Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Central Histamine, the H3-Receptor and Obesity Therapy

Author(s): ">Néstor F. Díaz, ">Héctor Flores-Herrera, ">Guadalupe García-López and ">Anayansi Molina-Hernández*

Volume 18, Issue 7, 2019

Page: [516 - 522] Pages: 7

DOI: 10.2174/1871527318666190703094846

Price: $65

Abstract

The brain histaminergic system plays a pivotal role in energy homeostasis, through H1- receptor activation, it increases the hypothalamic release of histamine that decreases food intake and reduces body weight. One way to increase the release of hypothalamic histamine is through the use of antagonist/inverse agonist for the H3-receptor. Histamine H3-receptors are auto-receptors and heteroreceptors located on the presynaptic membranes and cell soma of neurons, where they negatively regulate the synthesis and release of histamine and other neurotransmitters in the central nervous system. Although several compounds acting as H3-receptor antagonist/inverse agonists have been developed, conflicting results have been reported and only one has been tested as anti-obesity in humans. Animal studies revealed the opposite effect in food intake, energy expeditor, and body weight, depending on the drug, spice, and route of administration, among others. The present review will explore the state of art on the effects of H3-receptor ligands on appetite and body-weight, going through the following: a brief overview of the circuit involved in the control of food intake and energy homeostasis, the participation of the histaminergic system in food intake and body weight, and the H3-receptor as a potential therapeutic target for obesity.

Keywords: Histamine, obesity, food intake, Drug target, H3-receptor, paraventricular nuclei.

Graphical Abstract
[1]
Strader AD, Woods SC. Gastrointestinal hormones and food intake. Gastroenterology 2005; 128(1): 175-91.
[http://dx.doi.org/10.1053/j.gastro.2004.10.043] [PMID: 15633135]
[2]
Arshad N, Lin TS, Yahaya MF. Metabolic syndrome and its effect on the brain: Possible mechanism. CNS Neurol Disord Drug Targets 2018; 17(8): 595-603.
[http://dx.doi.org/10.2174/1871527317666180724143258] [PMID: 30047340]
[3]
Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996; 17(2): 305-11.
[http://dx.doi.org/10.1016/0196-9781(96)00025-3] [PMID: 8801538]
[4]
Woods SC, Seeley RJ, Baskin DG, Schwartz MW. Insulin and the blood-brain barrier. Curr Pharm Des 2003; 9(10): 795-800.
[http://dx.doi.org/10.2174/1381612033455323] [PMID: 12678878]
[5]
Schwartz MW, Woods SC. Porte DJr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404(6778): 661-71.
[http://dx.doi.org/10.1038/35007534] [PMID: 10766253]
[6]
Woods SC, D’Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab 2008; 93(11)(Suppl. 1): S37-50.
[http://dx.doi.org/10.1210/jc.2008-1630] [PMID: 18987269]
[7]
Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung 2008; 95(2): 131-64.
[http://dx.doi.org/10.1556/APhysiol.95.2008.2.1] [PMID: 18642756]
[8]
Davidson TL, Chan K, Jarrard LE, Kanoski SE, Clegg DJ, Benoit SC. Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus 2009; 19(3): 235-52.
[http://dx.doi.org/10.1002/hipo.20499] [PMID: 18831000]
[9]
Baik JH. Dopamine signaling in food addiction: Role of dopamine D2 receptors. BMB Rep 2013; 46(11): 519-26.
[http://dx.doi.org/10.5483/BMBRep.2013.46.11.207] [PMID: 24238362]
[10]
Boutelle KN, Wierenga CE, Bischoff-Grethe A, et al. Increased brain response to appetitive tastes in the insula and amygdala in obese compared with healthy weight children when sated. Int J Obes 2015; 39(4): 620-8.
[http://dx.doi.org/10.1038/ijo.2014.206] [PMID: 25582522]
[11]
Waxman SE. A systematic review of impulsivity in eating disorders. Eur Eat Disord Rev 2009; 17(6): 408-25.
[http://dx.doi.org/10.1002/erv.952] [PMID: 19548249]
[12]
Tetley A, Brunstrom J, Griffiths P. Individual differences in food-cue reactivity. The role of BMI and everyday portion-size selections. Appetite 2009; 52(3): 614-20.
[http://dx.doi.org/10.1016/j.appet.2009.02.005] [PMID: 19501758]
[13]
de Celis-Alonso B, Hidalgo-Tobón SS, Barragán-Pérez E, et al. Different food odors control brain connectivity in impulsive children. CNS Neurol Disord Drug Targets 2019; 18(1): 63-77.
[http://dx.doi.org/10.2174/1871527317666181105105113] [PMID: 30394220]
[14]
Martinelli I, Tomassoni D, Moruzzi M, Traini E, Amenta F, Tayebati SK. Obesity and metabolic syndrome affect the cholinergic transmission and cognitive functions. CNS Neurol Disord Drug Targets 2017; 16(6): 664-76.
[http://dx.doi.org/10.2174/1871527316666170428123853] [PMID: 28462694]
[15]
Bacciottini L, Passani MB, Mannaioni PF, Blandina P. Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 2001; 124(2): 183-94.
[http://dx.doi.org/10.1016/S0166-4328(01)00230-3] [PMID: 11640972]
[16]
Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev 2008; 88(3): 1183-241.
[http://dx.doi.org/10.1152/physrev.00043.2007] [PMID: 18626069]
[17]
Panula P, Chazot PL, Cowart M, et al. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2015; 67(3): 601-55.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[18]
Oda T, Morikawa N, Saito Y, Masuho Y, Matsumoto S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 2000; 275(47): 36781-6.
[http://dx.doi.org/10.1074/jbc.M006480200] [PMID: 10973974]
[19]
Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M. Histaminergic transmission in the mammalian brain. Physiol Rev 1991; 71(1): 1-51.
[http://dx.doi.org/10.1152/physrev.1991.71.1.1] [PMID: 1846044]
[20]
Palacios JM, Wamsley JK, Kuhar MJ. The distribution of histamine H1-receptors in the rat brain: An autoradiographic study. Neuroscience 1981; 6(1): 15-37.
[http://dx.doi.org/10.1016/0306-4522(81)90240-2] [PMID: 6111763]
[21]
Ruat M, Bouthenet ML, Schwartz JC, Ganellin CR. Histamine H1-receptor in heart: Unique electrophoretic mobility and autoradiographic localization. J Neurochem 1990; 55(2): 379-85.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb04148.x] [PMID: 2370544]
[22]
Tardivel-Lacombe J, Rouleau A, Héron A, et al. Cloning and cerebral expression of the guinea pig histamine H3 receptor: Evidence for two isoforms. Neuroreport 2000; 11(4): 755-9.
[http://dx.doi.org/10.1097/00001756-200003200-00020] [PMID: 10757514]
[23]
Rouleau A, Héron A, Cochois V, Pillot C, Schwartz JC, Arrang JM. Cloning and expression of the mouse histamine H3 receptor: Evidence for multiple isoforms. J Neurochem 2004; 90(6): 1331-8.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02606.x] [PMID: 15341517]
[24]
Molina-Hernández A, Nuñez A, Sierra JJ, Arias-Montaño JA. Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes. Neuropharmacology 2001; 41(8): 928-34.
[http://dx.doi.org/10.1016/S0028-3908(01)00144-7] [PMID: 11747897]
[25]
Molina-Hernández A, Nuñez A, Arias-Montaño JA. Histamine H3-receptor activation inhibits dopamine synthesis in rat striatum. Neuroreport 2000; 11(1): 163-6.
[http://dx.doi.org/10.1097/00001756-200001170-00032] [PMID: 10683850]
[26]
Wada H, Yamatodani A, Inagaki N, Itowi N, Wang NP, Fukui H. Histaminergic neuron system and its function. Adv Exp Med Biol 1988; 236: 343-57.
[http://dx.doi.org/10.1007/978-1-4757-5971-6_27] [PMID: 2907240]
[27]
Clineschmidt BV, Lotti VJ. Histamine: Intraventricular injection suppresses ingestive behavior of the cat. Arch Int Pharmacodyn Ther 1973; 206(2): 288-98.
[PMID: 4778620]
[28]
Itowi N, Nagai K, Nakagawa H, Watanabe T, Wada H. Changes in the feeding behavior of rats elicited by histamine infusion. Physiol Behav 1988; 44(2): 221-6.
[http://dx.doi.org/10.1016/0031-9384(88)90142-4] [PMID: 3237828]
[29]
Lecklin A, Etu-Seppälä P, Stark H, Tuomisto L. Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res 1998; 793(1-2): 279-88.
[http://dx.doi.org/10.1016/S0006-8993(98)00186-3] [PMID: 9630675]
[30]
Vaziri P, Dang K, Anderson GH. Evidence for histamine involvement in the effect of histidine loads on food and water intake in rats. J Nutr 1997; 127(8): 1519-26.
[http://dx.doi.org/10.1093/jn/127.8.1519] [PMID: 9237947]
[31]
Lecklin A, Tuomisto L, MacDonald E. Metoprine, an inhibitor of histamine N-methyltransferase but not catechol-O-methyltransferase, suppresses feeding in sated and in food deprived rats. Methods Find Exp Clin Pharmacol 1995; 17(1): 47-52.
[PMID: 7542717]
[32]
Orthen-Gambill N, Salomon M. FMH-induced decrease in central histamine levels produces increased feeding and body weight in rats. Physiol Behav 1992; 51(4): 891-3.
[http://dx.doi.org/10.1016/0031-9384(92)90132-L] [PMID: 1594690]
[33]
Tuomisto L, Yamatodani A, Jolkkonen J, Sainio EL, Airaksinen MM. Inhibition of brain histamine synthesis increases food intake and attenuates vasopressin response to salt loading in rats. Methods Find Exp Clin Pharmacol 1994; 16(5): 355-9.
[PMID: 7934314]
[34]
Machidori H, Sakata T, Yoshimatsu H, et al. Zucker obese rats: Defect in brain histamine control of feeding. Brain Res 1992; 590(1-2): 180-6.
[http://dx.doi.org/10.1016/0006-8993(92)91093-T] [PMID: 1330211]
[35]
Fukagawa K, Sakata T, Shiraishi T, et al. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am J Physiol 1989; 256(3 Pt 2): R605-11.
[PMID: 2564258]
[36]
Lecklin A, Tuomisto L. The blockade of H1 receptors attenuates the suppression of feeding and diuresis induced by inhibition of histamine catabolism. Pharmacol Biochem Behav 1998; 59(3): 753-8.
[http://dx.doi.org/10.1016/S0091-3057(97)00465-6] [PMID: 9512082]
[37]
Masaki T, Chiba S, Yasuda T, et al. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes 2004; 53(9): 2250-60.
[http://dx.doi.org/10.2337/diabetes.53.9.2250] [PMID: 15331534]
[38]
Kalucy RS. Drug-induced weight gain. Drugs 1980; 19(4): 268-78.
[http://dx.doi.org/10.2165/00003495-198019040-00002] [PMID: 6991239]
[39]
Ali AH, Yanoff LB, Stern EA, et al. Acute effects of betahistine hydrochloride on food intake and appetite in obese women: A randomized, placebo-controlled trial. Am J Clin Nutr 2010; 92(6): 1290-7.
[http://dx.doi.org/10.3945/ajcn.110.001586] [PMID: 20881066]
[40]
Arrang JM, Garbarg M, Quach TT, Yeramian E, Schwartz JC, Schwartz JC. Actions of betahistine at histamine receptors in the brain. Eur J Pharmacol 1985; 111(1): 73-84.
[http://dx.doi.org/10.1016/0014-2999(85)90115-3] [PMID: 2990946]
[41]
Martins IJ. Appetite dysregulation and obesity in Western Countries. Moldova: LAP LAMBERT Academic Publishing 2012.
[42]
Lovenberg TW, Roland BL, Wilson SJ, et al. Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 1999; 55(6): 1101-7.
[http://dx.doi.org/10.1124/mol.55.6.1101] [PMID: 10347254]
[43]
Sharma HS, Skaper SD, Sharma A. Commentary: Histaminergic drugs could be novel targets for neuroprotection in CNS disorders. CNS Neurol Disord Drug Targets 2016; 15(6): 642-3.
[http://dx.doi.org/10.2174/1871527315999160606154134] [PMID: 27501948]
[44]
Itoh E, Fujimiya M, Inui A. Thioperamide, a histamine H3 receptor antagonist, suppresses NPY-but not dynorphin A-induced feeding in rats. Regul Pept 1998; 75-76: 373-6.
[http://dx.doi.org/10.1016/S0167-0115(98)00090-1] [PMID: 9802431]
[45]
Itoh E, Fujimiya M, Inui A. Thioperamide, a histamine H3 receptor antagonist, powerfully suppresses peptide YY-induced food intake in rats. Biol Psychiatry 1999; 45(4): 475-81.
[http://dx.doi.org/10.1016/S0006-3223(98)00044-4] [PMID: 10071721]
[46]
Sindelar DK, Shepperd ML, Pickard RT, et al. Central H3R activation by thioperamide does not affect energy balance. Pharmacol Biochem Behav 2004; 78(2): 275-83.
[http://dx.doi.org/10.1016/j.pbb.2004.03.019] [PMID: 15219768]
[47]
Takahashi K, Suwa H, Ishikawa T, Kotani H. Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype. J Clin Invest 2002; 110(12): 1791-9.
[http://dx.doi.org/10.1172/JCI15784] [PMID: 12488429]
[48]
Toyota H, Dugovic C, Koehl M, et al. Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol 2002; 62(2): 389-97.
[http://dx.doi.org/10.1124/mol.62.2.389] [PMID: 12130692]
[49]
Gbahou F, Rouleau A, Arrang JM. The histamine autoreceptor is a short isoform of the H3 receptor. Br J Pharmacol 2012; 166(6): 1860-71.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01913.x] [PMID: 22356432]
[50]
Cogé F, Guénin SP, Audinot V, et al. Genomic organization and characterization of splice variants of the human histamine H3 receptor. Biochem J 2001; 355(Pt 2): 279-88.
[http://dx.doi.org/10.1042/bj3550279] [PMID: 11284713]
[51]
Morisset S, Sasse A, Gbahou F, et al. The rat H3 receptor: Gene organization and multiple isoforms. Biochem Biophys Res Commun 2001; 280(1): 75-80.
[http://dx.doi.org/10.1006/bbrc.2000.4073] [PMID: 11162480]
[52]
Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM. Chromosomal mapping and organization of the human histamine H3 receptor gene. Neuroreport 2001; 12(2): 321-4.
[http://dx.doi.org/10.1097/00001756-200102120-00028] [PMID: 11209943]
[53]
Strakhova MI, Fox GB, Carr TL, et al. Cloning and characterization of the monkey histamine H3 receptor isoforms. Eur J Pharmacol 2008; 601(1-3): 8-15.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.026] [PMID: 18977214]
[54]
Wellendorph P, Goodman MW, Burstein ES, Nash NR, Brann MR, Weiner DM. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor. Neuropharmacology 2002; 42(7): 929-40.
[http://dx.doi.org/10.1016/S0028-3908(02)00041-2] [PMID: 12069903]
[55]
Bongers G, Krueger KM, Miller TR, et al. An 80-amino acid deletion in the third intracellular loop of a naturally occurring human histamine H3 isoform confers pharmacological differences and constitutive activity. J Pharmacol Exp Ther 2007; 323(3): 888-98.
[http://dx.doi.org/10.1124/jpet.107.127639] [PMID: 17855474]
[56]
Leurs R, Bakker RA, Timmerman H, de Esch IJ. The histamine H3 receptor: From gene cloning to H3 receptor drugs. Nat Rev Drug Discov 2005; 4(2): 107-20.
[http://dx.doi.org/10.1038/nrd1631] [PMID: 15665857]
[57]
Leurs R, Blandina P, Tedford C, Timmerman H. Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci 1998; 19(5): 177-83.
[http://dx.doi.org/10.1016/S0165-6147(98)01201-2] [PMID: 9652190]
[58]
Hough LB. Genomics meets histamine receptors: New subtypes, new receptors. Mol Pharmacol 2001; 59(3): 415-9.
[http://dx.doi.org/10.1124/mol.59.3.415] [PMID: 11179433]
[59]
Ishizuka T, Hatano K, Murotani T, Yamatodani A. Comparison of the effect of an H(3)-inverse agonist on energy intake and hypothalamic histamine release in normal mice and leptin resistant mice with high fat diet-induced obesity. Behav Brain Res 2008; 188(2): 250-4.
[http://dx.doi.org/10.1016/j.bbr.2007.11.001] [PMID: 18082276]
[60]
Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35(5): 361-90.
[http://dx.doi.org/10.2165/00003088-199835050-00003] [PMID: 9839089]
[61]
Cowart M, Altenbach R, Black L, Faghih R, Zhao C, Hancock AA. Medicinal chemistry and biological properties of non-imidazole histamine H3 antagonists. Mini Rev Med Chem 2004; 4(9): 979-92.
[http://dx.doi.org/10.2174/1389557043403215] [PMID: 15544558]
[62]
Guryn R, Staszewski M, Stasiak A, et al. Non-imidazole histamine H3 ligands. Part VII. Synthesis, in vitro and in vivo characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules 2018; 23(2): 326.
[http://dx.doi.org/10.3390/molecules23020326] [PMID: 29401659]
[63]
Hancock AA, Diehl MS, Faghih R, et al. In vitro optimization of structure activity relationships of analogues of A-331440 combining radioligand receptor binding assays and micronucleus assays of potential antiobesity histamine H3 receptor antagonists. Basic Clin Pharmacol Toxicol 2004; 95(3): 144-52.
[http://dx.doi.org/10.1111/j.1742-7843.2004.950307.x] [PMID: 15447739]
[64]
Hancock AA, Bennani YL, Bush EN, et al. Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. Eur J Pharmacol 2004; 487(1-3): 183-97.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.015] [PMID: 15033391]
[65]
Malmlöf K, Zaragoza F, Golozoubova V, et al. Influence of a selective histamine H3 receptor antagonist on hypothalamic neural activity, food intake and body weight. Int J Obes 2005; 29(12): 1402-12.
[http://dx.doi.org/10.1038/sj.ijo.0803036] [PMID: 16151415]
[66]
Barbier AJ, Berridge C, Dugovic C, et al. Acute wake-promoting actions of JNJ-5207852, a novel, diamine-based H3 antagonist. Br J Pharmacol 2004; 143(5): 649-61.
[http://dx.doi.org/10.1038/sj.bjp.0705964] [PMID: 15466448]
[67]
Faghih R, Dwight W, Black L, et al. Structure-activity relationships of non-imidazole H(3) receptor ligands. Part 2: Binding preference for D-amino acids motifs. Bioorg Med Chem Lett 2002; 12(15): 2035-7.
[http://dx.doi.org/10.1016/S0960-894X(02)00310-4] [PMID: 12113836]
[68]
Faghih R, Dwight W, Gentles R, et al. Structure-activity relationships of non-imidazole H(3) receptor ligands. Part 1. Bioorg Med Chem Lett 2002; 12(15): 2031-4.
[http://dx.doi.org/10.1016/S0960-894X(02)00309-8] [PMID: 12113835]
[69]
Gfesser GA, Zhang H, Dinges J, et al. Structure-activity relationships of non-imidazole H(3) receptor ligands. Part 3: 5-Substituted 3-phenyl-1,2,4-oxadiazoles as potent antagonists. Bioorg Med Chem Lett 2004; 14(3): 673-6.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.038] [PMID: 14741266]
[70]
Hancock AA, Diehl MS, Fey TA, et al. Antiobesity evaluation of histamine H3 Receptor (H3R) antagonist analogs of A-331440 with improved safety and efficacy. Inflamm Res 2005; 54(Suppl. 1): S27-9.
[http://dx.doi.org/10.1007/s00011-004-0412-z] [PMID: 15928821]
[71]
Ghoshal A, Kumar A, Yugandhar D, et al. Corrigendum to “Identification of novel β-lactams and pyrrolidinone derivatives as selective Histamine-3 receptor (H3R) modulators as possible antiobesity agents” [Eur. J. Med. Chem. 152 (2018) 148-159]. Eur J Med Chem 2018; 156: 628-30.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.034] [PMID: 30031973]
[72]
Ghoshal A, Kumar A, Yugandhar D, et al. Identification of novel β-lactams and pyrrolidinone derivatives as selective Histamine-3 Receptor (H3R) modulators as possible anti-obesity agents. Eur J Med Chem 2018; 152: 148-59.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.020] [PMID: 29704723]
[73]
Hopkins M, Blundell J, Halford J, King N, Finlayson G. The regulation of food intake in humans Endotext 2000. Available from.https://www.endotext.org/?s=The+regulation+of+food+intake+in+humans (Accessed on March 30, 2016).
[74]
Levitsky DA. The non-regulation of food intake in humans: Hope for reversing the epidemic of obesity. Physiol Behav 2005; 86(5): 623-32.
[http://dx.doi.org/10.1016/j.physbeh.2005.08.053] [PMID: 16263145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy