.
[http://dx.doi.org/10.1096/fj.08-107458] [PMID: 18625677]
[135]
Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.F.; Enjyoji, K.; Linden, J.; Oukka, M.; Kuchroo, V.K.; Strom, T.B.; Robson, S.C. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med., 2007, 204(6), 1257-1265.
[http://dx.doi.org/10.1084/jem.20062512] [PMID: 17502665]
[136]
Zarek, P.E.; Huang, C.T.; Lutz, E.R.; Kowalski, J.; Horton, M.R.; Linden, J.; Drake, C.G.; Powell, J.D. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood, 2008, 111(1), 251-259.
[http://dx.doi.org/10.1182/blood-2007-03-081646] [PMID: 17909080]
[137]
Yamamura, T.; Sakuishi, K.; Illés, Z.; Miyake, S. Understanding the behavior of invariant NKT cells in autoimmune diseases. J. Neuroimmunol., 2007, 191(1-2), 8-15.
[http://dx.doi.org/10.1016/j.jneuroim.2007.09.014] [PMID: 17905445]
[138]
Paul, S.; Elsinga, P.H.; Ishiwata, K.; Dierckx, R.A.; van Waarde, A. Adenosine A(1) receptors in the central nervous system: their functions in health and disease, and possible elucidation by PET imaging. Curr. Med. Chem., 2011, 18(31), 4820-4835.
[http://dx.doi.org/10.2174/092986711797535335] [PMID: 21919845]
[139]
Mishina, M.; Ishii, K.; Kimura, Y.; Suzuki, M.; Kitamura, S.; Ishibashi, K.; Sakata, M.; Oda, K.; Kobayashi, S.; Kimura, K.; Ishiwata, K. Adenosine A1 receptors measured with 11 C-MPDX PET in early Parkinson’s disease. Synapse, 2017, 71(8)e21979
[http://dx.doi.org/10.1002/syn.21979] [PMID: 28407307]
[140]
Mishina, M.; Ishiwata, K. Adenosine receptor PET imaging in human brain. Int. Rev. Neurobiol., 2014, 119, 51-69.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00002-7] [PMID: 25175960]
[141]
Nariai, T.; Shimada, Y.; Ishiwata, K.; Nagaoka, T.; Shimada, J.; Kuroiwa, T.; Ono, K.; Ohno, K.; Hirakawa, K.; Senda, M. PET imaging of adenosine A(1) receptors with (11)C-MPDX as an indicator of severe cerebral ischemic insult. J. Nucl. Med., 2003, 44(11), 1839-1844.
[PMID: 14602868]
[142]
Mishina, M.; Kimura, Y.; Sakata, M.; Ishii, K.; Oda, K.; Toyohara, J.; Kimura, K.; Ishiwata, K. Age-related decrease in male extra-striatal adenosine A1 receptors measured using 11C-MPDX PET. Front. Pharmacol., 2017, 8, 903.
[http://dx.doi.org/10.3389/fphar.2017.00903] [PMID: 29326588]
[143]
Bier, D.; Holschbach, M.H.; Wutz, W.; Olsson, R.A.; Coenen, H.H. Metabolism of the A(1)1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propyl-xanthine ([18F]CPFPX) in rodents and humans. Drug Metab. Dispos., 2006, 34(4), 570-576.
[http://dx.doi.org/10.1124/dmd.105.006411] [PMID: 16415116]
[144]
Matusch, A.; Meyer, P.T.; Bier, D.; Holschbach, M.H.; Woitalla, D.; Elmenhorst, D.; Winz, O.H.; Zilles, K.; Bauer, A. Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl. Med. Biol., 2006, 33(7), 891-898.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.07.006] [PMID: 17045169]
[145]
Elmenhorst, D.; Meyer, P.T.; Matusch, A.; Winz, O.H.; Bauer, A. Caffeine occupancy of human cerebral A1 adenosine receptors: in vivo quantification with 18F-CPFPX and PET. J. Nucl. Med., 2012, 53(11), 1723-1729.
[http://dx.doi.org/10.2967/jnumed.112.105114] [PMID: 22966134]
[146]
Matusch, A.; Saft, C.; Elmenhorst, D.; Kraus, P.H.; Gold, R.; Hartung, H.P.; Bauer, A. Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(6), 1210-1220.
[http://dx.doi.org/10.1007/s00259-014-2724-8] [PMID: 24566949]
[147]
Elmenhorst, D.; Elmenhorst, E.M.; Hennecke, E.; Kroll, T.; Matusch, A.; Aeschbach, D.; Bauer, A. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc. Natl. Acad. Sci. USA, 2017, 114(16), 4243-4248.
[http://dx.doi.org/10.1073/pnas.1614677114] [PMID: 28373571]
[148]
Matsuya, T.; Takamatsu, H.; Murakami, Y.; Noda, A.; Ichise, R.; Awaga, Y.; Nishimura, S. Synthesis and evaluation of [11C]FR194921 as a nonxanthine-type PET tracer for adenosine A1 receptors in the brain. Nucl. Med. Biol., 2005, 32(8), 837-844.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.06.008] [PMID: 16253808]
[149]
Kreft, S.; Bier, D.; Holschbach, M.H.; Schulze, A.; Coenen, H.H. New potent A1 adenosine receptor radioligands for positron emission tomography. Nucl. Med. Biol., 2017, 44, 69-77.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.09.004] [PMID: 27821347]
[150]
Rissanen, E.; Tuisku, J.; Luoto, P.; Arponen, E.; Johansson, J.; Oikonen, V.; Parkkola, R.; Airas, L.; Rinne, J.O. Automated reference region extraction and population-based input function for brain [(11)C]TMSX PET image analyses. J. Cereb. Blood Flow Metab., 2015, 35(1), 157-165.
[http://dx.doi.org/10.1038/jcbfm.2014.194] [PMID: 25370856]
[151]
Lahesmaa, M.; Oikonen, V.; Helin, S.; Luoto, P.M. U.D.; Pfeifer, A.; Nuutila, P.; Virtanen, K.A. Regulation of human brown adipose tissue by adenosine and A2A receptors - studies with [15O]H2O and [11C]TMSX PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(3), 743-750.
[152]
Ishiwata, K.; Kawamura, K.; Kimura, Y.; Oda, K.; Ishii, K. Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann. Nucl. Med., 2003, 17(6), 457-462.
[http://dx.doi.org/10.1007/BF03006434] [PMID: 14575379]
[153]
Hirani, E.; Gillies, J.; Karasawa, A.; Shimada, J.; Kase, H.; Opacka-Juffry, J.; Osman, S.; Luthra, S.K.; Hume, S.P.; Brooks, D.J. Evaluation of [4-O-methyl-(11)C]KW-6002 as a potential PET ligand for mapping central adenosine A(2A) receptors in rats. Synapse, 2001, 42(3), 164-176.
[http://dx.doi.org/10.1002/syn.1110] [PMID: 11746713]
[154]
Brooks, D.J.; Doder, M.; Osman, S.; Luthra, S.K.; Hirani, E.; Hume, S.; Kase, H.; Kilborn, J.; Martindill, S.; Mori, A. Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse, 2008, 62(9), 671-681.
[http://dx.doi.org/10.1002/syn.20539] [PMID: 18566974]
[155]
Brooks, D.J.; Papapetropoulos, S.; Vandenhende, F.; Tomic, D.; He, P.; Coppell, A.; O’Neill, G. An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin. Neuropharmacol., 2010, 33(2), 55-60.
[http://dx.doi.org/10.1097/WNF.0b013e3181d137d2] [PMID: 20375654]
[156]
Zhou, X.; Boellaard, R.; Ishiwata, K.; Sakata, M.; Dierckx, R.A.J.O.; de Jong, J.R.; Nishiyama, S.; Ohba, H.; Tsukada, H.; de Vries, E.F.J.; Elsinga, P.H. In vivo evaluation of 11C-Preladenant for PET imaging of adenosine A2A receptors in the conscious monkey. J. Nucl. Med., 2017, 58(5), 762-767.
[http://dx.doi.org/10.2967/jnumed.116.182410] [PMID: 28062599]
[157]
Sakata, M.; Ishibashi, K.; Imai, M.; Wagatsuma, K.; Ishii, K.; Zhou, X.; de Vries, E.F.J.; Elsinga, P.H.; Ishiwata, K.; Toyohara, J. Initial evaluation of an adenosine A2A receptor ligand, 11C-Preladenant, in healthy human subjects. J. Nucl. Med., 2017, 58(9), 1464-1470.
[http://dx.doi.org/10.2967/jnumed.116.188474] [PMID: 28280214]
[158]
Ishibashi, K.; Miura, Y.; Wagatsuma, K.; Toyohara, J.; Ishiwata, K.; Ishii, K. Occupancy of adenosine A2A receptors by istradefylline in patients with Parkinson’s disease using 11C-preladenant PET. Neuropharmacology, 2018, 143, 106-112.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.036] [PMID: 30253174]
[159]
Barret, O.; Hannestad, J.; Alagille, D.; Vala, C.; Tavares, A.; Papin, C.; Morley, T.; Fowles, K.; Lee, H.; Seibyl, J.; Tytgat, D.; Laruelle, M.; Tamagnan, G. Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys. J. Nucl. Med., 2014, 55(10), 1712-1718.
[http://dx.doi.org/10.2967/jnumed.114.142067] [PMID: 25082853]
[160]
Barret, O.; Hannestad, J.; Vala, C.; Alagille, D.; Tavares, A.; Laruelle, M.; Jennings, D.; Marek, K.; Russell, D.; Seibyl, J.; Tamagnan, G. Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors. J. Nucl. Med., 2015, 56(4), 586-591.
[http://dx.doi.org/10.2967/jnumed.114.152546] [PMID: 25698783]
[161]
Petroni, D.; Giacomelli, C.; Taliani, S.; Barresi, E.; Robello, M.; Daniele, S.; Bartoli, A.; Burchielli, S.; Pardini, S.; Salvadori, P.A.; Da Settimo, F.; Martini, C.; Trincavelli, M.L.; Menichetti, L. Toward PET imaging of A2B adenosine receptors: a carbon-11 labeled triazinobenzimidazole tracer: Synthesis and imaging of a new A2B PET tracer. Nucl. Med. Biol., 2016, 43(5), 309-317.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.02.005] [PMID: 27150034]
[162]
Lindemann, M.; Hinz, S.; Deuther-Conrad, W.; Namasivayam, V.; Dukic-Stefanovic, S.; Teodoro, R.; Toussaint, M.; Kranz, M.; Juhl, C.; Steinbach, J.; Brust, P.; Müller, C.E.; Wenzel, B. Radiosynthesis and in vivo evaluation of a fluorine-18 labeled pyrazine based radioligand for PET imaging of the adenosine A2B receptor. Bioorg. Med. Chem., 2018, 26(16), 4650-4663.
[http://dx.doi.org/10.1016/j.bmc.2018.07.045] [PMID: 30104122]
[163]
Wadsak, W.; Mien, L.K.; Shanab, K.; Ettlinger, D.E.; Haeusler, D.; Sindelar, K.; Lanzenberger, R.R.; Spreitzer, H.; Viernstein, H.; Keppler, B.K.; Dudczak, R.; Kletter, K.; Mitterhauser, M. Preparation and first evaluation of [(18)F]FE@SUPPY: a new PET tracer for the adenosine A(3) receptor. Nucl. Med. Biol., 2008, 35(1), 61-66.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.09.004] [PMID: 18158944]
[164]
Haeusler, D.; Kuntner, C.; Nics, L.; Savli, M.; Zeilinger, M.; Wanek, T.; Karagiannis, P.; Lanzenberger, R.R.; Langer, O.; Shanab, K.; Spreitzer, H.; Wadsak, W.; Hacker, M.; Mitterhauser, M. [18F]FE@SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(5), 741-749.
[http://dx.doi.org/10.1007/s00259-014-2976-3] [PMID: 25601336]
[165]
Bauer, A.; Ishiwata, K. Adenosine receptor ligands and PET imaging of the CNS. Handb. Exp. Pharmacol., 2009, 200(193), 617-642.
[http://dx.doi.org/10.1007/978-3-540-89615-9_19] [PMID: 19639295]
[166]
Ishiwata, K.; Furuta, R.; Shimada, J.; Ishii, S.; Endo, K.; Suzuki, F.; Senda, M. Synthesis and preliminary evaluation of [11C]KF15372, a selective adenosine A1 antagonist. Appl. Radiat. Isot., 1995, 46(10), 1009-1013.
[http://dx.doi.org/10.1016/0969-8043(95)00197-L] [PMID: 7496369]
[167]
Furuta, R.; Ishiwata, K.; Kiyosawa, M.; Ishii, S.; Saito, N.; Shimada, J.; Endo, K.; Suzuki, F.; Senda, M. Carbon-11-labeled KF15372: A potential central nervous system adenosine A1 receptor ligand. J. Nucl. Med., 1996, 37(7), 1203-1207.
[PMID: 8965199]
[168]
Noguchi, J.; Ishiwata, K.; Furuta, R.; Simada, J.; Kiyosawa, M.; Ishii, S.; Endo, K.; Suzuki, F.; Senda, M. Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl. Med. Biol., 1997, 24(1), 53-59.
[http://dx.doi.org/10.1016/S0969-8051(96)00161-8] [PMID: 9080475]
[169]
Fukumitsu, N.; Ishii, K.; Kimura, Y.; Oda, K.; Sasaki, T.; Mori, Y.; Ishiwata, K. Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1-11C-methyl-3-propyl-xanthine. J. Nucl. Med., 2005, 46(1), 32-37.
[PMID: 15632030]
[170]
Fukumitsu, N.; Ishii, K.; Kimura, Y.; Oda, K.; Hashimoto, M.; Suzuki, M.; Ishiwata, K. Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann. Nucl. Med., 2008, 22(10), 841-847.
[http://dx.doi.org/10.1007/s12149-008-0185-5] [PMID: 19142702]
[171]
Jaarsma, D.; Sebens, J.B.; Korf, J. Reduction of adenosine A1-receptors in the perforant pathway terminal zone in Alzheimer hippocampus. Neurosci. Lett., 1991, 121(1-2), 111-114.
[http://dx.doi.org/10.1016/0304-3940(91)90661-C] [PMID: 1850501]
[172]
Ułas, J.; Brunner, L.C.; Nguyen, L.; Cotman, C.W. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience, 1993, 52(4), 843-854.
[http://dx.doi.org/10.1016/0306-4522(93)90533-L] [PMID: 8450977]
[173]
Svenningsson, P.; Hall, H.; Sedvall, G.; Fredholm, B.B. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse, 1997, 27(4), 322-335.
[http://dx.doi.org/10.1002/(SICI)1098-2396(199712)27:4<322:AID-SYN6>3.0.CO;2-E] [PMID: 9372555]
[174]
Deckert, J.; Abel, F.; Künig, G.; Hartmann, J.; Senitz, D.; Maier, H.; Ransmayr, G.; Riederer, P. Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci. Lett., 1998, 244(1), 1-4.
[http://dx.doi.org/10.1016/S0304-3940(98)00108-6] [PMID: 9578130]
[175]
Holschbach, M.H.; Olsson, R.A. Applications of adenosine receptor ligands in medical imaging by positron emission tomography. Curr. Pharm. Des., 2002, 8(26), 2345-2352.
[http://dx.doi.org/10.2174/1381612023392955] [PMID: 12369949]
[176]
Bauer, A.; Holschbach, M.H.; Meyer, P.T.; Boy, C.; Herzog, H.; Olsson, R.A.; Coenen, H.H.; Zilles, K. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage, 2003, 19(4), 1760-1769.
[http://dx.doi.org/10.1016/S1053-8119(03)00241-6] [PMID: 12948730]
[177]
Holschbach, M.H.; Olsson, R.A.; Bier, D.; Wutz, W.; Sihver, W.; Schüller, M.; Palm, B.; Coenen, H.H. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propyl-xanthine ([18F]CPFPX): a potent and selective A1-adenosine receptor antagonist for in vivo imaging. J. Med. Chem., 2002, 45(23), 5150-5156.
[http://dx.doi.org/10.1021/jm020905i] [PMID: 12408725]
[178]
Meyer, P.T.; Bier, D.; Holschbach, M.H.; Cremer, M.; Tellmann, L.; Bauer, A. In vivo imaging of rat brain A1 adenosine receptor occupancy by caffeine. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(10), 1440.
[http://dx.doi.org/10.1007/s00259-003-1273-3] [PMID: 14523589]
[179]
Kuroda, S.; Takamura, F.; Tenda, Y.; Itani, H.; Tomishima, Y.; Akahane, A.; Sakane, K. Design, synthesis and biological evaluation of a novel series of potent, orally active adenosine A1 receptor antagonists with high blood-brain barrier permeability. Chem. Pharm. Bull. (Tokyo), 2001, 49(8), 988-998.
[http://dx.doi.org/10.1248/cpb.49.988] [PMID: 11515591]
[180]
Maemoto, T.; Tada, M.; Mihara, T.; Ueyama, N.; Matsuoka, H.; Harada, K.; Yamaji, T.; Shirakawa, K.; Kuroda, S.; Akahane, A.; Iwashita, A.; Matsuoka, N.; Mutoh, S. Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J. Pharmacol. Sci., 2004, 96(1), 42-52.
[http://dx.doi.org/10.1254/jphs.FP0040359] [PMID: 15351792]
[181]
Ishiwata, K.; Noguchi, J.; Toyama, H.; Sakiyama, Y.; Koike, N.; Ishii, S.; Oda, K.; Endo, K.; Suzuki, F.; Senda, M. Synthesis and preliminary evaluation of [11C]KF17837, a selective adenosine A2A antagonist. Appl. Radiat. Isot., 1996, 47(5-6), 507-511.
[http://dx.doi.org/10.1016/0969-8043(95)00295-2] [PMID: 8673072]
[182]
Stone-Elander, S.; Thorell, J.O.; Eriksson, L.; Fredholm, B.B.; Ingvar, M. In vivo biodistribution of [N-11C-methyl]KF 17837 using 3-D-PET: evaluation as a ligand for the study of adenosine A2A receptors. Nucl. Med. Biol., 1997, 24(2), 187-191.
[http://dx.doi.org/10.1016/S0969-8051(96)00216-8] [PMID: 9089711]
[183]
Noguchi, J.; Ishiwata, K.; Wakabayashi, S.; Nariai, T.; Shumiya, S.; Ishii, S.; Toyama, H.; Endo, K.; Suzuki, F.; Senda, M. Evaluation of carbon-11-labeled KF17837: A potential CNS adenosine A2a receptor ligand. J. Nucl. Med., 1998, 39(3), 498-503.
[PMID: 9529299]
[184]
Ishiwata, K.; Noguchi, J.; Wakabayashi, S.; Shimada, J.; Ogi, N.; Nariai, T.; Tanaka, A.; Endo, K.; Suzuki, F.; Senda, M. 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J. Nucl. Med., 2000, 41(2), 345-354.
[PMID: 10688121]
[185]
Ishiwata, K.; Ogi, N.; Shimada, J.; Nonaka, H.; Tanaka, A.; Suzuki, F.; Senda, M. Further characterization of a CNS adenosine A2a receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann. Nucl. Med., 2000, 14(2), 81-89.
[http://dx.doi.org/10.1007/BF02988585] [PMID: 10830524]
[186]
Wang, W.F.; Ishiwata, K.; Nonaka, H.; Ishii, S.; Kiyosawa, M.; Shimada, J.; Suzuki, F.; Senda, M. Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A(2A) receptors with positron emission tomography. Nucl. Med. Biol., 2000, 27(6), 541-546.
[http://dx.doi.org/10.1016/S0969-8051(00)00126-8] [PMID: 11056367]
[187]
Ishiwata, K.; Shimada, J.; Wang, W.F.; Harakawa, H.; Ishii, S.; Kiyosawa, M.; Suzuki, F.; Senda, M. Evaluation of iodinated and brominated [11C]styrylxanthine derivatives as in vivo radioligands mapping adenosine A2A receptor in the central nervous system. Ann. Nucl. Med., 2000, 14(4), 247-253.
[http://dx.doi.org/10.1007/BF02988206] [PMID: 11023024]
[188]
Ishiwata, K.; Wang, W.F.; Kimura, Y.; Kawamura, K.; Ishii, K. Preclinical studies on [11C]TMSX for mapping adenosine A2A receptors by positron emission tomography. Ann. Nucl. Med., 2003, 17(3), 205-211.
[http://dx.doi.org/10.1007/BF02990023] [PMID: 12846542]
[189]
Ishiwata, K.; Ogi, N.; Shimada, J.; Nonaka, H.; Tanaka, A.; Suzuki, F.; Senda, M. Further characterization of a CNS adenosine A2a receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann. Nucl. Med., 2000, 14(2), 81-89.
[http://dx.doi.org/10.1007/BF02988585] [PMID: 10830524]
[190]
Todde, S.; Moresco, R.M.; Simonelli, P.; Baraldi, P.G.; Cacciari, B.; Spalluto, G.; Varani, K.; Monopoli, A.; Matarrese, M.; Carpinelli, A.; Magni, F.; Kienle, M.G.; Fazio, F. Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography. J. Med. Chem., 2000, 43(23), 4359-4362.
[http://dx.doi.org/10.1021/jm0009843] [PMID: 11087559]
[191]
Bhattacharjee, A.K.; Lang, L.; Jacobson, O.; Shinkre, B.; Ma, Y.; Niu, G.; Trenkle, W.C.; Jacobson, K.A.; Chen, X.; Kiesewetter, D.O. Striatal adenosine A(2A) receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [(18)F]-MRS5425. Nucl. Med. Biol., 2011, 38(6), 897-906.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.01.009] [PMID: 21843786]
[192]
Khanapur, S.; van Waarde, A.; Dierckx, R.A.; Elsinga, P.H.; Koole, M.J. Preclinical evaluation and quantification of 18F-fluoroethyl and 18F-fluoropropyl analogs of SCH442416 as radioligands for PET imaging of the adenosine A2A receptor in rat brain. J. Nucl. Med., 2017, 58(3), 466-472.
[http://dx.doi.org/10.2967/jnumed.116.178103] [PMID: 27789720]
[193]
Khanapur, S.; Paul, S.; Shah, A.; Vatakuti, S.; Koole, M.J.; Zijlma, R.; Dierckx, R.A.; Luurtsema, G.; Garg, P.; van Waarde, A.; Elsinga, P.H. Development of [18F]-labeled pyrazolo[4,3-e]-1,2,4- triazolo[1,5-c]pyrimidine (SCH442416) analogs for the imaging of cerebral adenosine A2A receptors with positron emission tomography. J. Med. Chem., 2014, 57(15), 6765-6780.
[http://dx.doi.org/10.1021/jm500700y] [PMID: 25061687]
[194]
Zhou, X.; Khanapur, S.; Huizing, A.P.; Zijlma, R.; Schepers, M.; Dierckx, R.A.; van Waarde, A.; de Vries, E.F.; Elsinga, P.H. Synthesis and preclinical evaluation of 2-(2-furanyl)-7-[2-[4-[4-(2-[11C]methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine-5-amine ([11C]Preladenant) as a PET tracer for the imaging of cerebral adenosine A2A receptors. J. Med. Chem., 2014, 57(21), 9204-9210.
[http://dx.doi.org/10.1021/jm501065t] [PMID: 25279444]
[195]
Lowe, P.T.; Dall’Angelo, S.; Mulder-Krieger, T.; IJzerman, A.P.; Zanda, M.; O’Hagan, D.A.P. I.J.; Zanda, M.; O’Hagan, D. A new class of fluorinated A2A adenosine receptor agonist with application to last-step enzymatic [18F]fluorination for PET imaging. ChemBioChem, 2017, 18(21), 2156-2164.
[http://dx.doi.org/10.1002/cbic.201700382] [PMID: 28851015]
[196]
Ishiwata, K.; Mishina, M.; Kimura, Y.; Oda, K.; Sasaki, T.; Ishii, K. First visualization of adenosine A(2A) receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse, 2005, 55(2), 133-136.
[http://dx.doi.org/10.1002/syn.20099] [PMID: 15543628]
[197]
Ishiwata, K.; Mizuno, M.; Kimura, Y.; Kawamura, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishii, K. Potential of [11C]TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography. Nucl. Med. Biol., 2004, 31(7), 949-956.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.06.003] [PMID: 15464397]
[198]
Mizuno, M.; Kimura, Y.; Tokizawa, K.; Ishii, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishiwata, K. Greater adenosine A(2A) receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study. Nucl. Med. Biol., 2005, 32(8), 831-836.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.07.003] [PMID: 16253807]
[199]
Ishiwata, K.; Kawamura, K.; Kimura, Y.; Oda, K.; Ishii, K. Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann. Nucl. Med., 2003, 17(6), 457-462.
[http://dx.doi.org/10.1007/BF03006434] [PMID: 14575379]
[200]
Heinonen, I.; Nesterov, S.V.; Liukko, K.; Kemppainen, J.; Någren, K.; Luotolahti, M.; Virsu, P.; Oikonen, V.; Nuutila, P.; Kujala, U.M.; Kainulainen, H.; Boushel, R.; Knuuti, J.; Kalliokoski, K.K. Myocardial blood flow and adenosine A2A receptor density in endurance athletes and untrained men. J. Physiol., 2008, 586(21), 5193-5202.
[http://dx.doi.org/10.1113/jphysiol.2008.158113] [PMID: 18772204]
[201]
Grachev, I.D.; Doder, M.; Brooks, D.J.; Hinz, R. An in vivo positron emission tomography study of adenosine 2A receptor occupancy by preladenant using 11C-SCH442416 in healthy subjects. J. Diagn. Imaging Ther., 2014, 1(1), 20-48.
[http://dx.doi.org/10.17229/jdit.2014-0712-002]
[202]
Ramlackhansingh, A.F.; Bose, S.K.; Ahmed, I.; Turkheimer, F.E.; Pavese, N.; Brooks, D.J. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology, 2011, 76(21), 1811-1816.
[http://dx.doi.org/10.1212/WNL.0b013e31821ccce4] [PMID: 21606452]
[203]
Neustadt, B.R.; Hao, J.; Lindo, N.; Greenlee, W.J.; Stamford, A.W.; Tulshian, D.; Ongini, E.; Hunter, J.; Monopoli, A.; Bertorelli, R.; Foster, C.; Arik, L.; Lachowicz, J.; Ng, K.; Feng, K.I. Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg. Med. Chem. Lett., 2007, 17(5), 1376-1380.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.083] [PMID: 17236762]
[204]
Zhou, X.; Khanapur, S.; Huizing, A.P.; Zijlma, R.; Schepers, M.; Dierckx, R.A.J.O.; van Waarde, A.; de Vries, E.F.J.; Elsinga, P.H. Synthesis and preclinical evaluation of 2-(2-furanyl)-7-[2-[4-[4-(2-[11C]methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine-5-amine ([11C]Preladenant) as a PET tracer for the imaging of cerebral adenosine A2A receptors. J. Med. Chem., 2014, 57(21), 9204-9210.
[http://dx.doi.org/10.1021/jm501065t] [PMID: 25279444]
[205]
Vala, C.; Morley, T.J.; Zhang, X.; Papin, C.; Tavares, A.A.; Lee, H.S.; Constantinescu, C.; Barret, O.; Carroll, V.M.; Baldwin, R.M.; Tamagnan, G.D.; Alagille, D. Synthesis and in vivo evaluation of fluorine-18 and iodine-123 pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as PET and SPECT radiotracers for mapping A2A receptors. ChemMedChem, 2016, 11(17), 1936-1943.
[http://dx.doi.org/10.1002/cmdc.201600219] [PMID: 27407017]
[206]
Hua, X.; Kovarova, M.; Chason, K.D.; Nguyen, M.; Koller, B.H.; Tilley, S.L. Enhanced mast cell activation in mice deficient in the A2b adenosine receptor. J. Exp. Med., 2007, 204(1), 117-128.
[http://dx.doi.org/10.1084/jem.20061372] [PMID: 17200408]
[207]
Baraldi, P.G.; Tabrizi, M.A.; Fruttarolo, F.; Romagnoli, R.; Preti, D. Recent improvements in the development of A(2B) adenosine receptor agonists. Purinergic Signal., 2008, 4(4), 287-303.
[http://dx.doi.org/10.1007/s11302-008-9097-z] [PMID: 18443746]
[208]
Ortore, G.; Martinelli, A. A2B receptor ligands: past, present and future trends. Curr. Top. Med. Chem., 2010, 10(9), 923-940.
[http://dx.doi.org/10.2174/156802610791268747] [PMID: 20370659]
[209]
Li, A.H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X.D.; Jacobson, K.A. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2, 4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J. Med. Chem., 1999, 42(4), 706-721.
[http://dx.doi.org/10.1021/jm980550w] [PMID: 10052977]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy