Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Tyrosinase Inhibitory Activity of S-Naproxen Derivatives

Author(s): Ghulam Mohiuddin, Khalid Mohammed Khan*, Uzma Salar, Kanwal, Muhammad Arif Lodhi, Farida Begum and Shahnaz Perveen

Volume 16, Issue 11, 2019

Page: [1276 - 1285] Pages: 10

DOI: 10.2174/1570180816666190611162355

Price: $65

Abstract

Background: Tyrosinase enzyme is one of the important targets to reduce melanoma and other skin disorders. Standard inhibitors of tyrosinase enzyme including arbutin and kojic acid are less effective. Some NSAIDs such as acetylsalicylic acid, mefanamic acid, and diclofenac are known to possess inhibitory potential against melanogenesis. The current study deals with the screening of tyrosinase inhibitory potential of S-naproxen derivatives.

Methods: Synthetic S-naproxen derivatives 1-33 were evaluated for tyrosinase inhibitory activity in vitro.

Results: Six compounds 2, 8, 9, 20, 21, and 29 showed good to moderate activity in the range of (IC50 = 21.05 ± 0.9-53.22 ± 0.7 µM) as compared to the standard kojic acid (IC50 = 16.9 ± 1.3 µM). Compound 9 (IC50 = 21.05 ± 0.9 µM) was found to be significantly active and showed activity close to the standard. Compounds 2 (IC50 = 33.23 ± 1.1 µM), 8 (IC50 = 42.10 ± 1.0 µM), 20 (IC50 = 35.40 ± 0.4 µM), 21 (IC50 = 41.01 ± 0.6 µM), and 29 (IC50 = 53.22 ± 0.7 µM) were found to be moderately active. Structure-activity relationship (SAR) was rationalized on the basis of different substituents and functionalities present on the main scaffold.

Conclusion: This study has identified a number of compounds derived from S-naproxen with comparable tyrosinase inhibitory activity.

Keywords: S-Naproxen, hydrazide, oxadiazole, schiff base, sulfonamide, tyrosinase inhibition, in vitro, structure-activity relationship.

Graphical Abstract
[1]
Amir, M.; Kumar, S. Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives. Acta Pharm., 2007, 57(1), 31-45.
[http://dx.doi.org/10.2478/v10007-007-0003-y] [PMID: 19839405]
[2]
Tixier, C.; Singer, H.P.; Oellers, S.; Müller, S.R. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ. Sci. Technol., 2003, 37(6), 1061-1068.
[http://dx.doi.org/10.1021/es025834r] [PMID: 12680655]
[3]
Shanbhag, V.R.; Crider, A.M.; Gokhale, R.; Harpalani, A.; Dick, R.M. Ester and amide prodrugs of ibuprofen and naproxen: Synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J. Pharm. Sci., 1992, 81(2), 149-154.
[http://dx.doi.org/10.1002/jps.2600810210] [PMID: 1545354]
[4]
Chang, C.S.; Su, C.C.; Zhuang, J.R.; Tsai, S.W. Enhancement of enantioselectivity on the synthesis of (S)-naproxen morpholinoalkyl ester prodrugs in organic solvents using isopropanol-dried immobilized lipase. J. Mol. Catal., B Enzym., 2004, 30, 151.
[http://dx.doi.org/10.1016/j.molcatb.2004.05.001]
[5]
Kajiwara, T.; Matsui, K.; Akakabe, Y.; Murakawa, T.; Arai, C. Antimicrobial browning-inhibitory effect of flavor compounds in seaweeds. J. Appl. Phycol., 2006, 18(3-5), 413.
[http://dx.doi.org/10.1007/s10811-006-9046-6]
[6]
Garcia-Molina, Mdel.M.; Muñoz-Muñoz, J.L.; Garcia-Molina, F.; García-Ruiz, P.A.; Garcia-Canovas, F. Action of tyrosinase on ortho-substituted phenols: possible influence on browning and melanogenesis. J. Agric. Food Chem., 2012, 60(25), 6447-6453.
[http://dx.doi.org/10.1021/jf301238q] [PMID: 22670832]
[7]
Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, 84(3), 539-549.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[8]
Khan, K.M.; Maharvi, G.M.; Khan, M.T.H.; Jabbar Shaikh, A.; Perveen, S.; Begum, S.; Choudhary, M.I. Tetraketones: A new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2006, 14(2), 344-351.
[http://dx.doi.org/10.1016/j.bmc.2005.08.029] [PMID: 16198580]
[9]
Sato, K.; Toriyama, M. The inhibitory effect of non-steroidal anti-inflammatory drugs (NSAIDs) on the monophenolase and diphenolase activities of mushroom tyrosinase. Int. J. Mol. Sci., 2011, 12(6), 3998-4008.
[http://dx.doi.org/10.3390/ijms12063998] [PMID: 21747720]
[10]
Hearing, V.J.; Ekel, T.M. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem. J., 1976, 157(3), 549-557.
[http://dx.doi.org/10.1042/bj1570549] [PMID: 825109]
[11]
Saghaie, L.; Pourfarzam, M.; Fassihi, A.; Sartippour, B. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Res. Pharm. Sci., 2013, 8(4), 233-242.
[PMID: 24082892]
[12]
Yi, W.; Cao, R.; Peng, W.; Wen, H.; Yan, Q.; Zhou, B.; Ma, L.; Song, H. Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. Eur. J. Med. Chem., 2010, 45(2), 639-646.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.007] [PMID: 19932528]
[13]
Casañola-Martín, G.M.; Marrero-Ponce, Y.; Khan, M.T.H.; Ather, A.; Khan, K.M.; Torrens, F.; Rotondo, R. Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays. Eur. J. Med. Chem., 2007, 42(11-12), 1370-1381.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.026] [PMID: 17637486]
[14]
Khan, K.M.; Maharvi, G.M.; Khan, M.T.H.; Perveen, S.; Choudhary, M.I. Atta-Ur-Rahman, A facile and improved synthesis of sildenafil (Viagra) analogs through solid support microwave irradiation possessing tyrosinase inhibitory potential, their conformational analysis and molecular dynamics simulation studies. Mol. Divers., 2005, 9(1-3), 15-26.
[http://dx.doi.org/10.1007/s11030-005-1299-5] [PMID: 15789547]
[15]
Khan, M.T.; Choudhary, M.I.; Khan, K.M.; Rani, M. Atta-ur-Rahman, Structure-activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg. Med. Chem., 2005, 13(10), 3385-3395.
[http://dx.doi.org/10.1016/j.bmc.2005.03.012] [PMID: 15934142]
[16]
Khan, K.M.; Maharvi, G.M.; Perveen, S.; Khan, M.T.H.; Abdel-Jalil, R.J.; Shah, S.T.A.; Fecker, M.; Choudhary, M.I. Atta-ur-Rahman; Voelter, W. Synthesis of methyl ether analogues of sildenafil (viagra®) possessing tyrosinase potential. Chem. Biodivers., 2005, 2, 470.
[http://dx.doi.org/10.1002/cbdv.200590027] [PMID: 17191995]
[17]
Khan, K.M.; Saify, Z.S.; Khan, M.T.H.; Butt, N.; Maharvi, G.M.; Perveen, S.; Ambreen, N.; Choudhary, M.I. Atta-Ur-Rahman; Supuran, C.T. Tyrosinase inhibition: conformational analysis based studies on molecular dynamics calculations of bipiperidine based inhibitors. J. Enzyme Inhib. Med. Chem., 2005, 20(4), 401-407.
[http://dx.doi.org/10.1080/14756360500179333] [PMID: 16206837]
[18]
Kubo, I.; Kinst-Hori, I. 2-Hydroxy-4-methoxybenzaldehyde: A potent tyrosinase inhibitor from African medicinal plants. Planta Med., 1999, 65(1), 19-22.
[http://dx.doi.org/10.1055/s-1999-13955] [PMID: 10083839]
[19]
Lee, Y.S.; Park, J.H.; Kim, M.H.; Seo, S.H.; Kim, H.J. Synthesis of tyrosinase inhibitory kojic acid derivative. Arch. Pharm. (Weinheim), 2006, 339(3), 111-114.
[http://dx.doi.org/10.1002/ardp.200500213] [PMID: 16511808]
[20]
Lam, K.W.; Syahida, A.; Ul-Haq, Z.; Abdul Rahman, M.B.; Lajis, N.H. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3755-3759.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.067] [PMID: 20493688]
[21]
Kubo, I.; Kinst-Hori, I.; Chaudhuri, S.K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorg. Med. Chem., 2000, 8(7), 1749-1755.
[http://dx.doi.org/10.1016/S0968-0896(00)00102-4] [PMID: 10976523]
[22]
Iwai, K.; Kishimoto, N.; Kakino, Y.; Mochida, K.; Fujita, T. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J. Agric. Food Chem., 2004, 52(15), 4893-4898.
[http://dx.doi.org/10.1021/jf040048m] [PMID: 15264931]
[23]
Kang, S.S.; Kim, H.J.; Jin, C.; Lee, Y.S. Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl)acrylic acid ester derivatives. Bioorg. Med. Chem. Lett., 2009, 19(1), 188-191.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.119] [PMID: 19022667]
[24]
Yu, F.; Jia, Y.L.; Wang, H.F.; Zheng, J.; Cui, Y.; Fang, X.Y.; Zhang, L.M.; Chen, Q.X. Synthesis of triazole Schiff’s base derivatives and their inhibitory kinetics on tyrosinase activity. PLoS One, 2015, 10(9)e0138578
[http://dx.doi.org/10.1371/journal.pone.0138578] [PMID: 26422245]
[25]
Gençer, N.; Demir, D.; Sonmez, F.; Kucukislamoglu, M. New saccharin derivatives as tyrosinase inhibitors. Bioorg. Med. Chem., 2012, 20(9), 2811-2821.
[http://dx.doi.org/10.1016/j.bmc.2012.03.033] [PMID: 22494841]
[26]
Kim, J.H.; Yoon, J.Y.; Yang, S.Y.; Choi, S.K.; Kwon, S.J.; Cho, I.S.; Jeong, M.H.; Ho Kim, Y.; Choi, G.S. Tyrosinase inhibitory components from Aloe vera and their antiviral activity. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 78-83.
[http://dx.doi.org/10.1080/14756366.2016.1235568] [PMID: 27778516]
[27]
Mohiuddin, G.; Khan, K.M.; Salar, U. Kanwal; Lodhi, M.A.; Wadood, A.; Riaz, M.; Perveen, S. Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico study of S-naproxen derivatives. Bioorg. Chem., 2019, 83, 29-46.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.021] [PMID: 30339862]
[28]
Pomerantz, S.H.; Ances, I.G. Tyrosinase activity in human skin. Influence of race and age in newborns. J. Clin. Invest., 1975, 55(5), 1127-1131.
[http://dx.doi.org/10.1172/JCI108014] [PMID: 804495]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy