Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Glucosamine Protects Rat Bone Marrow Cells Against Cisplatin-induced Genotoxicity and Cytotoxicity

Author(s): Mohsen Cheki*, Salman Jafari, Masoud Najafi and Aziz Mahmoudzadeh

Volume 19, Issue 14, 2019

Page: [1695 - 1702] Pages: 8

DOI: 10.2174/1871520619666190704164126

Price: $65

Abstract

Background and Objective: Glucosamine is a widely prescribed dietary supplement used in the treatment of osteoarthritis. In the present study, the chemoprotectant ability of glucosamine was evaluated against cisplatin-induced genotoxicity and cytotoxicity in rat bone marrow cells.

Methods: Glucosamine was orally administrated to rats at doses of 75 and 150 mg/kg body weight for seven consecutive days. On the seventh day, the rats were treated with a single injection of cisplatin (5 mg/kg, i.p.) at 1h after the last oral administration. The cisplatin antagonistic potential of glucosamine was assessed by micronucleus assay, Reactive Oxygen Species (ROS) level analysis, hematological analysis, and flow cytometry.

Results: Glucosamine administration to cisplatin-treated rats significantly decreased the frequencies of Micronucleated Polychromatic Erythrocytes (MnPCEs) and Micronucleated Normchromatic Erythrocytes (MnNCEs), and also increased PCE/(PCE+NCE) ratio in bone marrow cells. Furthermore, treatment of rats with glucosamine before cisplatin significantly inhibited apoptosis, necrosis and ROS generation in bone marrow cells, and also increased red blood cells count in peripheral blood.

Conclusion: This study shows glucosamine to be a new effective chemoprotector against cisplatin-induced DNA damage and apoptosis in rat bone marrow cells. The results of this study may be helpful in reducing the harmful effects of cisplatin-based chemotherapy in the future.

Keywords: Glucosamine, cisplatin, bone marrow cells, genotoxicity, apoptosis, chemoprotector.

Graphical Abstract
[1]
Barabas, K.; Milner, R.; Lurie, D.; Adin, C. Cisplatin: A review of toxicities and therapeutic applications. Vet. Comp. Oncol., 2008, 6, 1-18.
[2]
Basu, A.; Ghosh, P.; Bhattacharjee, A.; Patra, A.R.; Bhattacharya, S. Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: Effect of an organovanadium compound vanadium (III)-l-cysteine. Mutagenesis, 2015, 30, 509-517.
[3]
Basu, A.; Bhattacharjee, A.; Samanta, A.; Bhattacharya, S. An oxovanadium(IV) complex protects murine bone marrow cells against cisplatin-induced myelotoxicity and DNA damage. Drug Chem. Toxicol., 2017, 40, 359-367.
[4]
Masuda, H.; Tanaka, T.; Takahama, U. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem. Biophys. Res. Commun., 1994, 203, 1175-1180.
[5]
Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical-induced damage to DNA: Mechanisms and measurement. Free Radic. Biol. Med., 2002, 32, 1102-1115.
[6]
Henrotin, Y.; Mobasheri, A.; Marty, M. Is there any scientific evidence for the use of glucosamine in the management of human osteoarthritis? Arthritis Res. Ther., 2012, 14, 201.
[7]
Dalirfardouei, R.; Karimi, G.; Jamialahmadi, K. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci., 2016, 152, 21-29.
[8]
Anderson, J.W.; Nicolosi, R.J.; Borzelleca, J.F. Glucosamine effects in humans: A review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food Chem. Toxicol., 2005, 43, 187-201.
[9]
Kim, D.S.; Park, K.S.; Jeong, K.C.; Lee, B.I.; Lee, C.H.; Kim, S.Y. Glucosamine is an effective chemo-sensitizer via transglutaminase 2 inhibition. Cancer Lett., 2009, 273, 243-249.
[10]
Xing, R.; Liu, S.; Guo, Z.; Yu, H.; Li, C.; Ji, X.; Feng, J.; Li, P. The antioxidant activity of glucosamine hydrochloride in vitro. Bioorg. Med. Chem., 2006, 14, 1706-1709.
[11]
Yan, Y.; Wanshun, L.; Baoqin, H.; Changhong, W.; Chenwei, F.; Bing, L.; Liehuan, C. The antioxidative and immunostimulating properties of D-glucosamine. Int. Immunopharmacol., 2007, 7, 29-35.
[12]
Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J., 2008, 22, 659-661.
[13]
Glaza, S.M. Acute oral toxicity study: Glucosamine hydrochloride in rats. Covance, 2002, 7350, 1-46.
[14]
Evangelista, C.M.; Antunes, L.M.; Francescato, H.D.; Bianchi, M.L. Effects of the olive, extra virgin olive and canola oils on cisplatin-induced clastogenesis in Wistar rats. Food Chem. Toxicol., 2004, 42, 1291-1297.
[15]
Mora, L.O.; Antunes, L.M.; Francescato, H.D.; Bianchi, M.L. The effects of oral glutamine on cisplatin-induced genotoxicity in Wistar rat bone marrow cells. Mutat. Res., 2002, 518, 65-70.
[16]
Khandelwal, N.; Abraham, S.K. Protective effects of common anthocyanidins against genotoxic damage induced by chemotherapeutic drugs in mice. Planta Med., 2014, 80, 1278-1283.
[17]
Yilmaz, H.R.; Uz, E.; Altunbasak, A.; Sakalli, E.; Ozçelik, N. Anticlastogenic effect of caffeic acid phenethyl ester on cisplatin-induced chromosome aberrations in rat bone marrow cells. Toxicol. Ind. Health, 2010, 26, 33-37.
[18]
Schmid, W. The micronucleus test. Mutat. Res., 1975, 31, 9-15.
[19]
Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol., 2004, 142, 231-255.
[20]
Dos Santos, G.C.; Mendonça, L.M.; Antonucci, G.A.; Dos Santos, A.C.; Antunes, L.M.; Bianchi, M.L. Protective effect of bixin on cisplatin-induced genotoxicity in PC12 cells. Food Chem. Toxicol., 2012, 50, 335-340.
[21]
Serpeloni, J.M.; Grotto, D.; Mercadante, A.Z.; de Lourdes Pires Bianchi, M.; Antunes, L.M. Lutein improves antioxidant defense in vivo and protects against DNA damage and chromosome instability induced by cisplatin. Arch. Toxicol., 2010, 84, 811-822.
[22]
Rjiba-Touati, K.; Ayed-Boussema, I.; Skhiri, H.; Belarbia, A.; Zellema, D.; Achour, A.; Bacha, H. Induction of DNA fragmentation, chromosome aberrations and micronuclei by cisplatin in rat bone-marrow cells: Protective effect of recombinant human erythropoietin. Mutat. Res., 2012, 747, 202-206.
[23]
Jamialahmadi, K.; Soltani, F.; Nabavi Fard, M.; Behravan, J.; Mosaffa, F. Assessment of protective effects of glucosamine and N-acetyl glucosamine against DNA damage induced by hydrogen peroxide in human lymphocytes. Drug Chem. Toxicol., 2014, 37, 427-432.
[24]
Serpeloni, J.M.; Almeida, M.R.; Mercadante, A.Z.; Bianchi, M.L.; Antunes, L.M. Effects of lutein and chlorophyll b on GSH depletion and DNA damage induced by cisplatin in vivo. Hum. Exp. Toxicol., 2013, 32, 8288-8236.
[25]
Mendis, E.; Kim, M.M.; Rajapakse, N.; Kim, S.K. Sulfated glucosamine inhibits oxidation of biomolecules in cells via a mechanism involving intracellular free radical scavenging. Eur. J. Pharmacol., 2008, 579, 74-85.
[26]
Santhosh, S.; Anandan, R.; Sini, T.K.; Mathew, P.T.; Thankappan, T.K. Biochemical studies on the antiulcer effect of glucosamine on antioxidant defense status in experimentally induced peptic ulcer in rats. J. Clin. Bioch. Nutr., 2005, 35, 61-66.
[27]
Jamialahmadi, K.; Arasteh, O.; Matbou Riahi, M.; Mehri, S.; Riahi-Zanjani, B.; Karimi, G. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage. Environ. Toxicol. Pharmacol., 2014, 38, 212-219.
[28]
Yan, Y.; Wanshun, L.; Baoqin, H.; Bing, L.; Chenwei, F. Protective effects of chitosan oligosaccharide and its derivatives against carbon tetrachloride-induced liver damage in mice. Hepatol. Res., 2006, 35, 178-184.
[29]
Saad, A.M.; Sharaf, M.A.F.; El-Desouky, M.A.; Zaki, N.I.; Zein-El-Abedeen, E.A. Nutraceuticals containing glucosamine; Antioxidant and beneficial effects against CCl4 induced liver injury in rats. IJBBR, 2015, 6, 19-32.
[30]
Attia, S.M. Influence of resveratrol on oxidative damage in genomic DNA and apoptosis induced by cisplatin. Mutat. Res., 2012, 741, 22-31.
[31]
Attia, S.M. The impact of quercetin on cisplatin-induced clastogenesis and apoptosis in murine marrow cells. Mutagenesis, 2010, 25, 281-288.
[32]
Chen, Y.J.; Huang, Y.S.; Chen, J.T.; Chen, Y.H.; Tai, M.C.; Chen, C.L.; Liang, C.M. Protective effects of glucosamine on oxidative-stress and ischemia/reperfusion-induced retinal injury. Invest. Ophthalmol. Vis. Sci., 2015, 56, 1506-1516.
[33]
Mousavi, S.H.; Bakhtiari, E.; Hosseini, A.; Jamialahmadi, K. Protective effects of glucosamine and its acetylated derivative on serum/glucose deprivation-induced PC12 cells death: Role of reactive oxygen species. Res. Pharm. Sci., 2018, 13, 121-129.
[34]
Karabay, A.Z.; Koc, A.; Ozkan, T.; Sunguroglu, A.; Akta, F.; Buyukbingol, Z. Effects of glucosamine on LPS/IFN-γ induced RAW 264.7 macrophage apoptosis. Ankara Universitesi Tıp Fakultesi Mecmuası, 2012, 65, 1-8.
[35]
Wu, Y.L.; Lin, A.H.; Chen, C.H.; Huang, W.C.; Wang, H.Y.; Liu, M.H.; Lee, T.S.; Ru, Kou Y. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Free Radic. Biol. Med., 2014, 69, 208-218.
[36]
Park, J.H.; Kim, J.N.; Jang, B.C.; Im, S.S.; Song, D.K.; Bae, J.H. Glucosamine suppresses platelet-activating factor-induced activation of microglia through inhibition of store-operated calcium influx. Environ. Toxicol. Pharmacol., 2016, 42, 1-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy