Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Highlighting the Role of Cognitive and Brain Reserve in the Substance use Disorder Field

Author(s): D. Cutuli, D. Ladrón de Guevara-Miranda, E. Castilla-Ortega, L.J. Santín* and P. Sampedro-Piquero*

Volume 17, Issue 11, 2019

Page: [1056 - 1070] Pages: 15

DOI: 10.2174/1570159X17666190617100707

Price: $65

Abstract

Background: Cognitive reserve (CR) refers to the ability of an individual to cope with brain pathology remaining free of cognitive symptoms. This protective factor has been related to compensatory and more efficient brain mechanisms involved in resisting brain damage. For its part, Brain reserve (BR) refers to individual differences in the structural properties of the brain which could also make us more resilient to suffer from neurodegenerative and mental diseases.

Objective: This review summarizes how this construct, mainly mediated by educational level, occupational attainment, physical and mental activity, as well as successful social relationships, has gained scientific attention in the last years with regard to diseases, such as neurodegenerative diseases, stroke or traumatic brain injury. Nevertheless, although CR has been studied in a large number of disorders, few researches have addressed the role of this concept in drug addiction.

Methods: We provide a selective overview of recent literature about the role of CR and BR in preventing substance use onset. Likewise, we will also discuss how variables involved in CR (healthy leisure, social support or job-related activities, among others) could be trained and included as complementary activities of substance use disorder treatments.

Results: Evidence about this topic suggests a preventive role of CR and BR on drug use onset and when drug addiction is established, these factors led to less severe addiction-related problems, as well as better treatment outcomes.

Conclusion: CR and BR are variables not taken yet into account in drug addiction. However, they could give us a valuable information about people at risk, as well as patient’s prognosis.

Keywords: Drug, addiction, cognition, cognitive reserve, brain reserve, neuroplasticity.

Graphical Abstract
[1]
Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc., 2002, 8(3), 448-460.
[http://dx.doi.org/10.1017/S1355617702813248] [PMID: 11939702]
[2]
Stern, Y. The concept of cognitive reserve: a catalyst for research. J. Clin. Exp. Neuropsychol., 2003, 25(5), 589-593.
[http://dx.doi.org/10.1076/jcen.25.5.589.14571] [PMID: 12815497]
[3]
Bigler, E.D.; Stern, Y. Traumatic brain injury and reserve. Handbook of Clinical Neurology; Jordan, G.; Andres, M.S., Eds 691-710., 2015
[http://dx.doi.org/10.1016/B978-0-444-63521-1.00043-1]
[4]
Borroni, B.; Premi, E.; Bozzali, M.; Padovani, A. Reserve mechanisms in neurodegenerative diseases: from bench to bedside and back again. Curr. Med. Chem., 2012, 19(36), 6112-6118.
[http://dx.doi.org/10.2174/0929867311209066112] [PMID: 23072353]
[5]
Pettigrew, C.; Soldan, A. Defining Cognitive reserve and implications for cognitive aging. Curr. Neurol. Neurosci. Rep., 2019, 19(1), 1.
[http://dx.doi.org/10.1007/s11910-019-0917-z] [PMID: 30627880]
[6]
Valenzuela, M.J.; Sachdev, P. Brain reserve and dementia: a systematic review. Psychol. Med., 2006, 36(4), 441-454.
[http://dx.doi.org/10.1017/S0033291705006264] [PMID: 16207391]
[7]
Soloveva, M.V.; Jamadar, S.D.; Poudel, G.; Georgiou-Karistianis, N. A critical review of brain and cognitive reserve in Huntington’s disease. Neurosci. Biobehav. Rev., 2018, 88, 155-169.
[http://dx.doi.org/10.1016/j.neubiorev.2018.03.003] [PMID: 29535068]
[8]
Sumowski, J.F.; Leavitt, V.M. Cognitive reserve in multiple sclerosis. Mult. Scler., 2013, 19(9), 1122-1127.
[http://dx.doi.org/10.1177/1352458513498834] [PMID: 23897894]
[9]
Mathias, J.L.; Wheaton, P. Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: A meta-analysis (prior to 2015). Neurosci. Biobehav. Rev., 2015, 55, 573-593.
[http://dx.doi.org/10.1016/j.neubiorev.2015.06.001] [PMID: 26054792]
[10]
Stern, Y. Cognitive reserve. Neuropsychologia, 2009, 47(10), 2015-2028.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.03.004] [PMID: 19467352]
[11]
Boots, E.A.; Schultz, S.A.; Almeida, R.P.; Oh, J.M.; Koscik, R.L.; Dowling, M.N.; Gallagher, C.L.; Carlsson, C.M.; Rowley, H.A.; Bendlin, B.B.; Asthana, S.; Sager, M.A.; Hermann, B.P.; Johnson, S.C.; Okonkwo, O.C. Occupational complexity and cognitive reserve in a middle-aged cohort at risk for Alzheimer’s disease. Arch. Clin. Neuropsychol., 2015, 30(7), 634-642.
[http://dx.doi.org/10.1093/arclin/acv041] [PMID: 26156334]
[12]
Petrosini, L.; De Bartolo, P.; Foti, F.; Gelfo, F.; Cutuli, D.; Leggio, M.G.; Mandolesi, L. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res. Brain Res. Rev., 2009, 61(2), 221-239.
[http://dx.doi.org/10.1016/j.brainresrev.2009.07.002] [PMID: 19631687]
[13]
Dufouil, C.; Alpérovitch, A.; Tzourio, C. Influence of education on the relationship between white matter lesions and cognition. Neurology, 2003, 60(5), 831-836.
[http://dx.doi.org/10.1212/01.WNL.0000049456.33231.96] [PMID: 12629242]
[14]
Katzman, R. Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 1993, 43(1), 13-20.
[http://dx.doi.org/10.1212/WNL.43.1_Part_1.13] [PMID: 8423876]
[15]
Serra, L.; Mancini, M.; Cercignani, M.; Di Domenico, C.; Spanò, B.; Giulietti, G.; Koch, G.; Marra, C.; Bozzali, M. Network-based substrate of cognitive reserve in Alzheimer’s disease. J. Alzheimers Dis., 2017, 55(1), 421-430.
[http://dx.doi.org/10.3233/JAD-160735] [PMID: 27662319]
[16]
Katzman, R.; Terry, R.; DeTeresa, R.; Brown, T.; Davies, P.; Fuld, P.; Renbing, X.; Peck, A. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol., 1988, 23(2), 138-144.
[http://dx.doi.org/10.1002/ana.410230206] [PMID: 2897823]
[17]
Stern, Y.; Alexander, G.E.; Prohovnik, I.; Mayeux, R. Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Ann. Neurol., 1992, 32(3), 371-375.
[http://dx.doi.org/10.1002/ana.410320311] [PMID: 1416806]
[18]
Staff, R.T.; Murray, A.D.; Deary, I.J.; Whalley, L.J. What provides cerebral reserve? Brain, 2004, 127(Pt 5), 1191-1199.
[http://dx.doi.org/10.1093/brain/awh144] [PMID: 15047587]
[19]
Stern, Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2006, 20(2), 112-117.
[http://dx.doi.org/10.1097/01.wad.0000213815.20177.19] [PMID: 16772747]
[20]
Steffener, J.; Stern, Y. Exploring the neural basis of cognitive reserve in aging. Biochim. Biophys. Acta, 2012, 1822(3), 467-473.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.012] [PMID: 21982946]
[21]
Barulli, D.; Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. In: Trends Cogn. Sci. (Regul. Ed.); , 2013; 17, pp. (10)502-509.
[http://dx.doi.org/10.1016/j.tics.2013.08.012] [PMID: 24018144]
[22]
Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol., 2012, 11(11), 1006-1012.
[http://dx.doi.org/10.1016/S1474-4422(12)70191-6] [PMID: 23079557]
[23]
Stern, Y.; Habeck, C.; Moeller, J.; Scarmeas, N.; Anderson, K.E.; Hilton, H.J.; Flynn, J.; Sackeim, H.; van Heertum, R. Brain networks associated with cognitive reserve in healthy young and old adults. Cereb. Cortex, 2005, 15(4), 394-402.
[http://dx.doi.org/10.1093/cercor/bhh142] [PMID: 15749983]
[24]
Hall, C.B.; Derby, C.; LeValley, A.; Katz, M.J.; Verghese, J.; Lipton, R.B. Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 2007, 69(17), 1657-1664.
[http://dx.doi.org/10.1212/01.wnl.0000278163.82636.30] [PMID: 17954781]
[25]
Koepsell, T.D.; Kurland, B.F.; Harel, O.; Johnson, E.A.; Zhou, X.H.; Kukull, W.A. Education, cognitive function, and severity of neuropathology in Alzheimer disease. Neurology, 2008, 70(19 Pt 2), 1732-1739.
[http://dx.doi.org/10.1212/01.wnl.0000284603.85621.aa] [PMID: 18160675]
[26]
Meng, X.; D’Arcy, C. Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One, 2012, 7(6)e38268
[http://dx.doi.org/10.1371/journal.pone.0038268] [PMID: 22675535]
[27]
Roe, C.M.; Xiong, C.; Miller, J.P.; Morris, J.C. Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology, 2007, 68(3), 223-228.
[http://dx.doi.org/10.1212/01.wnl.0000251303.50459.8a] [PMID: 17224578]
[28]
Adam, S.; Bonsang, E.; Grotz, C.; Perelman, S. Occupational activity and cognitive reserve: implications in terms of prevention of cognitive aging and Alzheimer’s disease. Clin. Interv. Aging, 2013, 8, 377-390.
[http://dx.doi.org/10.2147/CIA.S39921] [PMID: 23671387]
[29]
Garibotto, V.; Borroni, B.; Kalbe, E.; Herholz, K.; Salmon, E.; Holtoff, V.; Sorbi, S.; Cappa, S.F.; Padovani, A.; Fazio, F.; Perani, D. Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology, 2008, 71(17), 1342-1349.
[http://dx.doi.org/10.1212/01.wnl.0000327670.62378.c0] [PMID: 18936426]
[30]
Scarmeas, N.; Levy, G.; Tang, M.X.; Manly, J.; Stern, Y. Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology, 2001, 57(12), 2236-2242.
[http://dx.doi.org/10.1212/WNL.57.12.2236] [PMID: 11756603]
[31]
Scarmeas, N.; Stern, Y. Cognitive reserve and lifestyle. J. Clin. Exp. Neuropsychol., 2003, 25(5), 625-633.
[http://dx.doi.org/10.1076/jcen.25.5.625.14576] [PMID: 12815500]
[32]
Ewers, M.; Insel, P.S.; Stern, Y.; Weiner, M.W. Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology, 2013, 80(13), 1194-1201.
[http://dx.doi.org/10.1212/WNL.0b013e31828970c2] [PMID: 23486873]
[33]
Kemppainen, N.M.; Aalto, S.; Karrasch, M.; Någren, K.; Savisto, N.; Oikonen, V.; Viitanen, M.; Parkkola, R.; Rinne, J.O. Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann. Neurol., 2008, 63(1), 112-118.
[http://dx.doi.org/10.1002/ana.21212] [PMID: 18023012]
[34]
Liu, Y.; Julkunen, V.; Paajanen, T.; Westman, E.; Wahlund, L.O.; Aitken, A.; Sobow, T.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Muehlboeck, S.; Spenger, C.; Lovestone, S.; Simmons, A.; Soininen, H.; Consortium, A. Education increases reserve against Alzheimer’s disease--evidence from structural MRI analysis. Neuroradiology, 2012, 54(9), 929-938.
[http://dx.doi.org/10.1007/s00234-012-1005-0] [PMID: 22246242]
[35]
Hoenig, M.C.; Bischof, G.N.; Hammes, J.; Faber, J.; Fliessbach, K.; van Eimeren, T.; Drzezga, A. Tau pathology and cognitive reserve in Alzheimer’s disease. Neurobiol. Aging, 2017, 57, 1-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.05.004] [PMID: 28577411]
[36]
Cody, S.L.; Vance, D.E. The neurobiology of HIV and its impact on cognitive reserve: A review of cognitive interventions for an aging population. Neurobiol. Dis., 2016, 92(Pt B), 144-156.
[http://dx.doi.org/10.1016/j.nbd.2016.01.011] [PMID: 26776767]
[37]
Barnett, J.H.; Salmond, C.H.; Jones, P.B.; Sahakian, B.J. Cognitive reserve in neuropsychiatry. Psychol. Med., 2006, 36, 1053-1064.
[38]
Andrade, C. Cognitive reserve and bipolar disorder. Bipolar Disord., 2017, 19(5), 405.
[http://dx.doi.org/10.1111/bdi.12518] [PMID: 28833994]
[39]
Evans, I.E.M.; Llewellyn, D.J.; Matthews, F.E.; Woods, R.T.; Brayne, C.; Clare, L. Social isolation, cognitive reserve, and cognition in older people with depression and anxiety. Aging Ment. Health, 2018, 6, 1-10.
[http://dx.doi.org/10.1080/13607863.2018.1506742] [PMID: 30518250]
[40]
Nunnari, D.; Bramanti, P.; Marino, S. Cognitive reserve in stroke and traumatic brain injury patients. Neurol. Sci., 2014, 35(10), 1513-1518.
[http://dx.doi.org/10.1007/s10072-014-1897-z] [PMID: 25053460]
[41]
Farioli Vecchioli, S.; Sacchetti, S.; Nicolis di Robilant, V.; Cutuli, D. The role of physical exercise and omega-3 fatty acids in depressive illness in the elderly. Curr. Neuropharmacol., 2018, 16(3), 308-326.
[http://dx.doi.org/10.2174/1570159X15666170912113852] [PMID: 28901279]
[42]
Fratiglioni, L.; Wang, H.X. Brain reserve hypothesis in dementia. J. Alzheimers Dis., 2007, 12(1), 11-22.
[http://dx.doi.org/10.3233/JAD-2007-12103] [PMID: 17851191]
[43]
Lange-Asschenfeldt, C.; Kojda, G. Alzheimer’s disease, cerebrovascular dysfunction and the benefits of exercise: From vessels to neurons. Exp. Gerontol., 2008, 43(6), 499-504.
[http://dx.doi.org/10.1016/j.exger.2008.04.002] [PMID: 18474414]
[44]
Phillips, C. Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast., 2017, 20173589271
[http://dx.doi.org/10.1155/2017/3589271] [PMID: 28695017]
[45]
Pope, S.K.; Shue, V.M.; Beck, C. Will a healthy lifestyle help prevent Alzheimer’s disease? Annu. Rev. Public Health, 2003, 24, 111-132.
[http://dx.doi.org/10.1146/annurev.publhealth.24.100901.141015] [PMID: 12415146]
[46]
Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry, 2013, 84(12), 1318-1325.
[http://dx.doi.org/10.1136/jnnp-2012-304792] [PMID: 23670794]
[47]
Branger, P.; Arenaza-Urquijo, E.M.; Tomadesso, C.; Mézenge, F.; André, C.; de Flores, R.; Mutlu, J.; de La Sayette, V.; Eustache, F.; Chételat, G.; Rauchs, G. Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood. Neurobiol. Aging, 2016, 41, 107-114.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.02.009] [PMID: 27103523]
[48]
Sexton, C.E.; Storsve, A.B.; Walhovd, K.B.; Johansen-Berg, H.; Fjell, A.M. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology, 2014, 83(11), 967-973.
[http://dx.doi.org/10.1212/WNL.0000000000000774] [PMID: 25186857]
[49]
Fotenos, A.F.; Mintun, M.A.; Snyder, A.Z.; Morris, J.C.; Buckner, R.L. Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch. Neurol., 2008, 65(1), 113-120.
[http://dx.doi.org/10.1001/archneurol.2007.27] [PMID: 18195148]
[50]
Bennett, D.A.; Schneider, J.A.; Tang, Y.; Arnold, S.E.; Wilson, R.S. The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol., 2006, 5(5), 406-412.
[http://dx.doi.org/10.1016/S1474-4422(06)70417-3] [PMID: 16632311]
[51]
Perneczky, R.; Wagenpfeil, S.; Lunetta, K.L.; Cupples, L.A.; Green, R.C.; Decarli, C.; Farrer, L.A.; Kurz, A. Head circumference, atrophy, and cognition: Implications for brain reserve in Alzheimer disease. Neurology, 2010, 75(2), 137-142.
[http://dx.doi.org/10.1212/WNL.0b013e3181e7ca97] [PMID: 20625166]
[52]
Bigler, E.D. Premorbid brain volume and dementia. Arch. Neurol., 2001, 58(5), 831-833.
[http://dx.doi.org/10.1001/archneur.58.5.831] [PMID: 11346382]
[53]
Kesler, S.R.; Adams, H.F.; Blasey, C.M.; Bigler, E.D. Premorbid intellectual functioning, education, and brain size in traumatic brain injury: an investigation of the cognitive reserve hypothesis. Appl. Neuropsychol., 2003, 10(3), 153-162.
[http://dx.doi.org/10.1207/S15324826AN1003_04] [PMID: 12890641]
[54]
Ropacki, M.T.; Elias, J.W. Preliminary examination of cognitive reserve theory in closed head injury. Arch. Clin. Neuropsychol., 2003, 18(6), 643-654.
[http://dx.doi.org/10.1093/arclin/18.6.643] [PMID: 14591438]
[55]
Graves, A.B.; Mortimer, J.A.; Larson, E.B.; Wenzlow, A.; Bowen, J.D.; McCormick, W.C. Head circumference as a measure of cognitive reserve. Association with severity of impairment in Alzheimer’s disease. Br. J. Psychiatry, 1996, 169(1), 86-92.
[http://dx.doi.org/10.1192/bjp.169.1.86] [PMID: 8818374]
[56]
Mortimer, J.A.; Snowdon, D.A.; Markesbery, W.R. Head circumference, education and risk of dementia: findings from the Nun Study. J. Clin. Exp. Neuropsychol., 2003, 25(5), 671-679.
[http://dx.doi.org/10.1076/jcen.25.5.671.14584] [PMID: 12815504]
[57]
Schofield, P.W.; Mosesson, R.E.; Stern, Y.; Mayeux, R. The age at onset of Alzheimer’s disease and an intracranial area measurement. A relationship. Arch. Neurol., 1995, 52(1), 95-98.
[http://dx.doi.org/10.1001/archneur.1995.00540250103019] [PMID: 7826282]
[58]
Bartrés-Faz, D.; Arenaza-Urquijo, E.M. Structural and functional imaging correlates of cognitive and brain reserve hypotheses in healthy and pathological aging. Brain Topogr., 2011, 24(3-4), 340-357.
[http://dx.doi.org/10.1007/s10548-011-0195-9] [PMID: 21853422]
[59]
Solé-Padullés, C.; Bartrés-Faz, D.; Junqué, C.; Vendrell, P.; Rami, L.; Clemente, I.C.; Bosch, B.; Villar, A.; Bargalló, N.; Jurado, M.A.; Barrios, M.; Molinuevo, J.L. Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging, 2009, 30(7), 1114-1124.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.10.008] [PMID: 18053618]
[60]
Sachdev, P.S.; Valenzuela, M. Brain and cognitive reserve. Am. J. Geriatr. Psychiatry, 2009, 17(3), 175-178.
[http://dx.doi.org/10.1097/JGP.0b013e318196a661] [PMID: 19225275]
[61]
Holtmaat, A.; Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci., 2009, 10(9), 647-658.
[http://dx.doi.org/10.1038/nrn2699] [PMID: 19693029]
[62]
Querbes, O.; Aubry, F.; Pariente, J.; Lotterie, J.A.; Démonet, J.F.; Duret, V.; Puel, M.; Berry, I.; Fort, J.C.; Celsis, P. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain, 2009, 132(Pt 8), 2036-2047.
[http://dx.doi.org/10.1093/brain/awp105] [PMID: 19439419]
[63]
Rosas, H.D.; Salat, D.H.; Lee, S.Y.; Zaleta, A.K.; Pappu, V.; Fischl, B.; Greve, D.; Hevelone, N.; Hersch, S.M. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain, 2008, 131(Pt 4), 1057-1068.
[http://dx.doi.org/10.1093/brain/awn025] [PMID: 18337273]
[64]
Bohanna, I.; Georgiou-Karistianis, N.; Sritharan, A.; Asadi, H.; Johnston, L.; Churchyard, A.; Egan, G. Diffusion tensor imaging in Huntington’s disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging Behav., 2011, 5(3), 171-180.
[http://dx.doi.org/10.1007/s11682-011-9121-8] [PMID: 21437574]
[65]
Chang, Y.T.; Huang, C.W.; Chen, N.C.; Lin, K.J.; Huang, S.H.; Chang, Y.H.; Hsu, S.W.; Chang, W.N.; Lui, C.C.; Hsu, C.W.; Chang, C.C. Prefrontal lobe brain reserve capacity with resistance to higher global amyloid load and white matter hyperintensity burden in mild stage Alzheimer’s Disease. PLoS One, 2016, 11(2)e0149056
[http://dx.doi.org/10.1371/journal.pone.0149056] [PMID: 26872386]
[66]
Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(11), 1166-1170.
[http://dx.doi.org/10.1093/gerona/61.11.1166] [PMID: 17167157]
[67]
Jellinger, K.A.; Attems, J. Neuropathological approaches to cerebral aging and neuroplasticity. Dialogues Clin. Neurosci., 2013, 15(1), 29-43.
[PMID: 23576887]
[68]
Medaglia, J.D.; Pasqualetti, F.; Hamilton, R.H.; Thompson-Schill, S.L.; Bassett, D.S. Brain and cognitive reserve: Translation via network control theory. Neurosci. Biobehav. Rev., 2017, 75, 53-64.
[http://dx.doi.org/10.1016/j.neubiorev.2017.01.016] [PMID: 28104411]
[69]
Edland, S.D.; Xu, Y.; Plevak, M.; O’Brien, P.; Tangalos, E.G.; Petersen, R.C.; Jack, C.R. Jr Total intracranial volume: normative values and lack of association with Alzheimer’s disease. Neurology, 2002, 59(2), 272-274.
[http://dx.doi.org/10.1212/WNL.59.2.272] [PMID: 12136069]
[70]
Jenkins, R.; Fox, N.C.; Rossor, A.M.; Harvey, R.J.; Rossor, M.N. Intracranial volume and Alzheimer disease: Evidence against the cerebral reserve hypothesis. Arch. Neurol., 2000, 57(2), 220-224.
[http://dx.doi.org/10.1001/archneur.57.2.220] [PMID: 10681081]
[71]
Tate, D.F.; Neeley, E.S.; Norton, M.C.; Tschanz, J.T.; Miller, M.J.; Wolfson, L.; Hulette, C.; Leslie, C.; Welsh-Bohmer, K.A.; Plassman, B.; Bigler, E.D. Intracranial volume and dementia: Some evidence in support of the cerebral reserve hypothesis. Brain Res., 2011, 1385, 151-162.
[http://dx.doi.org/10.1016/j.brainres.2010.12. 038] [PMID: 21172323]
[72]
Stam, C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci., 2014, 15(10), 683-695.
[http://dx.doi.org/10.1038/nrn3801] [PMID: 25186238]
[73]
Koenen, K.C.; Moffitt, T.E.; Roberts, A.L.; Martin, L.T.; Kubzansky, L.; Harrington, H.; Poulton, R.; Caspi, A. Childhood IQ and adult mental disorders: A test of the cognitive reserve hypothesis. Am. J. Psychiatry, 2009, 166(1), 50-57.
[http://dx.doi.org/10.1176/appi.ajp.2008.08030343] [PMID: 19047325]
[74]
Barnett, J.H.; Salmond, C.H.; Jones, P.B.; Sahakian, B.J. Cognitive reserve in neuropsychiatry. Psychol. Med., 2006, 36(8), 1053-1064.
[http://dx.doi.org/10.1017/S0033291706007501] [PMID: 16854246]
[75]
Sampedro-Piquero, P.; Ladrón de Guevara-Miranda, D.; Pavón, F.J.; Serrano, A.; Suárez, J.; Rodríguez de Fonseca, F.; Santín, L.J.; Castilla-Ortega, E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci. Biobehav. Rev., , 2018.S0149-7634(18)30294-X.
[http://dx.doi.org/10.1016/j.neubiorev.2018.11.015] [PMID: 30481530]
[76]
Pedrero-Pérez, E.J.; Rojo-Mota, G.; Ruiz-Sánchez de León, J.M.; Fernández-Méndez, L.M.; Morales-Alonso, S.; Prieto-Hidalgo, A. Reserva cognitiva en adictos a sustancias en tratamiento: relacion con el rendimiento cognitivo y las actividades cotidianas. Rev. Neurol., 2014, 59(11), 481-489.
[http://dx.doi.org/10.33588/rn.5911.2014435] [PMID: 25418142]
[77]
Amieva, H.; Mokri, H.; Le Goff, M.; Meillon, C.; Jacqmin-Gadda, H.; Foubert-Samier, A.; Orgogozo, J.M.; Stern, Y.; Dartigues, J.F. Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: a study of 20 years of cognitive decline. Brain, 2014, 137(Pt 4), 1167-1175.
[http://dx.doi.org/10.1093/brain/awu035] [PMID: 24578544]
[78]
Farfel, J.M.; Nitrini, R.; Suemoto, C.K.; Grinberg, L.T.; Ferretti, R.E.L.; Leite, R.E.P.; Tampellini, E.; Lima, L.; Farias, D.S.; Neves, R.C.; Rodriguez, R.D.; Menezes, P.R.; Fregni, F.; Bennett, D.A.; Pasqualucci, C.A.; Jacob, F.W. Very low levels of education and cognitive reserve: a clinicopathologic study. Neurology, 2013, 81(7), 650-657.
[http://dx.doi.org/10.1212/WNL.0b013e3182a08f1b] [PMID: 23873971]
[79]
Le Carret, N.; Auriacombe, S.; Letenneur, L.; Bergua, V.; Dartigues, J.F.; Fabrigoule, C. Influence of education on the pattern of cognitive deterioration in AD patients: the cognitive reserve hypothesis. Brain Cogn., 2005, 57(2), 120-126.
[http://dx.doi.org/10.1016/j.bandc.2004.08.031] [PMID: 15708201]
[80]
Lenehan, M.E.; Summers, M.J.; Saunders, N.L.; Summers, J.J.; Vickers, J.C. Relationship between education and age-related cognitive decline: a review of recent research. Psychogeriatrics, 2015, 15(2), 154-162.
[http://dx.doi.org/10.1111/psyg.12083] [PMID: 25516261]
[81]
Chatterji, P. Illicit drug use and educational attainment. Health Econ., 2006, 15(5), 489-511.
[http://dx.doi.org/10.1002/hec.1085] [PMID: 16389630]
[82]
Crum, R.M.; Ensminger, M.E.; Ro, M.J.; McCord, J. The association of educational achievement and school dropout with risk of alcoholism: a twenty-five-year prospective study of inner-city children. J. Stud. Alcohol, 1998, 59(3), 318-326.
[http://dx.doi.org/10.15288/jsa.1998.59.318] [PMID: 9598713]
[83]
Droomers, M.; Schrijvers, C.T.M.; Stronks, K.; van de Mheen, D.; Mackenbach, J.P. Educational differences in excessive alcohol consumption: the role of psychosocial and material stressors. Prev. Med., 1999, 29(1), 1-10.
[http://dx.doi.org/10.1006/pmed.1999.0496] [PMID: 10419792]
[84]
Whitehead, R.; Currie, D.; Inchley, J.; Currie, C. Educational expectations and adolescent health behaviour: an evolutionary approach. Int. J. Public Health, 2015, 60(5), 599-608.
[http://dx.doi.org/10.1007/s00038-015-0692-9] [PMID: 25994590]
[85]
Carliner, H.; Sarvet, A.L.; Gordon, A.R.; Hasin, D.S. Gender discrimination, educational attainment, and illicit drug use among U.S. women. Soc. Psychiatry Psychiatr. Epidemiol., 2017, 52(3), 279-289.
[http://dx.doi.org/10.1007/s00127-016-1329-x] [PMID: 28025690]
[86]
Christensen, H.N.; Diderichsen, F.; Hvidtfeldt, U.A.; Lange, T.; Andersen, P.K.; Osler, M.; Prescott, E.; Tjønneland, A.; Rod, N.H.; Andersen, I. Joint effect of alcohol consumption and educational level on alcohol-related medical events: A Danish register-based cohort study. Epidemiology, 2017, 28(6), 872-879.
[http://dx.doi.org/10.1097/EDE.0000000000000718] [PMID: 28731961]
[87]
Breslau, J.; Lane, M.; Sampson, N.; Kessler, R.C. Mental disorders and subsequent educational attainment in a US national sample. J. Psychiatr. Res., 2008, 42(9), 708-716.
[http://dx.doi.org/10.1016/j.jpsychires.2008.01.016] [PMID: 18331741]
[88]
Merikangas, K.R.; Ames, M.; Cui, L.; Stang, P.E.; Ustun, T.B.; Von Korff, M.; Kessler, R.C. The impact of comorbidity of mental and physical conditions on role disability in the US adult household population. Arch. Gen. Psychiatry, 2007, 64(10), 1180-1188.
[http://dx.doi.org/10.1001/archpsyc.64.10.1180] [PMID: 17909130]
[89]
Braun, B.L.; Hannan, P.; Wolfson, M.; Jones-Webb, R.; Sidney, S. Occupational attainment, smoking, alcohol intake, and marijuana use: ethnic-gender differences in the CARDIA study. Addict. Behav., 2000, 25(3), 399-414.
[http://dx.doi.org/10.1016/S0306-4603(99)00076-3] [PMID: 10890293]
[90]
Temple, M.T.; Fillmore, K.M.; Hartka, E.; Johnstone, B.; Leino, E.V.; Motoyoshi, M. A meta-analysis of change in marital and employment status as predictors of alcohol consumption on a typical occasion. Br. J. Addict., 1991, 86(10), 1269-1281.
[http://dx.doi.org/10.1111/j.1360-0443.1991.tb01703.x] [PMID: 1836409]
[91]
Henkel, D. Unemployment and substance use: A review of the literature (1990-2010). Curr. Drug Abuse Rev., 2011, 4(1), 4-27.
[http://dx.doi.org/10.2174/1874473711104010004] [PMID: 21466502]
[92]
Nagelhout, G.E.; Hummel, K.; de Goeij, M.C.M.; de Vries, H.; Kaner, E.; Lemmens, P. How economic recessions and unemployment affect illegal drug use: A systematic realist literature review. Int. J. Drug Policy, 2017, 44, 69-83.
[http://dx.doi.org/10.1016/j.drugpo.2017.03.013] [PMID: 28454010]
[93]
de Goeij, M.C.M.; Suhrcke, M.; Toffolutti, V.; van de Mheen, D.; Schoenmakers, T.M.; Kunst, A.E. How economic crises affect alcohol consumption and alcohol-related health problems: a realist systematic review. Soc. Sci. Med., 2015, 131, 131-146.
[http://dx.doi.org/10.1016/j.socscimed.2015.02.025] [PMID: 25771482]
[94]
Kemp, P.A.; Neale, J. Employability and problem drug users. Crit. Soc. Policy, 2005, 25, 28-46.
[http://dx.doi.org/10.1177/0261018305048966]
[95]
McIntosh, J.; O’Brien, T.; McKeganey, N. Drug driving and the management of risk: the perspectives and practices of a sample of problem drug users. Int. J. Drug Policy, 2008, 19(3), 248-254.
[http://dx.doi.org/10.1016/j.drugpo.2006.12.003] [PMID: 18502377]
[96]
Pedersen, W.; Soest, T.V. How is low parental socioeconomic status associated with future smoking and nicotine dependence in offspring? A population-based longitudinal 13-year follow-up. Scand. J. Public Health, 2017, 45(1), 16-24.
[http://dx.doi.org/10.1177/1403494816680800] [PMID: 27913689]
[97]
van Oers, J.A.; Bongers, I.M.; van de Goor, L.A.; Garretsen, H.F. Alcohol consumption, alcohol-related problems, problem drinking, and socioeconomic status. Alcohol Alcohol., 1999, 34(1), 78-88.
[http://dx.doi.org/10.1093/alcalc/34.1.78] [PMID: 10075406]
[98]
Hanson, M.D.; Chen, E. Socioeconomic status and health behaviors in adolescence: A review of the literature. J. Behav. Med., 2007, 30(3), 263-285.
[http://dx.doi.org/10.1007/s10865-007-9098-3] [PMID: 17514418]
[99]
Sabia, S.; Guéguen, A.; Berr, C.; Berkman, L.; Ankri, J.; Goldberg, M.; Zins, M.; Singh-Manoux, A. High alcohol consumption in middle-aged adults is associated with poorer cognitive performance only in the low socio-economic group. Results from the GAZEL cohort study. Addiction, 2011, 106(1), 93-101.
[http://dx.doi.org/10.1111/j.1360-0443.2010.03106.x] [PMID: 20840170]
[100]
Palamar, J.J.; Ompad, D.C. Demographic and socioeconomic correlates of powder cocaine and crack use among high school seniors in the United States. Am. J. Drug Alcohol Abuse, 2014, 40(1), 37-43.
[http://dx.doi.org/10.3109/00952990.2013.838961] [PMID: 24191647]
[101]
Cross, J.C.; Johnson, B.D.; Davis, W.R.; Liberty, H.J. Supporting the habit: income generation activities of frequent crack users compared with frequent users of other hard drugs. Drug Alcohol Depend., 2001, 64(2), 191-201.
[http://dx.doi.org/10.1016/S0376-8716(01)00121-1] [PMID: 11543989]
[102]
Humensky, J.L. Are adolescents with high socioeconomic status more likely to engage in alcohol and illicit drug use in early adulthood? Subst. Abuse Treat. Prev. Policy, 2010, 5, 19.
[http://dx.doi.org/10.1186/1747-597X-5-19] [PMID: 20687935]
[103]
Daniel, J.Z.; Hickman, M.; Macleod, J.; Wiles, N.; Lingford-Hughes, A.; Farrell, M.; Araya, R.; Skapinakis, P.; Haynes, J.; Lewis, G. Is socioeconomic status in early life associated with drug use? A systematic review of the evidence. Drug Alcohol Rev., 2009, 28(2), 142-153.
[http://dx.doi.org/10.1111/j.1465-3362.2008.00042.x] [PMID: 19320699]
[104]
Bloomfield, K.; Grittner, U.; Kramer, S.; Gmel, G. Social inequalities in alcohol consumption and alcohol-related problems in the study countries of the EU concerted action ‘Gender, culture and alcohol problems: A multi-national study’. Alcohol Alcohol. Suppl., 2006, 41, 26-36.
[http://dx.doi.org/10.1093/alcalc/agl073]
[105]
Grittner, U.; Kuntsche, S.; Gmel, G.; Bloomfield, K. Alcohol consumption and social inequality at the individual and country levels--results from an international study. Eur. J. Public Health, 2013, 23(2), 332-339.
[http://dx.doi.org/10.1093/eurpub/cks044] [PMID: 22562712]
[106]
Serra, L.; Gelfo, F.; Petrosini, L.; Di Domenico, C.; Bozzali, M.; Caltagirone, C. Rethinking the reserve with a translational approach: Novel ideas on the construct and the interventions. J. Alzheimers Dis., 2018, 65(4), 1065-1078.
[http://dx.doi.org/10.3233/JAD-180609] [PMID: 30149458]
[107]
Sharp, E.H.; Coffman, D.L.; Caldwell, L.L.; Smith, E.A.; Wegner, L.; Vergnani, T.; Mathews, C. Predicting substance use behavior among South African adolescents: The role of leisure experiences across time. Int. J. Behav. Dev., 2011, 35(4), 343-351.
[http://dx.doi.org/10.1177/0165025411404494] [PMID: 22707811]
[108]
Weybright, E.H.; Caldwell, L.L.; Ram, N.; Smith, E.; Jacobs, J. The dynamic association between healthy leisure and substance use in south african adolescents: a state and trait perspective. World Leis. J., 2014, 56(2), 99-109.
[http://dx.doi.org/10.1080/16078055.2014.903726] [PMID: 24948905]
[109]
Motamedi, M.; Caldwell, L.; Wegner, L.; Smith, E.; Jones, D. Girls just want to know where to have fun: Preventing substance use initiation in an under-resourced community in south africa through healthwise. Prev. Sci., 2016, 17(6), 700-709.
[http://dx.doi.org/10.1007/s11121-016-0654-3] [PMID: 27129478]
[110]
D’Amico, E.J.; Tucker, J.S.; Miles, J.N.V.; Zhou, A.J.; Shih, R.A.; Green, H.D., Jr Preventing alcohol use with a voluntary after-school program for middle school students: results from a cluster randomized controlled trial of CHOICE. Prev. Sci., 2012, 13(4), 415-425.
[http://dx.doi.org/10.1007/s11121-011-0269-7] [PMID: 22311178]
[111]
Polo-Gallardo, R.; Cobos, R.R.; Mendinueta-martinez, M.; Acosta, K.R. Consumo de drogas y la práctica de actividad física en adolescentes. In: Rev. Fac. Cienc. Salud Univ. Cauca 29-37.,; , 2017; p. 19.
[112]
Delisle, T.T.; Werch, C.E.; Wong, A.H.; Bian, H.; Weiler, R. Relationship between frequency and intensity of physical activity and health behaviors of adolescents. J. Sch. Health, 2010, 80(3), 134-140.
[http://dx.doi.org/10.1111/j.1746-1561.2009.00477.x] [PMID: 20236415]
[113]
Brown, R.A.; Abrantes, A.M.; Minami, H.; Read, J.P.; Marcus, B.H.; Jakicic, J.M.; Strong, D.R.; Dubreuil, M.E.; Gordon, A.A.; Ramsey, S.E.; Kahler, C.W.; Stuart, G.L. A preliminary, randomized trial of aerobic exercise for alcohol dependence. J. Subst. Abuse Treat., 2014, 47(1), 1-9.
[http://dx.doi.org/10.1016/j.jsat.2014.02.004] [PMID: 24666811]
[114]
Peltzer, K. Leisure time physical activity and sedentary behavior and substance use among in-school adolescents in eight African countries. Int. J. Behav. Med., 2010, 17(4), 271-278.
[http://dx.doi.org/10.1007/s12529-009-9073-1] [PMID: 20054676]
[115]
Trainor, S.; Delfabbro, P.; Anderson, S.; Winefield, A. Leisure activities and adolescent psychological well-being. J. Adolesc., 2010, 33(1), 173-186.
[http://dx.doi.org/10.1016/j.adolescence.2009.03.013] [PMID: 19406463]
[116]
Thorlindsson, T.; Bernburg, J.G. Peer groups and substance use: examining the direct and interactive effect of leisure activity. Adolescence, 2006, 41(162), 321-339.
[PMID: 16981620]
[117]
Paniagua, R.H.; García, C.S.; Castellano, B.G.; Sarrallé, S.R.; Redondo, F.C. Tobacco, alcohol and illegal drug consumption among adolescents and the relationship with lifestyle and environment. An. Esp. Pediatr., 2001, 55(2), 121-128.
[http://dx.doi.org/10.1016/S1695-4033(01)77647-3] [PMID: 11472663]
[118]
Baumeister, R.F.; Leary, M.R. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull., 1995, 117(3), 497-529.
[http://dx.doi.org/10.1037/0033-2909.117.3.497] [PMID: 7777651]
[119]
Harandi, T.F.; Taghinasab, M.M.; Nayeri, T.D. The correlation of social support with mental health: A meta-analysis. Electron. Physician, 2017, 9(9), 5212-5222.
[http://dx.doi.org/10.19082/5212] [PMID: 29038699]
[120]
Turner, R.J.; Brown, R.L. Social support and mental health.The Social Context of Mental Health and Illness; Cambridge University Press: New York, NY, US, 2012, Vol. II, pp. 200-212.
[121]
Borsari, B.; Carey, K.B. How the quality of peer relationships influences college alcohol use. Drug Alcohol Rev., 2006, 25(4), 361-370.
[http://dx.doi.org/10.1080/09595230600741339] [PMID: 16854663]
[122]
Laudet, A.B.; Morgen, K.; White, W.L. The role of social supports, spirituality, religiousness, life meaning and affiliation with 12-step fellowships in quality of life satisfaction among individuals in recovery from alcohol and drug problems. Alcohol. Treat. Q., 2006, 24(1-2), 33-73.
[http://dx.doi.org/10.1300/J020v24n01_04] [PMID: 16892161]
[123]
Nikmanesh, Z.; Honakzehi, F. Examining perceived social support, positive affection, and spirituality, as resilience factors, among boys of drug-dependent fathers. Shiraz E Med. J., 2016.17e42200.
[http://dx.doi.org/10.17795/semj42200]
[124]
Yang, C.; Xia, M.; Han, M.; Liang, Y. Social support and resilience as mediators between stress and life satisfaction among people with substance use disorder in China. Front. Psychiatry, 2018, 9, 436.
[http://dx.doi.org/10.3389/fpsyt.2018.00436] [PMID: 30386257]
[125]
Chuang, Y.C.; Ennett, S.T.; Bauman, K.E.; Foshee, V.A. Relationships of adolescents’ perceptions of parental and peer behaviors with cigarette and alcohol use in different neighborhood contexts. J. Youth Adolesc., 2009, 38(10), 1388-1398.
[http://dx.doi.org/10.1007/s10964-009-9424-x] [PMID: 19779814]
[126]
Mason, M.J.; Zaharakis, N.; Benotsch, E.G. Social networks, substance use, and mental health in college students. J. Am. Coll. Health, 2014, 62(7), 470-477.
[http://dx.doi.org/10.1080/07448481.2014.923428] [PMID: 24848433]
[127]
Tartaglia, S.; Fedi, A.; Miglietta, A. Family or friends: what counts more for drinking behaviour of young adults? Rev. Psicol. Soc., 2017, 32, 1-22.
[http://dx.doi.org/10.1080/02134748.2016.1248029]
[128]
Wills, T.A.; Resko, J.A.; Ainette, M.G.; Mendoza, D. Role of parent support and peer support in adolescent substance use: a test of mediated effects. Psychol. Addict. Behav., 2004, 18(2), 122-134.
[http://dx.doi.org/10.1037/0893-164X.18.2.122] [PMID: 15238054]
[129]
Cruz-Salmerón, V.H.; Martínez-Martínez, M.L.; Garibay-López, L.; Camacho-Calderón, N. Comparison of family functioning profile in adolescents with and without drug-dependency in a high school. Aten. Primaria, 2011, 43(2), 89-94.
[PMID: 21236520]
[130]
Denton, R.E.; Kampfe, C.M. The relationship between family variables and adolescent substance abuse: a literature review. Adolescence, 1994, 29(114), 475-495.
[PMID: 8085497]
[131]
Blum, R.W.; Beuhring, T.; Shew, M.L.; Bearinger, L.H.; Sieving, R.E.; Resnick, M.D.; Blum, W. The effects of race/ethnicity, income, and family structure on adolescent risk behaviors. Am. J. Public Health, 2000, 90(12), 1879-1884.
[http://dx.doi.org/10.2105/AJPH.90.12.1879] [PMID: 11111260]
[132]
Lemos, V. de A.; Antunes, H.K.M.; Baptista, M.N.; Tufik, S.; Mello, M.T.; Formigoni, M.L. Low family support perception: a ‘social marker’ of substance dependence? Br. J. Psychiatry, 2012, 34(1), 52-59.
[http://dx.doi.org/10.1016/S1516-4446(12)70010-7] [PMID: 22392389]
[133]
Kjærulff, T.M.; Rivera, F.; Jiménez-Iglesias, A.; Moreno, C. Perceived quality of social relations and frequent drunkenness: a cross-sectional study of Spanish adolescents. Alcohol Alcohol., 2014, 49(4), 466-471.
[http://dx.doi.org/10.1093/alcalc/agu012] [PMID: 24694679]
[134]
Simetin, I.P.; Kuzman, M.; Franelic, I.P.; Pristas, I.; Benjak, T.; Dezeljin, J.D. Inequalities in Croatian pupils’ unhealthy behaviours and health outcomes: role of school, peers and family affluence. Eur. J. Public Health, 2011, 21(1), 122-128.
[http://dx.doi.org/10.1093/eurpub/ckq002] [PMID: 20159771]
[135]
Borders, T.F.; Booth, B.M. Stimulant use, religiosity, and the odds of developing or maintaining an alcohol use disorder over time. J. Stud. Alcohol Drugs, 2013, 74(3), 369-377.
[http://dx.doi.org/10.15288/jsad.2013.74.369] [PMID: 23490565]
[136]
Cucciare, M.A.; Han, X.; Curran, G.M.; Booth, B.M. Associations between religiosity, perceived social support, and stimulant use in an untreated rural sample in the U.S.A. Subst. Use Misuse, 2016, 51(7), 823-834.
[http://dx.doi.org/10.3109/10826084.2016.1155611] [PMID: 27096554]
[137]
Ransome, Y.; Gilman, S.E. The role of religious involvement in black-white differences in alcohol use disorders. J. Stud. Alcohol Drugs, 2016, 77(5), 792-801.
[http://dx.doi.org/10.15288/jsad.2016.77.792] [PMID: 27588538]
[138]
Abdollahi, A.; Abu, T.M. Hardiness, spirituality, and suicidal ideation among individuals with substance abuse: the moderating role of gender and marital status. J. Dual Diagn., 2015, 11(1), 12-21.
[http://dx.doi.org/10.1080/15504263.2014.988558] [PMID: 25415536]
[139]
Kendler, K.S.; Lönn, S.L.; Salvatore, J.; Sundquist, J.; Sundquist, K. Effect of marriage on risk for onset of alcohol use disorder: a longitudinal and co-relative analysis in a swedish national sample. Am. J. Psychiatry, 2016, 173(9), 911-918.
[http://dx.doi.org/10.1176/appi.ajp.2016.15111373] [PMID: 27180900]
[140]
Leonard, K.E.; Rothbard, J.C. Alcohol and the marriage effect. J. Stud. Alcohol Suppl., 1999, 13, 139-146.
[http://dx.doi.org/10.15288/jsas.1999.s13.139] [PMID: 10225498]
[141]
Plant, M.; Miller, P.; Plant, M.; Kuntsche, S.; Gmel, G. Ahlström, with S.; Allamani, A.; Beck, F.; Bergmark, K.; Bloomfield, K.; Csémy, L.; Elekes, Z.; Knibbe, R.; Kraus, L.; Ólafsdóttir, H.; Rossow, I.; Vidal, A. Marriage, cohabitation and alcohol consumption in young adults: an international exploration. J. Subst. Use, 2008, 13, 83-98.
[http://dx.doi.org/10.1080/14659890701820028]
[142]
Bachman, J.G.; Wadsworth, K.N.; O’Malley, P.M.; Johnston, L.D.; Schulenberg, J.E. Research monographs in adolescence. Smoking, drinking, and drug use in young adulthood: The impacts of new freedoms and new responsibilities. In: Lawrence Erlbaum Associates, Inc;; Hillsdale, NJ, US. , 1997.
[143]
Rabkin, J.G.; McElhiney, M.; Ferrando, S.J.; Van Gorp, W.; Lin, S.H. Predictors of employment of men with HIV/AIDS: a longitudinal study. Psychosom. Med., 2004, 66(1), 72-78.
[http://dx.doi.org/10.1097/01.PSY.0000108083.43147.6D] [PMID: 14747640]
[144]
Vance, D.E. Implications of positive and negative neuroplasticity on cognition in HIV. Med. Sci. Monit., 2010, 16(4), HY3-HY5.
[PMID: 20357724]
[145]
Abbey, A.; Saenz, C.; Buck, P.O.; Parkhill, M.R.; Hayman, L.W., Jr The effects of acute alcohol consumption, cognitive reserve, partner risk, and gender on sexual decision making. J. Stud. Alcohol, 2006, 67(1), 113-121.
[http://dx.doi.org/10.15288/jsa.2006.67.113] [PMID: 16536135]
[146]
Abrantes, A.M.; Battle, C.L.; Strong, D.R.; Ing, E.; Dubreuil, M.E.; Gordon, A.; Brown, R.A. Exercise preferences of patients in substance abuse treatment. Ment. Health Phys. Act., 2011, 4(2), 79-87.
[http://dx.doi.org/10.1016/j.mhpa.2011.08.002] [PMID: 22125581]
[147]
Giménez-Meseguer, J.; Tortosa-Martínez, J.; de los Remedios Fernández-Valenciano, M. Benefits of exercise for the quality of life of drug-dependent patients. J. Psychoactive Drugs, 2015, 47(5), 409-416.
[http://dx.doi.org/10.1080/02791072.2015.1102991] [PMID: 26595433]
[148]
Lynch, W.J.; Peterson, A.B.; Sanchez, V.; Abel, J.; Smith, M.A. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev., 2013, 37(8), 1622-1644.
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.011] [PMID: 23806439]
[149]
Neale, J.; Nettleton, S.; Pickering, L. Heroin users’ views and experiences of physical activity, sport and exercise. Int. J. Drug Policy, 2012, 23(2), 120-127.
[http://dx.doi.org/10.1016/j.drugpo.2011.06.004] [PMID: 21741815]
[150]
Nock, N.L.; Minnes, S.; Alberts, J.L. Neurobiology of substance use in adolescents and potential therapeutic effects of exercise for prevention and treatment of substance use disorders. Birth Defects Res., 2017, 109(20), 1711-1729.
[http://dx.doi.org/10.1002/bdr2.1182] [PMID: 29251846]
[151]
Weinstock, J.; Barry, D.; Petry, N.M. Exercise-related activities are associated with positive outcome in contingency management treatment for substance use disorders. Addict. Behav., 2008, 33(8), 1072-1075.
[http://dx.doi.org/10.1016/j.addbeh.2008.03.011] [PMID: 18486352]
[152]
Buchowski, M.S.; Meade, N.N.; Charboneau, E.; Park, S.; Dietrich, M.S.; Cowan, R.L.; Martin, P.R. Aerobic exercise training reduces cannabis craving and use in non-treatment seeking cannabis-dependent adults. PLoS One, 2011, 6(3)e17465
[http://dx.doi.org/10.1371/journal.pone.0017465] [PMID: 21408154]
[153]
Roessler, K.K. Exercise treatment for drug abuse--a Danish pilot study. Scand. J. Public Health, 2010, 38(6), 664-669.
[http://dx.doi.org/10.1177/1403494810371249] [PMID: 20529968]
[154]
Taylor, A.H.; Ussher, M.H.; Faulkner, G. The acute effects of exercise on cigarette cravings, withdrawal symptoms, affect and smoking behaviour: a systematic review. Addiction, 2007, 102(4), 534-543.
[http://dx.doi.org/10.1111/j.1360-0443.2006.01739.x] [PMID: 17286639]
[155]
Haasova, M.; Warren, F.C.; Ussher, M.; Janse Van Rensburg, K.; Faulkner, G.; Cropley, M.; Byron-Daniel, J.; Everson-Hock, E.S.; Oh, H.; Taylor, A.H. The acute effects of physical activity on cigarette cravings: systematic review and meta-analysis with individual participant data. Addiction, 2013, 108(1), 26-37.
[http://dx.doi.org/10.1111/j.1360-0443.2012.04034.x] [PMID: 22861822]
[156]
Roberts, V.; Maddison, R.; Simpson, C.; Bullen, C.; Prapavessis, H. The acute effects of exercise on cigarette cravings, withdrawal symptoms, affect, and smoking behaviour: systematic review update and meta-analysis. Psychopharmacology (Berl.), 2012, 222(1), 1-15.
[http://dx.doi.org/10.1007/s00213-012-2731-z] [PMID: 22585034]
[157]
Ussher, M.; Sampuran, A.K.; Doshi, R.; West, R.; Drummond, D.C. Acute effect of a brief bout of exercise on alcohol urges. Addiction, 2004, 99(12), 1542-1547.
[http://dx.doi.org/10.1111/j.1360-0443.2004.00919.x] [PMID: 15585045]
[158]
Brown, R.A.; Abrantes, A.M.; Read, J.P.; Marcus, B.H.; Jakicic, J.; Strong, D.R.; Oakley, J.R.; Ramsey, S.E.; Kahler, C.W.; Stuart, G.G.; Dubreuil, M.E.; Gordon, A.A. A pilot study of aerobic exercise as an adjunctive treatment for drug dependence. Ment. Health Phys. Act., 2010, 3(1), 27-34.
[http://dx.doi.org/10.1016/j.mhpa.2010.03.001] [PMID: 20582151]
[159]
Berg, C.J.; Thomas, J.L.; An, L.C.; Guo, H.; Collins, T.; Okuyemi, K.S.; Ahluwalia, J.S. Change in smoking, diet, and walking for exercise in Blacks. Health Educ. Behav., 2012, 39(2), 191-197.
[http://dx.doi.org/10.1177/1090198111432252] [PMID: 22330092]
[160]
Bock, B.C.; Dunsiger, S.I.; Rosen, R.K.; Thind, H.; Jennings, E.; Fava, J.L.; Becker, B.M.; Carmody, J.; Marcus, B.H. Yoga as a complementary therapy for smoking cessation: results from BreathEasy, a randomized clinical trial. Nicotine Tob. Res., 2018.[Epub ahead of Print]..
[http://dx.doi.org/10.1093/ntr/nty212] [PMID: 30295912]
[161]
Weinstock, J.; Barry, D.; Petry, N.M. Exercise-related activities are associated with positive outcome in contingency management treatment for substance use disorders. Addict. Behav., 2008, 33(8), 1072-1075.
[http://dx.doi.org/10.1016/j.addbeh.2008.03.011] [PMID: 18486352]
[162]
Palmer, J.A.; Palmer, L.K.; Michiels, K.; Thigpen, B. Effects of type of exercise on depression in recovering substance abusers. Percept. Mot. Skills, 1995, 80(2), 523-530.
[http://dx.doi.org/10.2466/pms.1995.80.2.523] [PMID: 7675585]
[163]
Cutter, C.J.; Schottenfeld, R.S.; Moore, B.A.; Ball, S.A.; Beitel, M.; Savant, J.D.; Stults-Kolehmainen, M.A.; Doucette, C.; Barry, D.T. A pilot trial of a videogame-based exercise program for methadone maintained patients. J. Subst. Abuse Treat., 2014, 47(4), 299-305.
[http://dx.doi.org/10.1016/j.jsat.2014.05.007] [PMID: 25012555]
[164]
Wipfli, B.M.; Rethorst, C.D.; Landers, D.M. The anxiolytic effects of exercise: a meta-analysis of randomized trials and dose-response analysis. J. Sport Exerc. Psychol., 2008, 30(4), 392-410.
[http://dx.doi.org/10.1123/jsep.30.4.392] [PMID: 18723899]
[165]
Wang, D.; Wang, Y.; Wang, Y.; Li, R.; Zhou, C. Impact of physical exercise on substance use disorders: a meta-analysis. PLoS One, 2014, 9(10)e110728
[http://dx.doi.org/10.1371/journal.pone.0110728] [PMID: 25330437]
[166]
Bowen, S.; Chawla, N.; Collins, S.E.; Witkiewitz, K.; Hsu, S.; Grow, J.; Clifasefi, S.; Garner, M.; Douglass, A.; Larimer, M.E.; Marlatt, A. Mindfulness-based relapse prevention for substance use disorders: a pilot efficacy trial. Subst. Abus., 2009, 30(4), 295-305.
[http://dx.doi.org/10.1080/08897070903250084] [PMID: 19904665]
[167]
Garland, E.L.; Froeliger, B.; Howard, M.O. Effects of Mindfulness-Oriented Recovery Enhancement on reward responsiveness and opioid cue-reactivity. Psychopharmacology (Berl.), 2014, 231(16), 3229-3238.
[http://dx.doi.org/10.1007/s00213-014-3504-7] [PMID: 24595503]
[168]
Silverman, M.J. Effects of music therapy on change readiness and craving in patients on a detoxification unit. J. Music Ther., 2011, 48(4), 509-531.
[http://dx.doi.org/10.1093/jmt/48.4.509] [PMID: 22506302]
[169]
Blackett, P.S.; Payne, H.L. Health rhythms: A preliminary inquiry into group-drumming as experienced by participants on a structured day services programme for substance-misusers. Drugs Educ. Prev. Policy, 2005, 12, 477-491.
[http://dx.doi.org/10.1080/09687630500342881]
[170]
Tang, Y.Y.; Tang, R.; Posner, M.I. Brief meditation training induces smoking reduction. Proc. Natl. Acad. Sci. USA, 2013, 110(34), 13971-13975.
[http://dx.doi.org/10.1073/pnas.1311887110] [PMID: 23918376]
[171]
Silverman, M.J. Effects of lyric analysis interventions on treatment motivation in patients on a detoxification unit: a randomized effectiveness study. J. Music Ther., 2015, 52(1), 117-134.
[http://dx.doi.org/10.1093/jmt/thu057] [PMID: 25701046]
[172]
Brewer, J.A.; Mallik, S.; Babuscio, T.A.; Nich, C.; Johnson, H.E.; Deleone, C.M.; Minnix-Cotton, C.A.; Byrne, S.A.; Kober, H.; Weinstein, A.J.; Carroll, K.M.; Rounsaville, B.J. Mindfulness training for smoking cessation: results from a randomized controlled trial. Drug Alcohol Depend., 2011, 119(1-2), 72-80.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.05.027] [PMID: 21723049]
[173]
Alfonso, J.P.; Caracuel, A.; Delgado-Pastor, L.C.; Verdejo-García, A. Combined Goal Management Training and Mindfulness meditation improve executive functions and decision-making performance in abstinent polysubstance abusers. Drug Alcohol Depend., 2011, 117(1), 78-81.
[http://dx.doi.org/10.1016/j.drugalcdep.2010.12.025] [PMID: 21277705]
[174]
Hubbard, R.L.; Craddock, S.G.; Anderson, J. Overview of 5-year followup outcomes in the drug abuse treatment outcome studies (DATOS). J. Subst. Abuse Treat., 2003, 25(3), 125-134.
[http://dx.doi.org/10.1016/S0740-5472(03)00130-2] [PMID: 14670518]
[175]
Schildhaus, S.; Gerstein, D.; Brittingham, A.; Cerbone, F.; Dugoni, B. Services research outcomes study: Overview of drug treatment population and outcomes. Subst. Use Misuse, 2000, 35(12-14), 1849-1877.
[http://dx.doi.org/10.3109/10826080009148243] [PMID: 11138710]
[176]
Petry, N.M.; Andrade, L.F.; Rash, C.J.; Cherniack, M.G. Engaging in job-related activities is associated with reductions in employment problems and improvements in quality of life in substance abusing patients. Psychol. Addict. Behav., 2014, 28(1), 268-275.
[http://dx.doi.org/10.1037/a0032264] [PMID: 23586451]
[177]
Sigurdsson, S.O.; Ring, B.M.; O’Reilly, K.; Silverman, K. Barriers to employment among unemployed drug users: age predicts severity. Am. J. Drug Alcohol Abuse, 2012, 38(6), 580-587.
[http://dx.doi.org/10.3109/00952990.2011.643976] [PMID: 22242680]
[178]
Silverman, K.; Svikis, D.; Robles, E.; Stitzer, M.L.; Bigelow, G.E. A reinforcement-based therapeutic workplace for the treatment of drug abuse: six-month abstinence outcomes. Exp. Clin. Psychopharmacol., 2001, 9(1), 14-23.
[http://dx.doi.org/10.1037/1064-1297.9.1.14] [PMID: 11519628]
[179]
Platt, J.J.; Metzger, D. The role of employment in the rehabilitation of heroin addicts. NIDA Res. Monogr., 1985, 58, 111-121.
[PMID: 3929123]
[180]
Siegal, H.A.; Fisher, J.H.; Rapp, R.C.; Kelliher, C.W.; Wagner, J.H.; O’Brien, W.F.; Cole, P.A. Enhancing substance abuse treatment with case management. Its impact on employment. J. Subst. Abuse Treat., 1996, 13(2), 93-98.
[http://dx.doi.org/10.1016/0740-5472(96)00029-3] [PMID: 8880666]
[181]
Barbieri, B.; Dal Corso, L.; Di Sipio, A.M.; De Carlo, A.; Benevene, P. Small opportunities are often the beginning of great enterprises: The role of work engagement in support of people through the recovery process and in preventing relapse in drug and alcohol abuse. Work, 2016, 55(2), 373-383.
[http://dx.doi.org/10.3233/WOR-162411] [PMID: 27689594]
[182]
Magura, S.; Staines, G.L.; Blankertz, L.; Madison, E.M. The effectiveness of vocational services for substance users in treatment. Subst. Use Misuse, 2004, 39(13-14), 2165-2213.
[http://dx.doi.org/10.1081/JA-200034589] [PMID: 15603001]
[183]
el-Bassel, N.; Ivanoff, A.; Schilling, R.F.; Gilbert, L.; Borne, D.; Chen, D.R. Preventing HIV/AIDS in drug-abusing incarcerated women through skills building and social support enhancement: preliminary outcomes. Soc. Work Res., 1995, 19(3), 131-141.
[PMID: 10172402]
[184]
Lewandowski, C.A.; Hill, T.J. The impact of emotional and material social support on women’s drug treatment completion. Health Soc. Work, 2009, 34(3), 213-221.
[http://dx.doi.org/10.1093/hsw/34.3.213] [PMID: 19728480]
[185]
Riehman, K.S.; Hser, Y.I.; Zeller, M. Gender differences in how intimate partners influence drug treatment motivation. J. Drug Issues, 2000, 30, 823-838.
[http://dx.doi.org/10.1177/002204260003000409]
[186]
Roberts, A.C. Coping behaviors of cocaine dependent women. J. Soc. Work Pract. Addict., 2001, 1, 83-99.
[http://dx.doi.org/10.1300/J160v01n04_06]
[187]
Wasserman, D.A.; Stewart, A.L.; Delucchi, K.L. Social support and abstinence from opiates and cocaine during opioid maintenance treatment. Drug Alcohol Depend., 2001, 65(1), 65-75.
[http://dx.doi.org/10.1016/S0376-8716(01)00151-X] [PMID: 11714591]
[188]
Cavaiola, A.A.; Fulmer, B.A.; Stout, D. The impact of social support and attachment style on quality of life and readiness to change in a sample of individuals receiving medication-assisted treatment for opioid dependence. Subst. Abus., 2015, 36(2), 183-191.
[http://dx.doi.org/10.1080/08897077.2015.1019662] [PMID: 25839214]
[189]
Falkin, G.P.; Strauss, S.M. Social supporters and drug use enablers: a dilemma for women in recovery. Addict. Behav., 2003, 28(1), 141-155.
[http://dx.doi.org/10.1016/S0306-4603(01)00219-2] [PMID: 12507533]
[190]
Arria, A.M.; Mericle, A.A.; Rallo, D.; Moe, J.; White, W.L.; Winters, K.C.; O’Connor, G. Integration of parenting skills education and interventions in addiction treatment. J. Addict. Med., 2013, 7(1), 1-7.
[http://dx.doi.org/10.1097/ADM.0b013e318270f7b0] [PMID: 23079483]
[191]
Pugatch, M.; Knight, J.R.; McGuiness, P.; Sherritt, L.; Levy, S. A group therapy program for opioid-dependent adolescents and their parents. Subst. Abus., 2014, 35(4), 435-441.
[http://dx.doi.org/ 10.1080/08897077.2014.958208] [PMID: 25174347]
[192]
Ambrose, M.L.; Bowden, S.C.; Whelan, G. Working memory impairments in alcohol-dependent participants without clinical amnesia. Alcohol. Clin. Exp. Res., 2001, 25(2), 185-191.
[http://dx.doi.org/10.1111/j.1530-0277.2001.tb02197.x] [PMID: 11236831]
[193]
Bates, M.E.; Bowden, S.C.; Barry, D. Neurocognitive impairment associated with alcohol use disorders: implications for treatment. Exp. Clin. Psychopharmacol., 2002, 10(3), 193-212.
[http://dx.doi.org/10.1037/1064-1297.10.3.193] [PMID: 12233981]
[194]
Gould, T.J. Addiction and cognition. Addict. Sci. Clin. Pract., 2010, 5(2), 4-14.
[PMID: 22002448]
[195]
Manning, V.; Verdejo-Garcia, A.; Lubman, D.I. Neurocognitive impairment in addiction and opportunities for intervention. Curr. Opin. Behav. Sci., 2017, 13, 40-45.
[http://dx.doi.org/10.1016/j.cobeha.2016.10.003]
[196]
Pedrero-Pérez, E.J.; Rojo-Mota, G.; Ruiz-Sanchez de Leon, J.M.; Llanero-Luque, M.; Puerta-García, C. Cognitive remediation in addictions treatment. Rev. Neurol., 2011, 52(3), 163-172.
[PMID: 21287493]
[197]
Nithianantharajah, J.; Hannan, A.J. Mechanisms mediating brain and cognitive reserve: experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(2), 331-339.
[http://dx.doi.org/10.1016/j.pnpbp.2010.10.026] [PMID: 21112312]
[198]
Whalley, L.J.; Staff, R.T.; Fox, H.C.; Murray, A.D. Cerebral correlates of cognitive reserve. Psychiatry Res. Neuroimaging, 2016, 247, 65-70.
[http://dx.doi.org/10.1016/j.pscychresns.2015.10.012] [PMID: 26774854]
[199]
Staff, R.T. Reserve, brain changes, and decline. Neuroimaging Clin. N. Am., 2012, 22(1), 99-105.[viii-iv..
[http://dx.doi.org/10.1016/j.nic.2011.11.006] [PMID: 22284736]
[200]
Ahluwalia, V.; Wade, J.B.; Moeller, F.G.; White, M.B.; Unser, A.B.; Gavis, E.A.; Sterling, R.K.; Stravitz, R.T.; Sanyal, A.J.; Siddiqui, M.S.; Puri, P.; Luketic, V.; Heuman, D.M.; Fuchs, M.; Matherly, S.; Bajaj, J.S. The etiology of cirrhosis is a strong determinant of brain reserve: A multimodal magnetic resonance imaging study. Liver Transpl., 2015, 21(9), 1123-1132.
[http://dx.doi.org/10.1002/lt.24163] [PMID: 25939692]
[201]
Fein, G.; Di Sclafani, V. Cerebral reserve capacity: Implications for alcohol and drug abuse. Alcohol, 2004, 32(1), 63-67.
[http://dx.doi.org/10.1016/j.alcohol.2003.10.003] [PMID: 15066705]
[202]
Bateman, D.A.; Chiriboga, C.A. Dose-response effect of cocaine on newborn head circumference. Pediatrics, 2000, 106(3)E33
[http://dx.doi.org/10.1542/peds.106.3.e33] [PMID: 10969117]
[203]
Chasnoff, I.J.; Griffith, D.R.; MacGregor, S.; Dirkes, K.; Burns, K.A. Temporal patterns of cocaine use in pregnancy. Perinatal outcome. JAMA, 1989, 261(12), 1741-1744.
[http://dx.doi.org/10.1001/jama.1989.03420120079030] [PMID: 2918671]
[204]
Day, N.L.; Richardson, G.A.; Goldschmidt, L.; Robles, N.; Taylor, P.M.; Stoffer, D.S.; Cornelius, M.D.; Geva, D. Effect of prenatal marijuana exposure on the cognitive development of offspring at age three. Neurotoxicol. Teratol., 1994, 16(2), 169-175.
[http://dx.doi.org/10.1016/0892-0362(94)90114-7] [PMID: 8052191]
[205]
Fischer, G.; Bitschnau, M.; Peternell, A.; Eder, H.; Topitz, A. Pregnancy and substance use. Arch. Women Ment. Health, 1999, 2, 57-65.
[http://dx.doi.org/10.1007/s007370050037]
[206]
Di Sclafani, V.; Clark, H.W.; Tolou-Shams, M.; Bloomer, C.W.; Salas, G.A.; Norman, D.; Fein, G. Premorbid brain size is a determinant of functional reserve in abstinent crack-cocaine and crack-cocaine-alcohol-dependent adults. J. Int. Neuropsychol. Soc., 1998, 4(6), 559-565.
[http://dx.doi.org/10.1017/S1355617798466049] [PMID: 10050360]
[207]
Singer, L.T.; Nelson, S.; Short, E.; Min, M.O.; Lewis, B.; Russ, S.; Minnes, S. Prenatal cocaine exposure: Drug and environmental effects at 9 years. J. Pediatr., 2008, 153(1), 105-111.
[http://dx.doi.org/10.1016/j.jpeds.2008.01.001] [PMID: 18571546]
[208]
Fujiwara, E.; Brand, M.; Borsutzky, S.; Steingass, H.P.; Markowitsch, H.J. Cognitive performance of detoxified alcoholic Korsakoff syndrome patients remains stable over two years. J. Clin. Exp. Neuropsychol., 2008, 30(5), 576-587.
[http://dx.doi.org/10.1080/13803390701557271] [PMID: 17852615]
[209]
Chanraud, S.; Sullivan, E.V. Compensatory recruitment of neural resources in chronic alcoholism. Handb. Clin. Neurol., 2014, 125, 369-380.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00022-7] [PMID: 25307586]
[210]
Pfefferbaum, A.; Desmond, J.E.; Galloway, C.; Menon, V.; Glover, G.H.; Sullivan, E.V. Reorganization of frontal systems used by alcoholics for spatial working memory: An fMRI study. Neuroimage, 2001, 14(1 Pt 1), 7-20.
[http://dx.doi.org/10.1006/nimg.2001.0785] [PMID: 11525339]
[211]
Desmond, J.E.; Chen, S.H.A.; DeRosa, E.; Pryor, M.R.; Pfefferbaum, A.; Sullivan, E.V. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage, 2003, 19(4), 1510-1520.
[http://dx.doi.org/10.1016/S1053-8119(03)00102-2] [PMID: 12948707]
[212]
Wesley, M.J.; Lile, J.A.; Fillmore, M.T.; Porrino, L.J. Neurophysiological capacity in a working memory task differentiates dependent from nondependent heavy drinkers and controls. Drug Alcohol Depend., 2017, 175, 24-35.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.01.029] [PMID: 28376413]
[213]
Parks, M.H.; Greenberg, D.S.; Nickel, M.K.; Dietrich, M.S.; Rogers, B.P.; Martin, P.R. Recruitment of additional brain regions to accomplish simple motor tasks in chronic alcohol-dependent patients. Alcohol. Clin. Exp. Res., 2010, 34(6), 1098-1109.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01186.x] [PMID: 20374203]
[214]
Boissé, L.; Gill, M.J.; Power, C. HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol. Clin., 2008, 26(3), 799-819.[x..
[http://dx.doi.org/10.1016/j.ncl.2008.04.002] [PMID: 18657727]
[215]
de Almeida, S.M.; Letendre, S.; Ellis, R. Human immunodeficiency virus and the central nervous system. Braz. J. Infect. Dis., 2006, 10(1), 41-50.
[http://dx.doi.org/10.1590/S1413-86702006000100009] [PMID: 16767315]
[216]
Grill, M.F.; Price, R.W. Central nervous system HIV-1 infection. Handb. Clin. Neurol., 2014, 123, 487-505.
[http://dx.doi.org/10.1016/B978-0-444-53488-0.00023-7] [PMID: 25015501]
[217]
Satz, P.; Morgenstern, H.; Miller, E.N.; Selnes, O.A.; McArthur, J.C.; Cohen, B.A.; Wesch, J.; Becker, J.T.; Jacobson, L.; D’Elia, L.F.; van Gorp, W.; Visscher, B. Low education as a possible risk factor for cognitive abnormalities in HIV-1: Findings from the multicenter AIDS Cohort Study (MACS). J. Acquir. Immune Defic. Syndr., 1993, 6(5), 503-511.
[PMID: 8483113]
[218]
Ernst, T.; Chang, L.; Jovicich, J.; Ames, N.; Arnold, S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology, 2002, 59(9), 1343-1349.
[http://dx.doi.org/10.1212/01.WNL.0000031811.45569.B0] [PMID: 12427881]
[219]
Vázquez-Justo, E.; Blanco, A.P.; Vergara-Moragues, E.; Gestoso, C.G.; Pérez-García, M. Cognitive reserve during neuropsychological performance in HIV intravenous drug users. Appl. Neuropsychol. Adult, 2014, 21(4), 288-296.
[http://dx.doi.org/10.1080/23279095.2013.813852] [PMID: 25265310]
[220]
Bieliauskas, L.A.; Back-Madruga, C.; Lindsay, K.L.; Snow, K.K.; Kronfol, Z.; Lok, A.S.; Padmanabhan, L.; Fontana, R.J. Cognitive reserve during neuropsychological performance in HIV intravenous drug users. J. Clin. Exp. Neuropsychol., 2006, 28, 1346-1361.
[http://dx.doi.org/10.1080/13803390500473720] [PMID: 17050262]
[221]
Sakamoto, M.; Woods, S.P.; Kolessar, M.; Kriz, D.; Anderson, J.R.; Olavarria, H.; Sasaki, A.W.; Chang, M.; Flora, K.D.; Loftis, J.M.; Huckans, M. Protective effects of higher cognitive reserve for neuropsychological and daily functioning among individuals infected with hepatitis C. J. Neurovirol., 2013, 19(5), 442-451.
[http://dx.doi.org/10.1007/s13365-013-0196-4] [PMID: 24018902]
[222]
DeLisi, L.E. The effect of cannabis on the brain: can it cause brain anomalies that lead to increased risk for schizophrenia? Curr. Opin. Psychiatry, 2008, 21(2), 140-150.
[http://dx.doi.org/10.1097/YCO.0b013e3282f51266] [PMID: 18332661]
[223]
Moore, T.H.M.; Zammit, S.; Lingford-Hughes, A.; Barnes, T.R.E.; Jones, P.B.; Burke, M.; Lewis, G. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet, 2007, 370(9584), 319-328.
[http://dx.doi.org/10.1016/S0140-6736(07)61162-3] [PMID: 17662880]
[224]
Murray, R.M.; Morrison, P.D.; Henquet, C.; Di Forti, M. Cannabis, the mind and society: The hash realities. Nat. Rev. Neurosci., 2007, 8(11), 885-895.
[http://dx.doi.org/10.1038/nrn2253] [PMID: 17925811]
[225]
Verdoux, H.; Tournier, M. Cannabis use and risk of psychosis: An etiological link? Epidemiol. Psichiatr. Soc., 2004, 13(2), 113-119.
[http://dx.doi.org/10.1017/S1121189X0000333X] [PMID: 15298320]
[226]
Cunha, P.J.; Rosa, P.G. Ayres, Ade.M.; Duran, F.L.; Santos, L.C.; Scazufca, M.; Menezes, P.R.; dos Santos, B.; Murray, R.M.; Crippa, J.A.; Busatto, G.F.; Schaufelberger, M.S. Cannabis use, cognition and brain structure in first-episode psychosis. Schizophr. Res., 2013, 147(2-3), 209-215.
[http://dx.doi.org/10.1016/j.schres.2013.04.009] [PMID: 23672820]
[227]
White, J.; Batty, G.D. Intelligence across childhood in relation to illegal drug use in adulthood: 1970 British Cohort Study. J. Epidemiol. Community Health, 2012, 66(9), 767-774.
[http://dx.doi.org/10.1136/jech-2011-200252] [PMID: 22086967]
[228]
Schneider, S.; Peters, J.; Bromberg, U.; Brassen, S.; Miedl, S.F.; Banaschewski, T.; Barker, G.J.; Conrod, P.; Flor, H.; Garavan, H.; Heinz, A.; Ittermann, B.; Lathrop, M.; Loth, E.; Mann, K.; Martinot, J.L.; Nees, F.; Paus, T.; Rietschel, M.; Robbins, T.W.; Smolka, M.N.; Spanagel, R.; Ströhle, A.; Struve, M.; Schumann, G.; Büchel, C. Risk taking and the adolescent reward system: a potential common link to substance abuse. Am. J. Psychiatry, 2012, 169(1), 39-46.
[http://dx.doi.org/10.1176/appi.ajp.2011.11030489] [PMID: 21955931]
[229]
Steinberg, L. A social neuroscience perspective on adolescent risk-taking. Dev. Rev., 2008, 28(1), 78-106.
[http://dx.doi.org/10.1016/j.dr.2007.08.002] [PMID: 18509515]
[230]
Bertocci, M.A.; Bebko, G.; Versace, A.; Iyengar, S.; Bonar, L.; Forbes, E.E.; Almeida, J.R.C.; Perlman, S.B.; Schirda, C.; Travis, M.J.; Gill, M.K.; Diwadkar, V.A.; Sunshine, J.L.; Holland, S.K.; Kowatch, R.A.; Birmaher, B.; Axelson, D.A.; Frazier, T.W.; Arnold, L.E.; Fristad, M.A.; Youngstrom, E.A.; Horwitz, S.M.; Findling, R.L.; Phillips, M.L. Reward-related neural activity and structure predict future substance use in dysregulated youth. Psychol. Med., 2017, 47(8), 1357-1369.
[http://dx.doi.org/10.1017/S0033291716003147] [PMID: 27998326]
[231]
Lopez-Larson, M.P.; Bogorodzki, P.; Rogowska, J.; McGlade, E.; King, J.B.; Terry, J.; Yurgelun-Todd, D. Altered prefrontal and insular cortical thickness in adolescent marijuana users. Behav. Brain Res., 2011, 220(1), 164-172.
[http://dx.doi.org/10.1016/j.bbr.2011.02.001] [PMID: 21310189]
[232]
Valenzuela, M.J.; Sachdev, P. Assessment of complex mental activity across the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psychol. Med., 2007, 37(7), 1015-1025.
[http://dx.doi.org/10.1017/S003329170600938X] [PMID: 17112402]
[233]
Wilson, R.; Barnes, L.; Bennett, D. Assessment of lifetime participation in cognitively stimulating activities. J. Clin. Exp. Neuropsychol., 2003, 25(5), 634-642.
[http://dx.doi.org/10.1076/jcen.25.5.634.14572] [PMID: 12815501]
[234]
Rami, L.; Valls-Pedret, C.; Bartrés-Faz, D.; Caprile, C.; Solé-Padullés, C.; Castellví, M.; Olives, J.; Bosch, B.; Molinuevo, J.L. Cuestionario de reserva cognitiva. Valores obtenidos en poblacion anciana sana y con enfermedad de Alzheimer. Rev. Neurol., 2011, 52(4), 195-201.
[PMID: 21312165]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy