Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research

Author(s): Da-Cheng Hao* and Pei-gen Xiao

Volume 20, Issue 7, 2019

Page: [556 - 574] Pages: 19

DOI: 10.2174/1389200220666190618101526

Price: $65

Abstract

Background: The representative cardiovascular herbs, i.e. Panax, Ligusticum, Carthamus, and Pueraria plants, are traditionally and globally used in the prevention and treatment of various cardiovascular diseases. Modern phytochemical studies have found many medicinal compounds from these plants, and their unique pharmacological activities are being revealed. However, there are few reviews that systematically summarize the current trends of Drug Metabolism/Pharmacokinetic (DMPK) investigations of cardiovascular herbs.

Methods: Here, the latest understanding, as well as the knowledge gaps of the DMPK issues in drug development and clinical usage of cardiovascular herbal compounds, was highlighted.

Results: The complicated herb-herb interactions of cardiovascular Traditional Chinese Medicine (TCM) herb pair/formula significantly impact the PK/pharmacodynamic performance of compounds thereof, which may inspire researchers to develop a novel herbal formula for the optimized outcome of different cardiovascular diseases. While the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/T) of some compounds has been deciphered, DMPK studies should be extended to more cardiovascular compounds of different medicinal parts, species (including animals), and formulations, and could be streamlined by versatile omics platforms and computational analyses.

Conclusion: In the context of systems pharmacology, the DMPK knowledge base is expected to translate bench findings to clinical applications, as well as foster cardiovascular drug discovery and development.

Keywords: Traditional medicine, cardiovascular, drug metabolism, pharmacokinetics, drug development, Panax, Apiaceae, Carthamus.

Graphical Abstract
[1]
Yang, X.J.; Xiao, S.Y. Regularity of drug use of patents in force of traditional Chinese medicine compounds in preventing and treating cardiovascular diseases on basis of frequency analysis. Zhongguo Zhongyao Zazhi, 2012, 37(17), 2661-2666.
[PMID: 23236773]
[2]
Miao, Q.; Hu, J.Q.; Zhang, J.H.; Yue, G.; Bai, D.; Liu, Z.; Wang, C.; Wang, R.; Song, Z.; Yang, Y.; Liu, L. Study on component compatibility regularity of Chinese material medica in treatment of cardiovascular diseases based on association rules mining. Chin. Tradit. Herbal Drugs, 2018, 49, 1461-1467.
[3]
Hao, D.C.; Gu, X.J.; Xiao, P.G. Medicinal Plants: Chemistry, Biology and Omics, 1st ed; Amazon: Virginia, 2015.
[4]
Tan, J.; Wang, C.; Zhu, H.; Zhou, B.; Xiong, L.; Wang, F.; Li, P.; Liu, J. Comprehensive metabolomics analysis of Xueshuan Xinmaining Tablet in blood stasis model rats using UPLC-Q/TOF-MS. Molecules, 2018, 23(7), E1650.
[http://dx.doi.org/10.3390/molecules23071650] [PMID: 29986394]
[5]
Zhan, S.Y.; Shao, Q.; Fan, X.H.; Li, Z.; Cheng, Y.Y.; Wang, J.; Tang, Y.; Qu, C.; Shi, X.; Zhang, P.; Ge, Y.; Cao, Y.; Pang, H.; Shan, C.; Cui, X.; Qian, L.; Duan, J.A.; Li, Z.; Cheng, Y.Y. Tissue distribution and excretion of herbal components after intravenous administration of a Chinese medicine (Shengmai injection) in rat. Arch. Pharm. Res., 2014, 19, 1-12.
[http://dx.doi.org/10.1007/s12272-014-0376-7] [PMID: 24748511]
[6]
Chen, X.; Zhao, Z.; Chen, Y.; Gou, X.; Zhou, Z.; Zhong, G.; Cai, Y.; Huang, M.; Jin, J. Mechanistic understanding of the effect of Dengzhan Shengmai capsule on the pharmacokinetics of clopidogrel in rats. J. Ethnopharmacol., 2016, 192, 362-369.
[http://dx.doi.org/10.1016/j.jep.2016.07.066] [PMID: 27459888]
[7]
Zhang, Y.; Miao, L.; Lin, L.; Ren, C.Y.; Liu, J.X.; Cui, Y.M. Repeated administration of Sailuotong, a fixed combination of Panax ginseng, Ginkgo biloba, and Crocus sativus extracts for vascular dementia, alters CYP450 activities in rats. Phytomedicine, 2018, 38, 125-134.
[http://dx.doi.org/10.1016/j.phymed.2017.02.007] [PMID: 29425645]
[8]
He, J.L.; Zhao, J.W.; Ma, Z.C.; Wang, Y.G.; Liang, Q.D.; Tan, H.L.; Xiao, C.R.; Tang, X.L.; Gao, Y. Serum pharmacochemistry analysis using UPLC-Q-TOF/MS after oral administration to rats of Shenfu Decoction. Evid. Based Complement. Alternat. Med., 2015, 2015, 973930.
[http://dx.doi.org/10.1155/2015/973930] [PMID: 26273317]
[9]
Hao, D.C.; Xiao, P.G. Impact of drug metabolism/pharmacokinetics and their relevance upon Saletc-based drug discovery. Curr. Drug Metab., 2017, 18(12), 1071-1084.
[http://dx.doi.org/10.2174/1389200218666170531111624] [PMID: 28558633]
[10]
Zhang, Y.; Shi, P.; Yao, H.; Shao, Q.; Fan, X. Metabolite profiling and pharmacokinetics of herbal compounds following oral administration of a cardiovascular multi-herb medicine (Qishen yiqi pills) in rats. Curr. Drug Metab., 2012, 13(5), 510-523.
[http://dx.doi.org/10.2174/1389200211209050510] [PMID: 22292791]
[11]
Yi, F.; Peng, Y.; Liu, H.B.; Xiao, P.G. A preliminary review of studies of adaptogen. Zhongguo Xiandai Zhongyao, 2017, 19, 135-141.
[12]
Ramanathan, M.R.; Penzak, S.R. Pharmacokinetic drug interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(4), 545-557.
[http://dx.doi.org/10.1007/s13318-016-0387-5] [PMID: 27864798]
[13]
Peng, M.; Yi, Y.X.; Zhang, T.; Ding, Y.; Le, J. Stereoisomers of saponins in Panax notoginseng (Sanqi): A review. Front. Pharmacol., 2018, 9, 188.
[http://dx.doi.org/10.3389/fphar.2018.00188] [PMID: 29593531]
[14]
Donkor, P.O.; Chen, Y.; Ding, L.; Qiu, F. Locally and traditionally used Ligusticum species - A review of their phytochemistry, pharmacology and pharmacokinetics. J. Ethnopharmacol., 2016, 194, 530-548.
[http://dx.doi.org/10.1016/j.jep.2016.10.012] [PMID: 27729283]
[15]
Zhang, N.; Cheng, C.; Olaleye, O.E.; Sun, Y.; Li, L.; Huang, Y.; Du, F.; Yang, J.; Wang, F.; Shi, Y.; Xu, F.; Li, Y.; Wen, Q.; Zhang, N.; Li, C. Pharmacokinetics-based identification of potential therapeutic phthalides from XueBiJing, a Chinese herbal injection used in sepsis management. Drug Metab. Dispos., 2018, 46(6), 823-834.
[http://dx.doi.org/10.1124/dmd.117.079673] [PMID: 29523601]
[16]
Zhou, X.; Tang, L.; Xu, Y.; Zhou, G.; Wang, Z. Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: A phytochemical and pharmacological review. J. Ethnopharmacol., 2014, 151(1), 27-43.
[http://dx.doi.org/10.1016/j.jep.2013.10.050] [PMID: 24212075]
[17]
Zhou, Y.X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res., 2014, 28(7), 961-975.
[http://dx.doi.org/10.1002/ptr.5083] [PMID: 24339367]
[18]
Maji, A.K.; Pandit, S.; Banerji, P.; Banerjee, D. Pueraria tuberosa: A review on its phytochemical and therapeutic potential. Nat. Prod. Res., 2014, 28(23), 2111-2127.
[http://dx.doi.org/10.1080/14786419.2014.928291] [PMID: 24980468]
[19]
Hao, D.C.; Ge, G.B.; Xiao, P.G.; Wang, P.; Yang, L. Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds. Curr. Drug Metab., 2015, 16(4), 294-321.
[http://dx.doi.org/10.2174/1389200216666150803144631] [PMID: 26234707]
[20]
Hao, C.; Yang, L. Drug metabolism and disposition diversity of Ranunculales phytometabolites: A systems perspective. Expert Opin. Drug Metab. Toxicol., 2016, 12(9), 1047-1065.
[http://dx.doi.org/10.1080/17425255.2016.1201068] [PMID: 27295138]
[21]
Li, B.; Xu, X.; Wang, X.; Yu, H.; Li, X.; Tao, W.; Wang, Y.; Yang, L. A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease. Int. J. Mol. Sci., 2012, 13(10), 13501-13520.
[http://dx.doi.org/10.3390/ijms131013501] [PMID: 23202964]
[22]
Cai, Q.; Li, Y.; Huang, Y.P. In situ absorption of self-microemulsifying soft capsule of volatile oil from rhizome of ligusticum chuanxiong in rats’ intestine. Yao Xue Xue Bao, 2009, 44(4), 425-429.
[PMID: 19545063]
[23]
Lai, H.Q.; Hu, Y.; Li, X.D. The in vitro dissolution of total composition of the tablet of rhizomes of Ligusticum chuanxiong components and in vitro-in vivo correlation by the method of area under the absorbance-wavelength curve. Yao Xue Xue Bao, 2015, 50(6), 788-792.
[PMID: 26521454]
[24]
Li, W.; Guo, J.; Tang, Y.; Wang, H.; Huang, M.; Qian, D.; Duan, J.A. Pharmacokinetic comparison of ferulic acid in normal and blood deficiency rats after oral administration of Angelica sinensis, Ligusticum chuanxiong and their combination. Int. J. Mol. Sci., 2012, 13(3), 3583-3597.
[http://dx.doi.org/10.3390/ijms13033583] [PMID: 22489169]
[25]
Qi, J.; Sun, M.; Ping, Q.; Zhuang, J.; Li, J.; Peddie, F.; Song, Y. The mechanisms for enhanced oral absorption of hydroxysafflor yellow A by chuanxiong volatile oil. Planta Med., 2010, 76(8), 786-792.
[http://dx.doi.org/10.1055/s-0029-1240705] [PMID: 20033864]
[26]
Wang, F.R.; Yang, X.W. Absorption and transport of isoflavonoid compounds from Tongmai formula across human intestinal epithelial (Caco-2) cells in vitro. Zhongguo Zhongyao Zazhi, 2017, 42(16), 3206-3212.
[PMID: 29171242]
[27]
Gao, W.J.; Wang, X.; Ma, C.J.; Dai, R.H.; Bi, K.S.; Chen, X.H. Comparative study on pharmacokinetics of senkyunolide I after administration of simple recipe and compound recipe in rats. Zhongguo Zhongyao Zazhi, 2013, 38(3), 427-431.
[PMID: 23668023]
[28]
Bai, J.; Lu, Y.; Du, S.Y.; Liu, C.M.; Li, Y.; Li, P.Y. Study on in vitro/in vivo correlation of extracts from Ligusticum chuanxiong after transdermal administration. Zhongguo Zhongyao Zazhi, 2013, 38(3), 422-426.
[PMID: 23668022]
[29]
Zhang, W.J.; Wang, J.Y.; Li, H.; He, X.; Zhang, R.Q.; Zhang, C.F.; Li, F.; Yang, Z.L.; Wang, C.Z.; Yuan, C.S. Novel application of natural anisole compounds as enhancers for transdermal delivery of ligustrazine. Am. J. Chin. Med., 2015, 43(6), 1231-1246.
[http://dx.doi.org/10.1142/S0192415X15500706] [PMID: 26446204]
[30]
Zhang, C.F.; Zhan, W.; Yang, Z.L.; Wang, Y.L. Impacts of bicyclo-monoterpene enhancers on transdermal delivery of ligustrazine. Yao Xue Xue Bao, 2010, 45(11), 1452-1458.
[PMID: 21355527]
[31]
Olaleye, O.E.; Niu, W.; Du, F.F.; Wang, F.Q.; Xu, F.; Pintusophon, S.; Lu, J.L.; Yang, J.L.; Li, C. Multiple circulating saponins from intravenous ShenMai inhibit OATP1Bs in vitro: Potential joint precipitants of drug interactions. Acta Pharmacol. Sin., 2019, 40(6), 833-849.
[http://dx.doi.org/10.1038/s41401-018-0173-9] [PMID: 30327544]
[32]
Jiao, Q.; Wang, R.; Jiang, Y.; Liu, B. Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chem. Cent. J., 2018, 12(1), 48.
[http://dx.doi.org/10.1186/s13065-018-0417-2] [PMID: 29728878]
[33]
Cheng, Z. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 93, 321-330.
[http://dx.doi.org/10.1016/j.saa.2012.03.032] [PMID: 22484270]
[34]
He, C.Y.; Wang, S.; Feng, Y.; Liang, S.; Lin, X.; Xu, D.S.; Ruan, K.F. Pharmacokinetics, tissue distribution and metabolism of senkyunolide I, a major bioactive component in Ligusticum chuanxiong Hort. (Umbelliferae). J. Ethnopharmacol., 2012, 142(3), 706-713.
[http://dx.doi.org/10.1016/j.jep.2012.05.047] [PMID: 22668502]
[35]
Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res., 2017, 179, 204-222.
[http://dx.doi.org/10.1016/j.trsl.2016.08.002] [PMID: 27591027]
[36]
Ge, H.; Chen, Y.; Chen, J.; Tian, J.; Liang, X.; Chen, L. Evaluation of antioxidant activities of ethanol extract from Ligusticum subjected to in vitro gastrointestinal digestion. Food Chem. Toxicol., 2018, 119, 417-424.
[http://dx.doi.org/10.1016/j.fct.2017.12.035] [PMID: 29274897]
[37]
Tan, Y.; Zhuang, X.M.; Shen, G.L.; Li, H.; Gao, Y. Investigation of metabolic kinetics and reaction phenotyping of ligustrazin by using liver microsomes and recombinant human enzymes. Yao Xue Xue Bao, 2014, 49(3), 374-379.
[PMID: 24961110]
[38]
Hao, D.; Xiao, P.; Chen, S. Phenotype prediction of nonsynonymous single nucleotide polymorphisms in human phase II drug/xenobiotic metabolizing enzymes: Perspectives on molecular evolution. Sci. China Life Sci., 2010, 53(10), 1252-1262.
[http://dx.doi.org/10.1007/s11427-010-4062-9] [PMID: 20953949]
[39]
Liu, C.F.; Qiao, X.; Liu, K.D.; Miao, W.J.; Li, Y.J.; Liu, Y.; Jiang, Y.Y.; Bo, T.; Shi, R.B.; Guo, D.A.; Ye, M. In vivo metabolites and plasma exposure of TongMai Keli analyzed by UHPLC/DAD/qTOF-MS and LC/MS/MS. J. Ethnopharmacol., 2013, 145(2), 509-516.
[http://dx.doi.org/10.1016/j.jep.2012.11.021] [PMID: 23201491]
[40]
Duan, J.; Xiang, D.; Luo, H.; Wang, G.; Ye, Y.; Yu, C.; Li, X. Tetramethylpyrazine suppresses lipid accumulation in macrophages via upregulation of the ATP-binding cassette transporters and downregulation of scavenger receptors. Oncol. Rep., 2017, 38(4), 2267-2276.
[http://dx.doi.org/10.3892/or.2017.5881] [PMID: 28791414]
[41]
Yan, R.; Yang, Y.; Chen, Y. Pharmacokinetics of Chinese medicines: Strategies and perspectives. Chin. Med., 2018, 13, 24.
[http://dx.doi.org/10.1186/s13020-018-0183-z] [PMID: 29743935]
[42]
Castañeda Sortibrán, A.; Téllez, M.G.; Ocotero, V.M.; Carballo-Ontiveros, M.A.; García, A.M.; Valdés, R.J.; Gutiérrez, E.R.; Rodríguez-Arnaiz, R. Chronic toxicity, genotoxic assay, and phytochemical analysis of four traditional medicinal plants. J. Med. Food, 2011, 14(9), 1018-1022.
[http://dx.doi.org/10.1089/jmf.2010.0178] [PMID: 21554118]
[43]
Du, J.C.; Xie, X.F.; Xiong, L.; Sun, C.; Peng, C. Research progress of chemical constituents and pharmacological activities of essential oil of Ligusticum chuanxiong. Zhongguo Zhongyao Zazhi, 2016, 41(23), 4328-4333.
[PMID: 28933107]
[44]
Zhang, H.; Han, T.; Yu, C.H.; Jiang, Y.P.; Peng, C.; Ran, X.; Qin, L.P. Analysis of the chemical composition, acute toxicity and skin sensitivity of essential oil from rhizomes of Ligusticum chuanxiong. J. Ethnopharmacol., 2012, 144(3), 791-796.
[http://dx.doi.org/10.1016/j.jep.2012.10.010] [PMID: 23085396]
[45]
Li, H.; Zhang, C.; Fan, R.; Sun, H.; Xie, H.; Luo, J.; Wang, Y.; Lv, H.; Tang, T. The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage. J. Ethnopharmacol., 2016, 193, 117-124.
[http://dx.doi.org/10.1016/j.jep.2016.08.005] [PMID: 27497635]
[46]
Hu, P.Y.; Yue, P.F.; Zheng, Q.; Yang, M.; Zhang, G.S.; Wu, B.; Liu, D. Pharmacokinetic comparative study of gastrodin after oral administration of Gastrodia elata Bl. extract and its compatibility with the different indigents of Ligusticum chuanxiong Hort. to rats. J. Ethnopharmacol., 2016, 191, 82-86.
[http://dx.doi.org/10.1016/j.jep.2016.06.007] [PMID: 27267828]
[47]
Huang, M.Y.; Shang, E.X.; Tang, Y.P.; Guo, J.M.; Shi, X.Q.; Li, W.X.; Duan, J.A. Research on nourishing and tonifying blood effects of the herb pair consisting of Angelica sinensis and Ligusticum chuanxiong on the basis of drug interaction. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2013, 33(4), 516-521.
[PMID: 23841275]
[48]
Wang, Y.; Li, G.; Zhou, Y.; Yin, D.; Tao, C.; Han, L.; Yue, X.; Pan, Y.; Yao, Y.; Peng, D.; Xu, F. The difference between blood-associated and water-associated herbs of Danggui-Shaoyao San in theory of TCM, based on serum pharmacochemistry. Biomed. Chromatogr., 2016, 30(4), 579-587.
[http://dx.doi.org/10.1002/bmc.3586] [PMID: 26270156]
[49]
Yue, S.; Wu, L.; Qu, C.; Tang, Y.; Jin, Y.; Li, S.; Shen, J.; Shi, X.; Shan, C.; Cui, X.; Zhang, L.; Yang, H.; Qian, L.; Qian, D.; Duan, J.A. Development and validation of a UFLC-MS/MS method for the determination of anhydrosafflor yellow B in rat plasma and its application to pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1003, 54-59.
[http://dx.doi.org/10.1016/j.jchromb.2015.09.013] [PMID: 26409263]
[50]
Ma, G.N.; Yu, F.L.; Wang, S.; Li, Z.P.; Xie, X.Y.; Mei, X.G. A novel oral preparation of hydroxysafflor yellow A base on a chitosan complex: A strategy to enhance the oral bioavailability. AAPS PharmSciTech, 2015, 16(3), 675-682.
[http://dx.doi.org/10.1208/s12249-014-0255-z] [PMID: 25511808]
[51]
Lv, L.Z.; Tong, C.Q.; Yu, J.; Han, M.; Gao, J.Q. Mechanism of enhanced oral absorption of hydrophilic drug incorporated in hydrophobic nanoparticles. Int. J. Nanomedicine, 2013, 8, 2709-2717.
[PMID: 23935363]
[52]
Zhao, B.; Gu, S.; Du, Y.; Shen, M.; Liu, X.; Shen, Y. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int. J. Pharm., 2018, 535(1-2), 164-171.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.040] [PMID: 29107614]
[53]
Lv, L.Z.; Tong, C.Q.; Lv, Q.; Tang, X.J.; Li, L.M.; Fang, Q.X.; Yu, J.; Han, M.; Gao, J.Q. Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: In vitro and in vivo studies. Int. J. Nanomedicine, 2012, 7, 4099-4107.
[PMID: 22888246]
[54]
Qiao, J.; Ji, D.; Sun, S.; Zhang, G.; Liu, X.; Sun, B.; Guan, Q. Oral bioavailability and lymphatic transport of Pueraria flavone-loaded self-emulsifying drug-delivery systems containing sodium taurocholate in rats. Pharmaceutics, 2018, 10(3), E147.
[http://dx.doi.org/10.3390/pharmaceutics10030147] [PMID: 30189624]
[55]
Wu, J.Y.; Li, Y.J.; Han, M.; Hu, X.B.; Yang, L.; Wang, J.M.; Xiang, D.X. A microemulsion of puerarin-phospholipid complex for improving bioavailability: Preparation, in vitro and in vivo evaluations. Drug Dev. Ind. Pharm., 2018, 44(8), 1336-1341.
[http://dx.doi.org/10.1080/03639045.2018.1449856] [PMID: 29513046]
[56]
Guan, Q.; Zhang, G.; Sun, S.; Fan, H.; Sun, C.; Zhang, S. Enhanced oral bioavailability of Pueraria flavones by a novel solid Self-microemulsifying Drug Delivery System (SMEDDS) dropping pills. Biol. Pharm. Bull., 2016, 39(5), 762-769.
[http://dx.doi.org/10.1248/bpb.b15-00854] [PMID: 26935150]
[57]
Xia, L.; Chen, X.M.; Peng, L.R.; Wang, S.X.; Wang, X.W.; Zuo, Y.; Zhang, P.; Liu, Q.S.; Zheng, X.H. Pharmacokinetic effect of Sappan Lignum on hydroxysafflor yellow A in Carthami Flos. Zhongguo Zhongyao Zazhi, 2013, 38(2), 269-272.
[PMID: 23672054]
[58]
Huber, G.A.; Priest, S.M.; Geisbuhler, T.P. Cardioprotective effect of hydroxysafflor yellow A etc the cardiac permeability transition pore. Planta Med., 2018, 84(8), 507-518.
[http://dx.doi.org/10.1055/s-0043-122501] [PMID: 29165728]
[59]
Jin, Y.; Wu, L.; Tang, Y.; Cao, Y.; Li, S.; Shen, J.; Yue, S.; Qu, C.; Shan, C.; Cui, X.; Zhang, L.; Duan, J.A. UFLC-Q-TOF/MS based screening and identification of the metabolites in plasma, bile, urine and feces of normal and blood stasis rats after oral administration of hydroxysafflor yellow A. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1012-1013, 124-129.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.023] [PMID: 26827279]
[60]
Yue, S.; Wu, L.; Wang, J.; Tang, Y.; Qu, C.; Shi, X.; Zhang, P.; Ge, Y.; Cao, Y.; Pang, H.; Shan, C.; Cui, X.; Qian, L.; Duan, J.A. Metabolic profile of anhydrosafflor yellow B in rats by ultra-fast liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1014, 37-44.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.047] [PMID: 26871281]
[61]
Xu, R.A.; Xu, Z.S.; Ge, R.S. Effects of hydroxysafflor yellow A on the activity and mRNA expression of four CYP isozymes in rats. J. Ethnopharmacol., 2014, 151(3), 1141-1146.
[http://dx.doi.org/10.1016/j.jep.2013.12.025] [PMID: 24373810]
[62]
Ge, B.; Zhang, Z.; Lam, T.T.; Zuo, Z. Puerarin offsets the anticoagulation effect of warfarin in rats by inducing rCyps, upregulating vitamin K epoxide reductase and inhibiting thrombomodulin. Biopharm. Drug Dispos., 2017, 38(1), 33-49.
[http://dx.doi.org/10.1002/bdd.2054] [PMID: 27925234]
[63]
Zheng, J.; Chen, B.; Jiang, B.; Zeng, L.; Tang, Z.R.; Fan, L.; Zhou, H.H. The effects of puerarin on CYP2D6 and CYP1A2 activities in vivo. Arch. Pharm. Res., 2010, 33(2), 243-246.
[http://dx.doi.org/10.1007/s12272-010-0209-2] [PMID: 20195825]
[64]
Chu, D.; Liu, W.; Huang, Z.; Liu, S.; Fu, X.; Liu, K. Pharmacokinetics and excretion of hydroxysafflor yellow A, a potent neuroprotective agent from safflower, in rats and dogs. Planta Med., 2006, 72(5), 418-423.
[http://dx.doi.org/10.1055/s-2005-916249] [PMID: 16557455]
[65]
Delshad, E.; Yousefi, M.; Sasannezhad, P.; Rakhshandeh, H.; Ayati, Z. Medical uses of Carthamus tinctorius L. (Safflower): A comprehensive review from traditional medicine to modern medicine. Electron. Physician, 2018, 10(4), 6672-6681.
[http://dx.doi.org/10.19082/6672] [PMID: 29881530]
[66]
de Ataide, E.C.; Reges Perales, S.; de Oliveira Peres, M.A.; Bastos Eloy da Costa, L.; Quarella, F.; Valerini, F.G.; Chueiri Neto, F.; Silveira Bello Stucchi, R.; de Fátima Santana Ferreira Boin, I. Acute liver failure induced by Carthamus tinctorius oil: Case reports and literature review. Transplant. Proc., 2018, 50(2), 476-477.
[http://dx.doi.org/10.1016/j.transproceed.2018.01.010] [PMID: 29579831]
[67]
Zhang, Z.; Liu, R.; Pu, X.; Sun, Y.; Zhao, X. Evaluation of the sub-chronic toxicity of a standardized flavonoid extract of safflower in rats. Regul. Toxicol. Pharmacol., 2017, 85, 98-107.
[http://dx.doi.org/10.1016/j.yrtph.2017.02.006] [PMID: 28192173]
[68]
Choi, Y.M.; Jung, D.J.; Kim, S.H.; Kim, J.U.; Yook, T.H. Repeated intramuscular-dose toxicity test of Watersoluble Carthami Flos (WCF) pharmacopuncture in Sprague-Dawley rats. J. Pharmacopuncture, 2015, 18(1), 36-43.
[http://dx.doi.org/10.3831/KPI.2015.18.004] [PMID: 25830057]
[69]
Ma, X.Y.; Liu, Y.; Yang, R.R.; Luo, Z.Q.; Lu, L.N.; Zhao, H.Y.; Zhao, H.H. Intestinal absorption and metabolism of Puerariae Lobatae Radix decoction by in situ closed-loop method. Zhongguo Zhongyao Zazhi, 2017, 42(8), 1532-1538.
[PMID: 29071858]
[70]
Anukunwithaya, T.; Poo, P.; Hunsakunachai, N.; Rodsiri, R.; Malaivijitnond, S.; Khemawoot, P. Absolute oral bioavailability and disposition kinetics of puerarin in female rats. BMC Pharmacol. Toxicol., 2018, 19(1), 25.
[http://dx.doi.org/10.1186/s40360-018-0216-3] [PMID: 29801513]
[71]
Su, B.; Kan, Y.; Xie, J.; Hu, J.; Pang, W. Relevance of the pharmacokinetic and pharmacodynamic profiles of Puerariae lobatae Radix to aggregation of multi-component molecules in aqueous decoctions. Molecules, 2016, 21(7), E845.
[http://dx.doi.org/10.3390/molecules21070845] [PMID: 27367654]
[72]
Wang, G.; Yang, C.; Zhang, K.; Hu, J.; Pang, W. Molecular clusters size of Puerariae thomsonii Radix aqueous decoction and relevance to oral absorption. Molecules, 2015, 20(7), 12376-12388.
[http://dx.doi.org/10.3390/molecules200712376] [PMID: 26198223]
[73]
Chen, Y.H.; Li, M.X.; Meng, Z.Q.; Yang, J.J.; Huang, W.Z.; Wang, Z.Z.; Wang, Y.S.; Xiao, W. Traditional Chinese medicine pairs (III)--effect of extract of Ginseng Radix et Rhizoma and Puerariae Lobatae Radix on intestinal absorption in rats. Zhongguo Zhongyao Zazhi, 2015, 40(15), 3094-3099.
[PMID: 26677717]
[74]
Liao, Z.G.; Liang, X.L.; Zhu, J.Y.; Zhao, G.W.; Guan, Y.M.; Cao, Y.C.; Zhao, L.J. Transport properties of puerarin and effect of extract of Radix Angelicae dahuricae on puerarin intestinal absorption using in situ and in vitro models. Phytother. Res., 2014, 28(9), 1288-1294.
[http://dx.doi.org/10.1002/ptr.5148] [PMID: 24756954]
[75]
Li, Y.; Song, Y.Q.; He, Y.L.; Zhu, C.Y. Bioavailability in vivo and in vitro transepithelial transport across Caco-2 cell monolayer of pueraria flavonoids bio-adhesive and floating pellets. Yao Xue Xue Bao, 2016, 51(7), 1144-1149.
[PMID: 29897690]
[76]
Petit, C.; Bujard, A.; Skalicka-Woźniak, K.; Cretton, S.; Houriet, J.; Christen, P.; Carrupt, P.A.; Wolfender, J.L. Prediction of the passive intestinal absorption of medicinal plant extract constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Planta Med., 2016, 82(5), 424-431.
[http://dx.doi.org/10.1055/s-0042-101247] [PMID: 26872320]
[77]
Shuai, S.; Yue, S.; Huang, Q.; Wang, W.; Yang, J.; Lan, K.; Ye, L. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(4), 413-422.
[http://dx.doi.org/10.1007/s13318-015-0265-6] [PMID: 25669445]
[78]
Ling, X.; Xiang, Y.; Tang, Q.; Jin, Z.; Chen, F.; Tan, X. Soybean milk inhibits absorption and intestinal transmembrane transport of Gegen in rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 7146813.
[http://dx.doi.org/10.1155/2017/7146813] [PMID: 28947910]
[79]
Kong, H.; Wang, X.; Shi, R.; Zhao, Y.; Cheng, J.; Yan, X.; Liu, X.; Wang, Y.; Zhang, M.; Wang, Q.; Qu, H. Pharmacokinetics and tissue distribution kinetics of puerarin in rats using indirect competitive ELISA. Molecules, 2017, 22(6), E939.
[http://dx.doi.org/10.3390/molecules22060939] [PMID: 28587251]
[80]
Prasain, J.K.; Peng, N.; Moore, R.; Arabshahi, A.; Barnes, S.; Wyss, J.M. Tissue distribution of puerarin and its conjugated metabolites in rats assessed by liquid chromatography-tandem mass spectrometry. Phytomedicine, 2009, 16(1), 65-71.
[http://dx.doi.org/10.1016/j.phymed.2008.09.004] [PMID: 19027277]
[81]
Kwon, J.E.; Lee, J.W.; Park, Y.; Sohn, E.H.; Choung, E.S.; Jang, S.A.; Kim, I.; Lee, D.E.; Koo, H.J.; Bak, J.P.; Lee, S.R.; Kang, S.C. Biotransformation of Pueraria lobata extract with Lactobacillus rhamnosus vitaP1 enhances anti-melanogenic activity. J. Microbiol. Biotechnol., 2018, 28(1), 22-31.
[http://dx.doi.org/10.4014/jmb.1705.05087] [PMID: 29081087]
[82]
Zhang, G.; Gong, T.; Kano, Y.; Yuan, D. Screening for in vitro metabolites of kakkalide and irisolidone in human and rat intestinal bacteria by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 947-948, 117-124.
[http://dx.doi.org/10.1016/j.jchromb.2013.12.017] [PMID: 24412694]
[83]
Kwon, J.E.; Lim, J.; Kim, I.; Kim, D.; Kang, S.C. Isolation and identification of new bacterial stains producing equol from Pueraria lobata extract fermentation. PLoS One, 2018, 13(2), e0192490.
[http://dx.doi.org/10.1371/journal.pone.0192490] [PMID: 29447179]
[84]
Shao, J.; Chen, J.; Li, T.; Zhao, X. Spectroscopic and molecular docking studies of the in vitro interaction between puerarin and cytochrome P450. Molecules, 2014, 19(4), 4760-4769.
[http://dx.doi.org/10.3390/molecules19044760] [PMID: 24743933]
[85]
Kim, S.B.; Yoon, I.S.; Kim, K.S.; Cho, S.J.; Kim, Y.S.; Cho, H.J.; Chung, S.J.; Chong, S.; Kim, D.D. In vitro and in vivo evaluation of the effect of puerarin on hepatic cytochrome p450-mediated drug metabolism. Planta Med., 2014, 80(7), 561-567.
[http://dx.doi.org/10.1055/s-0034-1368350] [PMID: 24710899]
[86]
Chatuphonprasert, W.; Jarukamjorn, K.; Putalun, W. Regulation of cancer-related genes - Cyp1a1, Cyp1b1, Cyp19, Nqo1 and Comt - expression in β-naphthoflavone-treated mice by miroestrol. J. Pharm. Pharmacol., 2016, 68(4), 475-484.
[http://dx.doi.org/10.1111/jphp.12531] [PMID: 26893163]
[87]
Udomsuk, L.; Jarukamjorn, K.; Putalun, W.; Sakuma, T.; Kawasaki, Y.; Nemoto, N. Modified expression of aryl hydrocarbon receptor-related genes by deoxymiroestrol, a phytoestrogen, in mouse hepatocytes in primary culture. J. Ethnopharmacol., 2011, 137(1), 902-908.
[http://dx.doi.org/10.1016/j.jep.2011.06.047] [PMID: 21777665]
[88]
Udomsuk, L.; Juengwatanatrakul, T.; Putalun, W.; Jarukamjorn, K. Bimodal action of miroestrol and deoxymiroestrol, phytoestrogens from Pueraria candollei var. mirifica, on hepatic CYP2B9 and CYP1A2 expressions and antilipid peroxidation in mice. Nutr. Res., 2012, 32(1), 45-51.
[http://dx.doi.org/10.1016/j.nutres.2011.11.003] [PMID: 22260863]
[89]
Udomsuk, L.; Juengwatanatrakul, T.; Putalun, W.; Jarukamjorn, K. Down regulation of gene related sex hormone synthesis pathway in mouse testes by miroestrol and deoxymiroestrol. Fitoterapia, 2011, 82(8), 1185-1189.
[http://dx.doi.org/10.1016/j.fitote.2011.08.005] [PMID: 21856387]
[90]
Bi, Y.F.; Zhu, H.B.; Xing, J.P.; Liu, Z.Q.; Song, F.R. Effects of six kinds of Chinese herb extracts on the activities of rat liver microsomes in vitro. Yao Xue Xue Bao, 2013, 48(7), 1131-1135.
[PMID: 24133981]
[91]
Dong, S.; Zhang, M.; Niu, H.; Jiang, K.; Jiang, J.; Ma, Y.; Wang, X.; Meng, S. Upregulation of UDP-glucuronosyltransferases 1a1 and 1a7 are involved in altered puerarin pharmacokinetics in type II diabetic rats. Molecules, 2018, 23(6), E1487.
[http://dx.doi.org/10.3390/molecules23061487] [PMID: 29925761]
[92]
Qu, J.; Wu, Z.; Gao, J.; Wen, H.; Wang, T.; Yuan, D. Excretion of tectoridin metabolites in rat urine and bile orally administrated at different dosages and their inhibitory activity against aldose reductase. Fitoterapia, 2014, 99, 99-108.
[http://dx.doi.org/10.1016/j.fitote.2014.09.009] [PMID: 25256063]
[93]
Shi, Z.; Zhang, G.; Zhao, L.; Wang, S.; Kano, Y.; Yuan, D. Excretion of tectorigenin in rat urine orally administrated at different dosages by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Eur. J. Drug Metab. Pharmacokinet., 2015, 40(3), 255-266.
[http://dx.doi.org/10.1007/s13318-014-0202-0] [PMID: 24789580]
[94]
Tang, Y.; Li, S.; Li, S.; Yang, X.; Qin, Y.; Zhang, Y.; Liu, C. Screening and isolation of potential lactate dehydrogenase inhibitors from five Chinese medicinal herbs: Soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. J. Sep. Sci., 2016, 39(11), 2043-2049.
[http://dx.doi.org/10.1002/jssc.201600050] [PMID: 27059876]
[95]
Udomsuk, L.; Juengwatanatrakul, T.; Putalun, W.; Jarukamjorn, K. Suppression of BSEP and MRP2 in mouse liver by miroestrol and deoxymiroestrol isolated from Pueraria candollei. Phytomedicine, 2012, 19(14), 1332-1335.
[http://dx.doi.org/10.1016/j.phymed.2012.06.007] [PMID: 23017271]
[96]
Wang, H.; Bai, X.; Sun, J.; Kano, Y.; Makino, T.; Yuan, D. Metabolism and excretion of kakkalide and its metabolites in rat urine, bile, and feces as determined by HPLC/UV and LC/MS/MS. Planta Med., 2013, 79(16), 1552-1557.
[http://dx.doi.org/10.1055/s-0033-1350832] [PMID: 24108437]
[97]
Moon, S.J.; Kim, S.Y.; Lim, C.H.; Jang, H.B.; Kim, M.G.; Jeon, J.Y. Phase 1 and pharmacokinetic drug-drug interaction study of metformin, losartan, and linagliptin coadministered with DW1029M in healthy volunteers. Clin. Pharmacol. Drug Dev., 2017, 6(4), 408-419.
[http://dx.doi.org/10.1002/cpdd.320] [PMID: 27739231]
[98]
Liu, Y.; Liu, S.; Shi, Y.; Qin, M.; Sun, Z.; Liu, G. Effects of safflower injection on the pharmacodynamics and pharmacokinetics of warfarin in rats. Xenobiotica, 2018, 48(8), 818-823.
[http://dx.doi.org/10.1080/00498254.2017.1361051] [PMID: 28783419]
[99]
Xiao, B.; Sun, Z.; Sun, S.Y.; Dong, J.; Li, Y.; Gao, S.; Pang, J.; Chang, Q. Effect of cortex mori on pharmacokinetic profiles of main isoflavonoids from pueraria lobata in rat plasma. J. Ethnopharmacol., 2017, 209, 140-146.
[http://dx.doi.org/10.1016/j.jep.2017.07.035] [PMID: 28739387]
[100]
Liang, Y.Z.; Chen, H.M.; Su, Z.Q.; Hou, S.Z.; Chen, X.Y.; Zheng, Y.F.; Li, Y.C.; Lin, J.; Zhan, J.Y.; Su, Z.R.; Fu, L.D. White pepper and piperine have different effects on pharmacokinetics of puerarin in rats. Evid. Based Complement. Alternat. Med., 2014, 2014, 796890.
[http://dx.doi.org/10.1155/2014/796890] [PMID: 24991227]
[101]
Liu, C.; Hu, M.; Guo, H.; Zhang, M.; Zhang, J.; Li, F.; Zhong, Z.; Chen, Y.; Li, Y.; Xu, P.; Li, J.; Liu, L.; Liu, X. Combined contribution of increased intestinal permeability and inhibited deglycosylation of ginsenoside Rb1 in the intestinal tract to the enhancement of ginsenoside Rb1 exposure in diabetic rats after oral administration. Drug Metab. Dispos., 2015, 43(11), 1702-1710.
[http://dx.doi.org/10.1124/dmd.115.064881] [PMID: 26265741]
[102]
Wang, W.; Wu, X.; Wang, L.; Meng, Q.; Liu, W. Stereoselective property of 20(S)-protopanaxadiol ocotillol type epimers affects its absorption and also the inhibition of P-glycoprotein. PLoS One, 2014, 9(6), e98887.
[http://dx.doi.org/10.1371/journal.pone.0098887] [PMID: 24887182]
[103]
Lee, B.H.; Choi, S.H.; Kim, H.J.; Park, S.D.; Rhim, H.; Kim, H.C.; Hwang, S.H.; Nah, S.Y. Gintonin absorption in intestinal model systems. J. Ginseng Res., 2018, 42(1), 35-41.
[http://dx.doi.org/10.1016/j.jgr.2016.12.007] [PMID: 29348720]
[104]
Zheng, M.C.; Du, S.Y.; Jia, S.; Ma, J.M.; Zhang, Q.; Bai, J.; Lu, Y. [Intestinal absorption of Ginseng Radix et Rhizoma extract combined with Acori Tatarinowii Rhizoma in rats Zhongguo Zhongyao Zazhi, 2016, 41(21), 4036-4040.
[PMID: 28929693]
[105]
Qiao, L.S.; Chen, Y.K.; Luo, G.G.; Lu, F.; Liu, S.J.; Li, G.Y.; Zhang, Y.L. Synergistic mechanism of traditional Chinese medicine based on target combination of PepT1 and PPARα. Zhongguo Zhongyao Zazhi, 2017, 42(11), 2146-2151.
[PMID: 28822161]
[106]
Chen, X.N.; Li, D.Q.; Zhao, M.D.; Yu, G.Y.; Du, S.Y.; Lu, Y.; Bai, J.; Li, P.Y.; Wu, Y.L.; Tian, Z.H.; Zeng, Y.Y. Pharmacokinetics of Panax notoginseng saponins in adhesive and normal preparation of Fufang Danshen. Eur. J. Drug Metab. Pharmacokinet., 2018, 43(2), 215-225.
[http://dx.doi.org/10.1007/s13318-017-0433-y] [PMID: 28916980]
[107]
Jin, Z.H.; Qiu, W.; Liu, H.; Jiang, X.H.; Wang, L. Enhancement of oral bioavailability and immune response of Ginsenoside Rh2 by co-administration with piperine. Chin. J. Nat. Med., 2018, 16(2), 143-149.
[http://dx.doi.org/10.1016/S1875-5364(18)30041-4] [PMID: 29455730]
[108]
Li, Y.; Zhang, Y.; Zhu, C.Y. Pharmacokinetics and correlation between in vitro release and in vivo absorption of bio-adhesive pellets of Panax notoginseng saponins. Chin. J. Nat. Med., 2017, 15(2), 142-151.
[http://dx.doi.org/10.1016/S1875-5364(17)30029-8] [PMID: 28284427]
[109]
Xiong, L.; Qi, Z.; Zheng, B.; Li, Z.; Wang, F.; Liu, J.; Li, P. Inhibitory effect of triterpenoids from Panax ginseng on coagulation factor X. Molecules, 2017, 22(4), E649.
[http://dx.doi.org/10.3390/molecules22040649] [PMID: 28441767]
[110]
Sun, D.; Wang, B.; Shi, M.; Zhang, Y.X.; Zhou, L.F.; Liu, Z.R.; Wu, Z.L.; Jiang, W.; Han, J.L.; Xiong, L.Z.; Zhao, G. Pharmacokinetic, tissue distribution and excretion of ginsenoside-Rd in rodents. Phytomedicine, 2012, 19(3-4), 369-373.
[http://dx.doi.org/10.1016/j.phymed.2011.08.061] [PMID: 21899993]
[111]
Geng, C.; Yin, J.Y.; Yu, X.H.; Liu, J.Y.; Yang, Y.X.; Sun, D.Y.; Meng, Q.; Wei, Z.L.; Liu, J.H. Tissue distribution and excretion study of neopanaxadiol in rats by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Biomed. Chromatogr., 2015, 29(3), 333-340.
[http://dx.doi.org/10.1002/bmc.3274] [PMID: 24961612]
[112]
Wang, C.Z.; Zhang, C.F.; Zhang, Q.H.; Hesse-Fong, J.; Lager, M.; Du, W.; Xu, M.; Yuan, C.S. Fecal metabolomic dataset of American ginseng-treated DSS mice: Correlation between ginseng enteric inflammation inhibition and its biological signatures. Data Brief, 2018, 21, 1403-1408.
[http://dx.doi.org/10.1016/j.dib.2018.10.131] [PMID: 30456264]
[113]
Zhang, L.; Li, F.; Qin, W.J.; Fu, C.; Zhang, X.L. Changes in intestinal microbiota affect metabolism of ginsenoside Re. Biomed. Chromatogr., 2018, 32(10), e4284.
[http://dx.doi.org/10.1002/bmc.4284] [PMID: 29748959]
[114]
Zhao, L.; Ma, Y.; Chen, C.; Liu, S.; Wu, W. Pharmacokinetic and metabolic studies of ginsenoside Rb3 in rats using RRLC-Q-TOF-MS. J. Chromatogr. Sci., 2018, 56(6), 480-487.
[http://dx.doi.org/10.1093/chromsci/bmy019] [PMID: 29897460]
[115]
Dong, W.W.; Zhao, J.; Zhong, F.L.; Zhu, W.J.; Jiang, J.; Wu, S.; Yang, D.C.; Li, D.; Quan, L.H. Biotransformation of Panax ginseng extract by rat intestinal microflora: Identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry. J. Ginseng Res., 2017, 41(4), 540-547.
[http://dx.doi.org/10.1016/j.jgr.2016.11.002] [PMID: 29021702]
[116]
Fukami, H.; Ueda, T.; Matsuoka, N. Pharmacokinetic study of compound K in Japanese subjects after ingestion of Panax ginseng fermented by Lactobacillus paracasei A221 reveals significant increase of absorption into blood. J. Med. Food, 2018, 22(3), 257-263.
[http://dx.doi.org/10.1089/jmf.2018.4271] [PMID: 30543483]
[117]
Wang, C.Z.; Yao, H.; Zhang, C.F.; Chen, L.; Wan, J.Y.; Huang, W.H.; Zeng, J.; Zhang, Q.H.; Liu, Z.; Yuan, J.; Bi, Y.; Sava-Segal, C.; Du, W.; Xu, M.; Yuan, C.S. American ginseng microbial metabolites attenuate DSS-induced colitis and abdominal pain. Int. Immunopharmacol., 2018, 64, 246-251.
[http://dx.doi.org/10.1016/j.intimp.2018.09.005] [PMID: 30212750]
[118]
Kang, A.; Zhang, S.; Zhu, D.; Dong, Y.; Shan, J.; Xie, T.; Wen, H.; Di, L. Gut microbiota in the pharmacokinetics and colonic deglycosylation metabolism of ginsenoside Rb1 in rats: Contrary effects of antimicrobials treatment and restraint stress. Chem. Biol. Interact., 2016, 258, 187-196.
[http://dx.doi.org/10.1016/j.cbi.2016.09.005] [PMID: 27613481]
[119]
Chen, M.Y.; Shao, L.; Zhang, W.; Wang, C.Z.; Zhou, H.H.; Huang, W.H.; Yuan, C.S. Metabolic analysis of Panax notoginseng saponins with gut microbiota-mediated biotransformation by HPLC-DAD-Q-TOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 150, 199-207.
[http://dx.doi.org/10.1016/j.jpba.2017.12.011] [PMID: 29245089]
[120]
Xiao, J.; Chen, H.; Kang, D.; Shao, Y.; Shen, B.; Li, X.; Yin, X.; Zhu, Z.; Li, H.; Rao, T.; Xie, L.; Wang, G.; Liang, Y. Qualitatively and quantitatively investigating the regulation of intestinal microbiota on the metabolism of Panax notoginseng saponins. J. Ethnopharmacol., 2016, 194, 324-336.
[http://dx.doi.org/10.1016/j.jep.2016.09.027] [PMID: 27637802]
[121]
Shen, H.; Gao, X.J.; Li, T.; Jing, W.H.; Han, B.L.; Jia, Y.M.; Hu, N.; Yan, Z.X.; Li, S.L.; Yan, R. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism. J. Ethnopharmacol., 2018, 216, 47-56.
[http://dx.doi.org/10.1016/j.jep.2018.01.021] [PMID: 29366768]
[122]
Hao, D.C.; Song, S.M.; Mu, J.; Hu, W.L.; Xiao, P.G. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization. Sci. Rep., 2016, 6, 22006.
[http://dx.doi.org/10.1038/srep22006] [PMID: 27080869]
[123]
Dong, W.W.; Xuan, F.L.; Zhong, F.L.; Jiang, J.; Wu, S.; Li, D.; Quan, L.H. Comparative analysis of the rats’ gut microbiota composition in animals with different ginsenosides metabolizing activity. J. Agric. Food Chem., 2017, 65(2), 327-337.
[http://dx.doi.org/10.1021/acs.jafc.6b04848] [PMID: 28025886]
[124]
Yin, S.; Cheng, Y.; Li, T.; Dong, M.; Zhao, H.; Liu, G. Effects of notoginsenoside R1 on CYP1A2, CYP2C11, CYP2D1, and CYP3A1/2 activities in rats by cocktail probe drugs. Pharm. Biol., 2016, 54(2), 231-236.
[http://dx.doi.org/10.3109/13880209.2015.1029051] [PMID: 25834921]
[125]
Xiao, J.; Chen, D.; Lin, X.X.; Peng, S.F.; Xiao, M.F.; Huang, W.H.; Wang, Y.C.; Peng, J.B.; Zhang, W.; Ouyang, D.S.; Chen, Y. Screening of drug metabolizing enzymes for the ginsenoside Compound K in vitro: An efficient anti-cancer substance originating from Panax ginseng. PLoS One, 2016, 11(2), e0147183.
[http://dx.doi.org/10.1371/journal.pone.0147183] [PMID: 26845774]
[126]
Sun, H.; Yan, Y.; Xu, C.; Wan, H.; Liu, D. Suppression of hepatic Cyp1a2 by total ginsenosides in lipopolysaccharide-treated mice and primary mouse hepatocytes. J. Agric. Food Chem., 2016, 64(11), 2386-2393.
[http://dx.doi.org/10.1021/acs.jafc.5b06170] [PMID: 26923348]
[127]
Yi, J.F.; Wu, B.; Liu, C.L.; Gao, Y. Effect of ginsenoside total saponinon on regulation of P450 of livers of rats after γ-ray irradiation. Zhongguo Zhongyao Zazhi, 2015, 40(20), 4037-4043.
[PMID: 27062824]
[128]
Yang, Z.M.; Yang, X.F. Inhibitory effect of PNS on drug metabolism enzyme CYP3A in rat livers and its kinetic analysis. Zhongguo Zhongyao Zazhi, 2012, 37(22), 3486-3489.
[PMID: 23373227]
[129]
Gum, S.I.; Cho, M.K. Korean red ginseng extract prevents APAP-induced hepatotoxicity through metabolic enzyme regulation: The role of ginsenoside Rg3, a protopanaxadiol. Liver Int., 2013, 33(7), 1071-1084.
[http://dx.doi.org/10.1111/liv.12046] [PMID: 23750847]
[130]
Zhang, Y.; Zhang, J.; Liu, C.; Yu, M.; Li, S. Extraction, isolation, and aromatase inhibitory evaluation of low-polar ginsenosides from Panax ginseng leaves. J. Chromatogr. A, 2017, 1483, 20-29.
[http://dx.doi.org/10.1016/j.chroma.2016.12.068] [PMID: 28027838]
[131]
Li, H.; Wang, Y.G.; Ma, Z.C.; Zhou, S.S.; Liang, Q.D.; Xiao, C.R.; Tan, H.L.; Tang, X.L.; Li, H.; Shen, G.L.; Zhang, B.L.; Gao, Y. Effect of shenfu injection on CYP450s of rat liver. Yao Xue Xue Bao, 2013, 48(5), 728-733.
[PMID: 23888697]
[132]
Kawase, A.; Yamada, A.; Gamou, Y.; Tahara, C.; Takeshita, F.; Murata, K.; Matsuda, H.; Samukawa, K.; Iwaki, M. Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J. Nat. Med., 2014, 68(2), 395-401.
[http://dx.doi.org/10.1007/s11418-013-0791-y] [PMID: 23835644]
[133]
Chen, Y.J.; Wang, Y.G.; Ma, Z.C.; Xiao, C.R.; Tan, H.L.; Liang, Q.D.; Tang, X.L.; Zhao, Y.H.; Wang, D.G.; Gao, Y. Effect of Panax notoginseng saponins on liver drug metablic enzyme activity, mRNA and protein expressions in rats. Zhongguo Zhongyao Zazhi, 2014, 39(19), 3824-3828.
[PMID: 25612448]
[134]
Kim, S.J.; Choi, S.; Kim, M.; Park, C.; Kim, G.L.; Lee, S.O.; Kang, W.; Rhee, D.K. Effect of Korean Red Ginseng extracts on drug-drug interactions. J. Ginseng Res., 2018, 42(3), 370-378.
[http://dx.doi.org/10.1016/j.jgr.2017.08.008] [PMID: 29989018]
[135]
Koyama, M.; Shirahata, T.; Hirashima, R.; Kobayashi, Y.; Itoh, T.; Fujiwara, R. Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3-O-glucuronidation by polyphenols and triterpenoids. Drug Metab. Pharmacokinet., 2017, 32(4), 218-223.
[http://dx.doi.org/10.1016/j.dmpk.2017.04.003] [PMID: 28754329]
[136]
Fang, Z.Z.; Cao, Y.F.; Hu, C.M.; Hong, M.; Sun, X.Y.; Ge, G.B.; Liu, Y.; Zhang, Y.Y.; Yang, L.; Sun, H.Z. Structure-inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs). Toxicol. Appl. Pharmacol., 2013, 267(2), 149-154.
[http://dx.doi.org/10.1016/j.taap.2012.12.019] [PMID: 23306165]
[137]
He, Y.J.; Fang, Z.Z.; Ge, G.B.; Jiang, P.; Jin, H.Z.; Zhang, W.D.; Yang, L. The inhibitory effect of 20(S)-protopanaxatriol (ppt) towards UGT1A1 and UGT2B7. Phytother. Res., 2013, 27(4), 628-632.
[http://dx.doi.org/10.1002/ptr.4755] [PMID: 22736593]
[138]
Sun, Z.; Wu, Y.; Liu, S.; Hu, S.; Zhao, B.; Li, P.; Du, S. Effects of Panax notoginseng saponins on esterases responsible for aspirin hydrolysis in vitro. Int. J. Mol. Sci., 2018, 19(10), E3144.
[http://dx.doi.org/10.3390/ijms19103144] [PMID: 30322078]
[139]
Wen, D.C.; Hu, X.Y.; Wang, Y.Y.; Luo, J.X.; Lin, W.; Jia, L.Y.; Gong, X.Y. Effects of aqueous extracts from Panax ginseng and Hippophae rhamnoides on acute alcohol intoxication: An experimental study using mouse model. J. Ethnopharmacol., 2016, 192, 67-73.
[http://dx.doi.org/10.1016/j.jep.2016.06.063] [PMID: 27374757]
[140]
Hao, C.; Feng, Y.; Xiao, R.; Xiao, P.G. Non-neutral nonsynonymous single nucleotide polymorphisms in human ABC transporters: The first comparison of six prediction methods. Pharmacol. Rep., 2011, 63(4), 924-934.
[http://dx.doi.org/10.1016/S1734-1140(11)70608-9] [PMID: 22001980]
[141]
Hao, D.C.; Xiao, B.; Xiang, Y.; Dong, X.W.; Xiao, P.G. Deleterious nonsynonymous single nucleotide polymorphisms in human solute carriers: The first comparison of three prediction methods. Eur. J. Drug Metab. Pharmacokinet., 2013, 38(1), 53-62.
[http://dx.doi.org/10.1007/s13318-012-0095-8] [PMID: 22555822]
[142]
Jiang, R.; Dong, J.; Li, X.; Du, F.; Jia, W.; Xu, F.; Wang, F.; Yang, J.; Niu, W.; Li, C. Molecular mechanisms governing different pharmacokinetics of ginsenosides and potential for ginsenoside-perpetrated herb-drug interactions on OATP1B3. Br. J. Pharmacol., 2015, 172(4), 1059-1073.
[http://dx.doi.org/10.1111/bph.12971] [PMID: 25297453]
[143]
Kim, M.G.; Kim, Y.; Jeon, J.Y.; Kim, D.S. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol., 2016, 82(6), 1580-1590.
[http://dx.doi.org/10.1111/bcp.13080] [PMID: 27495955]
[144]
Lee, S.; Kwon, M.; Choi, M.K.; Song, I.S. Effects of red ginseng extract on the pharmacokinetics and elimination of methotrexate via Mrp2 regulation. Molecules, 2018, 23(11), E2948.
[http://dx.doi.org/10.3390/molecules23112948] [PMID: 30424502]
[145]
Liu, X.; Chen, L.; Liu, M.; Zhang, H.; Huang, S.; Xiong, Y.; Xia, C. Ginsenoside Rb1 and Rd remarkably inhibited the hepatic uptake of ophiopogonin D in Shenmai Injection mediated by OATPs/oatps. Front. Pharmacol., 2018, 9, 957.
[http://dx.doi.org/10.3389/fphar.2018.00957] [PMID: 30186179]
[146]
Gao, S.; Kushida, H.; Makino, T. Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1. J. Nat. Med., 2017, 71(1), 131-138.
[http://dx.doi.org/10.1007/s11418-016-1042-9] [PMID: 27619505]
[147]
Dong, W.W.; Han, X.Z.; Zhao, J.; Zhong, F.L.; Ma, R.; Wu, S.; Li, D.; Quan, L.H.; Jiang, J. Metabolite profiling of ginsenosides in rat plasma, urine and feces by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Panax ginseng extract. Biomed. Chromatogr., 2018, 32(3)
[http://dx.doi.org/10.1002/bmc.4105] [PMID: 28986996]
[148]
Liu, H.; Yang, J.; Du, F.; Gao, X.; Ma, X.; Huang, Y.; Xu, F.; Niu, W.; Wang, F.; Mao, Y.; Sun, Y.; Lu, T.; Liu, C.; Zhang, B.; Li, C. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab. Dispos., 2009, 37(12), 2290-2298.
[http://dx.doi.org/10.1124/dmd.109.029819] [PMID: 19786509]
[149]
Wu, X.M.; Wang, L.; Ni, Y.Y.; Wang, H.; Wang, W.Y.; Meng, Q.G. Study on excretion of 20 (S) -protopanaxadiolocotillol type epimers in rats. Zhongguo Zhongyao Zazhi, 2014, 39(7), 1306-1310.
[PMID: 25011273]
[150]
Xie, X.; Sun, W.; Miao, J.; Huang, J.; Xu, J.; Liu, X.; Sun, H.; Tong, L.; Sun, G. Development and validation of a UFLC-MS/MS method for determination of 7‘(Z)-(8″S, 8‴S)-epi-salvianolic acid E, (7’R, 8'R, 8″S, 8‴S)-epi-salvianolic acid B and salvianolic acid B in rat plasma and its application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1022, 6-12.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.042] [PMID: 27064533]
[151]
Lin, K.; Lin, A.N.; Linn, S.; Hlaing, P.P.; Vasudevan, V.; Reddy, M. Ginseng-related drug-induced liver injury. Case Rep. Gastroenterol., 2018, 12(2), 439-446.
[http://dx.doi.org/10.1159/000490525] [PMID: 30186097]
[152]
Chen, L.; Zhou, L.; Huang, J.; Wang, Y.; Yang, G.; Tan, Z.; Wang, Y.; Zhou, G.; Liao, J.; Ouyang, D. Single- and multiple-dose trials to determine the pharmacokinetics, safety, tolerability, and sex effect of oral ginsenoside compound K in healthy chinese volunteers. Front. Pharmacol., 2018, 8, 965.
[http://dx.doi.org/10.3389/fphar.2017.00965] [PMID: 29375375]
[153]
Calderón, M.M.; Chairez, C.L.; Gordon, L.A.; Alfaro, R.M.; Kovacs, J.A.; Penzak, S.R. Influence of Panax ginseng on the steady state pharmacokinetic profile of lopinavir-ritonavir in healthy volunteers. Pharmacotherapy, 2014, 34(11), 1151-1158.
[http://dx.doi.org/10.1002/phar.1473] [PMID: 25142999]
[154]
Haefeli, W.E.; Carls, A. Drug interactions with phytotherapeutics in oncology. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 359-377.
[http://dx.doi.org/10.1517/17425255.2014.873786] [PMID: 24387348]
[155]
Li, Y.; Liu, C.; Zhang, Y.; Mi, S.; Wang, N. Pharmacokinetics of ferulic acid and potential interactions with Honghua and clopidogrel in rats. J. Ethnopharmacol., 2011, 137(1), 562-567.
[http://dx.doi.org/10.1016/j.jep.2011.06.011] [PMID: 21704146]
[156]
Tian, Z.; Pang, H.; Du, S.; Lu, Y.; Zhang, L.; Wu, H.; Guo, S.; Wang, M.; Zhang, Q. Effect of Panax notoginseng saponins on the pharmacokinetics of aspirin in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 136-143.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.007] [PMID: 27978468]
[157]
Sun, Z.; Wu, Y.; Yang, B.; Zhu, B.; Hu, S.; Lu, Y.; Zhao, B.; Du, S. Inhibitory influence of Panax notoginseng saponins on aspirin hydrolysis in human intestinal Caco-2 cells. Molecules, 2018, 23(2), E455.
[http://dx.doi.org/10.3390/molecules23020455] [PMID: 29463025]
[158]
Tian, Z.; Pang, H.; Zhang, Q.; Du, S.; Lu, Y.; Zhang, L.; Bai, J.; Li, P.; Li, D.; Zhao, M.; Chen, X. Effect of aspirin on the pharmacokinetics and absorption of Panax notoginseng saponins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1074-1075, 25-33.
[http://dx.doi.org/10.1016/j.jchromb.2017.12.033] [PMID: 29329092]
[159]
Zheng, P.; Chen, Y.; Fu, Y.; Wang, H.; Wang, J.; Zheng, S.; Xiao, S.; Wang, Y. Influence of B-complex vitamins on the pharmacokinetics of ginsenosides Rg1, Rb1, and Ro after oral administration. J. Med. Food, 2017, 20(11), 1127-1132.
[http://dx.doi.org/10.1089/jmf.2017.3922] [PMID: 28880748]
[160]
Yang, X.N.; Wang, Y.J.; Liu, Y.S.; Tang, X. Pharmacokinetics of salvianolic acids after intravenous injection, with and without Panax quinquefolium protopanaxadiol saponins, in rats. J. Ethnopharmacol., 2008, 117(3), 408-414.
[http://dx.doi.org/10.1016/j.jep.2008.02.021] [PMID: 18406088]
[161]
Hao, C.; Xiao, P.G. Network pharmacology: A Rosetta Stone for traditional Chinese medicine. Drug Dev. Res., 2014, 75(5), 299-312.
[http://dx.doi.org/10.1002/ddr.21214] [PMID: 25160070]
[162]
Tian, Y.; Yang, Z.F.; Li, Y.; Qiao, Y.; Yang, J.; Jia, Y.Y.; Wen, A.D. Pharmacokinetic comparisons of hydroxysafflower yellow A in normal and blood stasis syndrome rats. J. Ethnopharmacol., 2010, 129(1), 1-4.
[http://dx.doi.org/10.1016/j.jep.2010.02.023] [PMID: 20206677]
[163]
Li, C.Y.; Yin, J.G.; Zhang, J.; Wang, X.X.; Xu, M.J.; Liu, F.; Zou, J.D.; Ju, W.Z. Pharmacokinetic profiles of hydroxysafflor yellow A following intravenous administration of its pure preparations in healthy Chinese volunteers. J. Ethnopharmacol., 2015, 162, 225-230.
[http://dx.doi.org/10.1016/j.jep.2014.12.068] [PMID: 25576896]
[164]
Li, H.; Wang, B.; Yuan, G.; Guo, R. Pharmacokinetics and bioequivalence study of tetramethylpyrazine phosphate tablets after single-dose administration in healthy Chinese male subjects
. Int. J. Clin. Pharmacol. Ther., 2018, 56(8), 387-392.
[http://dx.doi.org/10.5414/CP203270] [PMID: 29882510]
[165]
Kitisripanya, T.; Udomsin, O.; Komaikul, J.; Inyai, C.; Limsuwanchote, S.; Yusakul, G.; Putalun, W. A pilot pharmacokinetic study of miroestrol and deoxymiroestrol on rabbit sera using polyclonal antibody-based icELISA analysis. Phytother. Res., 2018, 32(2), 365-369.
[http://dx.doi.org/10.1002/ptr.5991] [PMID: 29168310]
[166]
Han, S.Y.; Bae, M.G.; Choi, Y.H. Stereoselective and simultaneous analysis of ginsenosides from ginseng berry extract in rat plasma by UPLC-MS/MS: Application to a pharmacokinetic study of ginseng berry extract. Molecules, 2018, 23(7), E1835.
[http://dx.doi.org/10.3390/molecules23071835] [PMID: 30041497]
[167]
Hu, Z.; Yang, J.; Cheng, C.; Huang, Y.; Du, F.; Wang, F.; Niu, W.; Xu, F.; Jiang, R.; Gao, X.; Li, C. Combinatorial metabolism notably affects human systemic exposure to ginsenosides from orally administered extract of Panax notoginseng roots (Sanqi). Drug Metab. Dispos., 2013, 41(7), 1457-1469.
[http://dx.doi.org/10.1124/dmd.113.051391] [PMID: 23649704]
[168]
Zhu, D.; Zhou, Q.; Li, H.; Li, S.; Dong, Z.; Li, D.; Zhang, W. Pharmacokinetic characteristics of steamed notoginseng by an efficient LC-MS/MS method for simultaneously quantifying twenty-three triterpenoids. J. Agric. Food Chem., 2018, 66(30), 8187-8198.
[http://dx.doi.org/10.1021/acs.jafc.8b03169] [PMID: 29989810]
[169]
Ju, Z.; Li, J.; Han, H.; Yang, L.; Wang, Z. Analysis of bioactive components and multi-component pharmacokinetics of saponins from the leaves of Panax notoginseng in rat plasma after oral administration by LC-MS/MS. J. Sep. Sci., 2018, 41(7), 1512-1523.
[http://dx.doi.org/10.1002/jssc.201701042] [PMID: 29280337]
[170]
Zheng, H.; Qiu, F.; Zhao, H.; Chen, J.; Wang, L.; Zou, H. Simultaneous determination of six bioactive saponins from Rhizoma Panacis Japonici in rat plasma by UHPLC-MS/MS: Application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1092, 199-206.
[http://dx.doi.org/10.1016/j.jchromb.2018.06.016] [PMID: 29908469]
[171]
Jin, Y.; Tang, Y.P.; Zhu, Z.H.; Shang, E.X.; Pang, H.Q.; Shi, X.Q.; Chen, Y.Y.; Wang, J.; Chang, X.; Kang, A.; Zhou, G.S.; Shi, Y.J.; Sun, J.; Tang, Z.S.; Li, S.P.; Duan, J.A. Pharmacokinetic comparison of seven major bio-active components in normal and blood stasis rats after oral administration of herb pair Danggui-Honghua by UPLC-TQ/MS. Molecules, 2017, 22(10), E1746.
[http://dx.doi.org/10.3390/molecules22101746] [PMID: 29039793]
[172]
Yue, S.J.; Xin, L.T.; Fan, Y.C.; Li, S.J.; Tang, Y.P.; Duan, J.A.; Guan, H.S.; Wang, C.Y. Herb pair Danggui-Honghua: Mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci. Rep., 2017, 7, 40318.
[http://dx.doi.org/10.1038/srep40318] [PMID: 28074863]
[173]
Ji, B.; Zhao, X.; Yu, P.; Meng, L.; Zhao, Y.; Yu, Z. Simultaneous determination and pharmacokinetics of fourteen bioactive compounds in rat plasma by LC-ESI-MS/MS following intravenous injection of Gegen-Sanqi compatibility solution. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 164-172.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.023] [PMID: 29073478]
[174]
Yu, J.; Gu, L.Q.; Xin, Y.F.; Gao, H.Y.; Xu, X.Z.; Zhang, S.; Zhou, G.L.; You, Z.Q.; Huo, L.R.; Xuan, Y.X. Simultaneous determination and pharmacokinetics of eight ginsenosides by LC-MS/MS after intravenously infusion of ‘SHENMAI’ injection in dogs. Pak. J. Pharm. Sci., 2017, 30(2), 421-427.
[PMID: 28649066]
[175]
Ye, L.F.; Zheng, Y.R.; Wang, L.H. Effects of Shenmai injection and its bioactive components following ischemia/reperfusion in cardiomyocytes. Exp. Ther. Med., 2015, 10(4), 1348-1354.
[http://dx.doi.org/10.3892/etm.2015.2662] [PMID: 26622490]
[176]
Zhang, X.; Zheng, W.; Xu, H.; Huang, X.; Ren, P.; Zou, H.; Liu, G.; Wang, J.; Ma, X. Pharmacokinetic study of representative anti-oxidative compounds from Denshen-Chuanxiong-Honghua following oral administration in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1052, 82-90.
[http://dx.doi.org/10.1016/j.jchromb.2017.03.019] [PMID: 28364700]
[177]
Dong, L.J.; Zhang, W.J.; Liu, S.Y.; Wang, C.L.; Song, X. Effect of puerarin in Longmaining formula on pharmacokinetics-pharmacodynamics correlation in rats with myocardial ischemia. Zhongguo Zhongyao Zazhi, 2016, 41(8), 1535-1540.
[PMID: 28884552]
[178]
Pang, H.H.; Li, M.Y.; Wang, Y.; Tang, M.K.; Ma, C.H.; Huang, J.M. Effect of compatible herbs on the pharmacokinetics of effective components of Panax notoginseng in Fufang Xueshuantong Capsule. J. Zhejiang Univ. Sci. B, 2017, 18(4), 343-352.
[http://dx.doi.org/10.1631/jzus.B1600235] [PMID: 28378572]
[179]
Shen, J.; Wei, J.; Li, L.; Ouyang, H.; Chang, Y.; Chen, X.; He, J. Development of a HPLC-MS/MS method to determine 11 bioactive compounds in Tongmai Yangxin Pill and application to a pharmacokinetic study in rats. Evid. Based Complement. Alternat. Med., 2018, 2018, 6460393.
[http://dx.doi.org/10.1155/2018/6460393] [PMID: 30356435]
[180]
He, J.; Feng, X.; Wang, K.; Liu, C.; Qiu, F. Discovery and identification of quality markers of Chinese medicine based on pharmacokinetic analysis. Phytomedicine, 2018, 44, 182-186.
[http://dx.doi.org/10.1016/j.phymed.2018.02.008] [PMID: 29526582]
[181]
Zhong, Y.; Zhu, J.; Yang, Z.; Shao, Q.; Fan, X.; Cheng, Y. Q-marker based strategy for CMC research of Chinese medicine: A case study of Panax notoginseng saponins. Phytomedicine, 2018, 44, 129-137.
[http://dx.doi.org/10.1016/j.phymed.2018.01.023] [PMID: 29452723]
[182]
Zhang, C.Y.; Ren, W.G. Pharmacokinetic research strategies of compatibilities and synergistic effects of classical Danshen herb pairs based on pharmacokinetics of “Danshen-Bingpian” and “Danshen-Honghua”. Zhongguo Zhongyao Zazhi, 2017, 42(12), 2413-2419.
[PMID: 28822201]
[183]
Feng, W.; Ao, H.; Peng, C. Gut microbiota, short-chain fatty acids, and herbal medicines. Front. Pharmacol., 2018, 9, 1354.
[http://dx.doi.org/10.3389/fphar.2018.01354] [PMID: 30532706]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy