Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Potential Roles of Siglecs in the Regulation of Allo-Immune Reaction

Author(s): Songjie Cai, Jing Zhao, Takuya Ueno and Anil Chandraker*

Volume 20, Issue 8, 2019

Page: [823 - 828] Pages: 6

DOI: 10.2174/1389203720666190507095759

Price: $65

Abstract

Siglecs are mammalian sialic acid (Sia) recognizing immuno-globulin-like receptors expressed across the major leukocyte lineages, and function to recognize ubiquitous Sia epitopes on the cell surface. Many Siglecs are inhibitory receptors expressed on innate immune cells, they also have a role in maintaining B cell tolerance as well as modulating the activation of conventional and plasmocytic dendritic cells. Through these and other roles they contribute directly and indirectly to the regulation of T cell function. Siglecs have been identified to play key roles in several forms of blood cancers, autoimmune and infection deceases. So far as we know, there’s no Siglecs related research works on solid organ transplantation. In this review, we describe our understanding of the potential roles of Siglecs in the regulation of immune cell function, which may be crosslinked to allo-rejection and ischemia-reperfusion injury.

Keywords: Siglecs, eosinophils, autoimmune, allo-rejection, ischemia-reperfusion injury, sialic acid.

Graphical Abstract
[1]
Crocker, P.R.; Varki, A. Siglecs in the immune system. Immunology, 2001, 103(2), 137-145.
[2]
von Gunten, S.; Bochner, B.S. Basic and clinical immunology of Siglecs. Ann. N. Y. Acad. Sci., 2008, 1143, 61-82.
[3]
Macauley, M.S.; Crocker, P.R.; Paulson, J.C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol., 2014, 14(10), 653-666.
[4]
Crocker, P.R.; Paulson, J.C.; Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol., 2007, 7(4), 255-266.
[5]
Crocker, P.R.; Gordon, S. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. J. Exp. Med., 1986, 164(6), 1862-1875.
[6]
van den Berg, T.K.; Nath, D.; Ziltener, H.J.; Vestweber, D.; Fukuda, M.; van Die, I.; Crocker, P.R. Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J. Immunol., 2001, 166(6), 3637-3640.
[7]
(a) Xiong, Y.S.; Wu, A.L.; Lin, Q.S.; Yu, J.; Li, C.; Zhu, L.; Zhong, R.Q. Contribution of monocytes Siglec-1 in stimulating T cells proliferation and activation in atherosclerosis. Atherosclerosis, 2012, 224(1), 58-65.
(b) Rose, T.; Grutzkau, A.; Hirseland, H.; Huscher, D.; Dahnrich, C.; Dzionek, A.; Ozimkowski, T.; Schlumberger, W.; Enghard, P.; Radbruch, A.; Riemekasten, G.; Burmester, G.R.; Hiepe, F.; Biesen, R. IFNalpha and its response proteins, IP-10 and SIGLEC-1, are biomarkers of disease activity in systemic lupus erythematosus. Ann. Rheum. Dis., 2013, 72(10), 1639-1645.
[8]
Nitschke, L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr. Opin. Immunol., 2005, 17(3), 290-297.
[9]
Collins, B.E.; Smith, B.A.; Bengtson, P.; Paulson, J.C. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat. Immunol., 2006, 7(2), 199-206.
[10]
Griffin, J.D.; Linch, D.; Sabbath, K.; Larcom, P.; Schlossman, S.F. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk. Res., 1984, 8(4), 521-534.
[11]
Hudak, J.E.; Canham, S.M.; Bertozzi, C.R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol., 2014, 10(1), 69-75.
[12]
(a) Angata, T.; Varki, A. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J. Biol. Chem., 2000, 275(29), 22127-22135.
(b) Zhang, J.Q.; Nicoll, G.; Jones, C.; Crocker, P.R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J. Biol. Chem., 2000, 275(29), 22121-22126.
[13]
Munday, J.; Kerr, S.; Ni, J.; Cornish, A.L.; Zhang, J.Q.; Nicoll, G.; Floyd, H.; Mattei, M.G.; Moore, P.; Liu, D.; Crocker, P.R. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem. J., 2001, 355(Pt 2), 489-497.
[14]
Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol., 2000, 18, 767-811.
[15]
Cai, S.; Ichimaru, N.; Takahara, S. How do dendritic cells play the role in ischemia/reperfusion triggered kidney allograft rejection. Curr. Gene Ther., 2017, 17(6), 400-404.
[16]
(a) Wu, J.; Saleh, M.A.; Kirabo, A.; Itani, H.A.; Montaniel, K.R.; Xiao, L.; Chen, W.; Mernaugh, R.L.; Cai, H.; Bernstein, K.E.; Goronzy, J.J.; Weyand, C.M.; Curci, J.A.; Barbaro, N.R.; Moreno, H.; Davies, S.S.; Roberts, L.J., II; Madhur, M.S.; Harrison, D.G. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J. Clin. Invest., 2016, 126(1), 50-67.
(b) Cella, M.; Jarrossay, D.; Facchetti, F.; Alebardi, O.; Nakajima, H.; Lanzavecchia, A.; Colonna, M. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med., 1999, 5(8), 919-923.
(c) Siegal, F.P.; Kadowaki, N.; Shodell, M.; Fitzgerald-Bocarsly, P.A.; Shah, K.; Ho, S.; Antonenko, S.; Liu, Y.J. The nature of the principal type 1 interferon-producing cells in human blood. Science, 1999, 284(5421), 1835-1837.
[17]
Kono, H.; Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol., 2008, 8(4), 279-289.
[18]
Lakkis, F.G.; Lechler, R.I. Origin and biology of the allogeneic response. Cold Spring Harb. Perspect. Med., 2013, 3(8), pii: a014993.
[19]
Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Obeid, M.; Ortiz, C.; Criollo, A.; Mignot, G.; Maiuri, M.C.; Ullrich, E.; Saulnier, P.; Yang, H.; Amigorena, S.; Ryffel, B.; Barrat, F.J.; Saftig, P.; Levi, F.; Lidereau, R.; Nogues, C.; Mira, J.P.; Chompret, A.; Joulin, V.; Clavel-Chapelon, F.; Bourhis, J.; Andre, F.; Delaloge, S.; Tursz, T.; Kroemer, G.; Zitvogel, L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med., 2007, 13(9), 1050-1059.
[20]
Ding, C.; Liu, Y.; Wang, Y.; Park, B.K.; Wang, C.Y.; Zheng, P.; Liu, Y. Siglecg limits the size of B1a B cell lineage by down-regulating NFkappaB activation. PLoS One, 2007, 2(10), e997.
[21]
(a) Chen, G.Y.; Chen, X.; King, S.; Cavassani, K.A.; Cheng, J.; Zheng, X.; Cao, H.; Yu, H.; Qu, J.; Fang, D.; Wu, W.; Bai, X.F.; Liu, J.Q.; Woodiga, S.A.; Chen, C.; Sun, L.; Hogaboam, C.M.; Kunkel, S.L.; Zheng, P.; Liu, Y. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat. Biotechnol., 2011, 29(5), 428-435.
(b) Chen, G.Y.; Tang, J.; Zheng, P.; Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science, 2009, 323(5922), 1722-1725.
[22]
(a) Wilhelm, K.; Ganesan, J.; Muller, T.; Durr, C.; Grimm, M.; Beilhack, A.; Krempl, C.D.; Sorichter, S.; Gerlach, U.V.; Juttner, E.; Zerweck, A.; Gartner, F.; Pellegatti, P.; Di Virgilio, F.; Ferrari, D.; Kambham, N.; Fisch, P.; Finke, J.; Idzko, M.; Zeiser, R. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat. Med., 2010, 16(12), 1434-1438.
(b) Jankovic, D.; Ganesan, J.; Bscheider, M.; Stickel, N.; Weber, F.C.; Guarda, G.; Follo, M.; Pfeifer, D.; Tardivel, A.; Ludigs, K.; Bouazzaoui, A.; Kerl, K.; Fischer, J.C.; Haas, T.; Schmitt-Graff, A.; Manoharan, A.; Muller, L.; Finke, J.; Martin, S.F.; Gorka, O.; Peschel, C.; Ruland, J.; Idzko, M.; Duyster, J.; Holler, E.; French, L.E.; Poeck, H.; Contassot, E.; Zeiser, R. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J. Exp. Med., 2013, 210(10), 1899-1910.
(c) Brennan, T.V.; Lin, L.; Huang, X.; Cardona, D.M.; Li, Z.; Dredge, K.; Chao, N.J.; Yang, Y. Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood, 2012, 120(14), 2899-2908.
[23]
Toubai, T.; Hou, G.; Mathewson, N.; Liu, C.; Wang, Y.; Oravecz-Wilson, K.; Cummings, E.; Rossi, C.; Evers, R.; Sun, Y.; Wu, J.; Choi, S.W.; Fang, D.; Zheng, P.; Liu, Y.; Reddy, P. Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice. Blood, 2014, 123(22), 3512-3523.
[24]
Gilliet, M.; Cao, W.; Liu, Y.J. Plasmacytoid dendritic cells: Sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol., 2008, 8(8), 594-606.
[25]
(a) Villadangos, J.A.; Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity, 2008, 29(3), 352-361.
(b) Reizis, B.; Bunin, A.; Ghosh, H.S.; Lewis, K.L.; Sisirak, V. Plasmacytoid dendritic cells: Recent progress and open questions. Annu. Rev. Immunol., 2011, 29, 163-183.
[26]
Hadeiba, H.; Lahl, K.; Edalati, A.; Oderup, C.; Habtezion, A.; Pachynski, R.; Nguyen, L.; Ghodsi, A.; Adler, S.; Butcher, E.C. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity, 2012, 36(3), 438-450.
[27]
Hadeiba, H.; Sato, T.; Habtezion, A.; Oderup, C.; Pan, J.; Butcher, E.C. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat. Immunol., 2008, 9(11), 1253-1260.
[28]
Swiecki, M.; Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol., 2015, 15(8), 471-485.
[29]
Crocker, P.R.; McMillan, S.J.; Richards, H.E. CD33-related siglecs as potential modulators of inflammatory responses. Ann. N. Y. Acad. Sci., 2012, 1253, 102-111.
[30]
Blasius, A.L.; Cella, M.; Maldonado, J.; Takai, T.; Colonna, M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood, 2006, 107(6), 2474-2476.
[31]
Loschko, J.; Heink, S.; Hackl, D.; Dudziak, D.; Reindl, W.; Korn, T.; Krug, A.B. Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J. Immunol., 2011, 187(12), 6346-6356.
[32]
(a) Ezzelarab, M.B.; Raich-Regue, D.; Lu, L.; Zahorchak, A.F.; Perez-Gutierrez, A.; Humar, A.; Wijkstrom, M.; Minervini, M.; Wiseman, R.W.; Cooper, D.K.; Morelli, A.E.; Thomson, A.W. Renal allograft survival in nonhuman primates infused with donor antigen-pulsed autologous regulatory dendritic cells. Am. J. Transplant., 2017, 17(6), 1476-1489.
(b) Taner, T.; Hackstein, H.; Wang, Z.; Morelli, A.E.; Thomson, A.W. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am. J. Transplant., 2005, 5(2), 228-236.
(c) Xu, M.Q.; Suo, Y.P.; Gong, J.P.; Zhang, M.M.; Yan, L.N. Prolongation of liver allograft survival by dendritic cells modified with NF-kappaB decoy oligodeoxynucleotides. World J. Gastroenterol., 2004, 10(16), 2361-2368.
(d) Tiao, M.M.; Lu, L.; Tao, R.; Wang, L.; Fung, J.J.; Qian, S. Prolongation of cardiac allograft survival by systemic administration of immature recipient dendritic cells deficient in NF-kappaB activity. Ann. Surg., 2005, 241(3), 497-505.
(e) Bonham, C.A.; Peng, L.; Liang, X.; Chen, Z.; Wang, L.; Ma, L.; Hackstein, H.; Robbins, P.D.; Thomson, A.W.; Fung, J.J.; Qian, S.; Lu, L. Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-kappa B oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J. Immunol., 2002, 169(6), 3382-3391.
(f) Cai, S.; Hou, J.; Fujino, M.; Zhang, Q.; Ichimaru, N.; Takahara, S.; Araki, R.; Lu, L.; Chen, J.M.; Zhuang, J.; Zhu, P.; Li, X.K. iPSC-derived regulatory dendritic cells inhibit allograft rejection by generating alloantigen-specific regulatory T cells. Stem Cell Reports, 2017, 8(5), 1174-1189.
[33]
Perdicchio, M.; Ilarregui, J.M.; Verstege, M.I.; Cornelissen, L.A.; Schetters, S.T.; Engels, S.; Ambrosini, M.; Kalay, H.; Veninga, H.; den Haan, J.M.; van Berkel, L.A.; Samsom, J.N.; Crocker, P.R.; Sparwasser, T.; Berod, L.; Garcia-Vallejo, J.J.; van Kooyk, Y.; Unger, W.W. Sialic acid-modified antigens impose tolerance via inhibition of T-cell proliferation and de novo induction of regulatory T cells. Proc. Natl. Acad. Sci. USA, 2016, 113(12), 3329-3334.
[34]
Thaunat, O.; Patey, N.; Caligiuri, G.; Gautreau, C.; Mamani-Matsuda, M.; Mekki, Y.; Dieu-Nosjean, M.C.; Eberl, G.; Ecochard, R.; Michel, J.B.; Graff-Dubois, S.; Nicoletti, A. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol., 2010, 185(1), 717-728.
[35]
Small, T.N.; Robinson, W.H.; Miklos, D.B. B cells and transplantation: An educational resource. Biol. Blood Marrow Transplant., 2009, 15(1)(Suppl.), 104-113.
[36]
(a) Loupy, A.; Hill, G.S.; Jordan, S.C. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat. Rev. Nephrol., 2012, 8(6), 348-357.
(b) Lee, P.C.; Terasaki, P.I.; Takemoto, S.K.; Lee, P.H.; Hung, C.J.; Chen, Y.L.; Tsai, A.; Lei, H.Y. All chronic rejection failures of kidney transplants were preceded by the development of HLA antibodies. Transplantation, 2002, 74(8), 1192-1194.
(c) Tran, A.; Fixler, D.; Huang, R.; Meza, T.; Lacelle, C.; Das, B.B. Donor-specific HLA alloantibodies: Impact on cardiac allograft vasculopathy, rejection, and survival after pediatric heart transplantation. J. Heart Lung Transplant., 2016, 35(1), 87-91.
(d) Le Pavec, J.; Suberbielle, C.; Lamrani, L.; Feuillet, S.; Savale, L.; Dorfmuller, P.; Stephan, F.; Mussot, S.; Mercier, O.; Fadel, E. De-novo donor-specific anti-HLA antibodies 30 days after lung transplantation are associated with a worse outcome. J. Heart Lung Transplant., 2016, 35(9), 1067-1077.
(e) Kaneku, H.; O’Leary, J.G.; Banuelos, N.; Jennings, L.W.; Susskind, B.M.; Klintmalm, G.B.; Terasaki, P.I. De novo donor-specific HLA antibodies decrease patient and graft survival in liver transplant recipients. Am. J. Transplant., 2013, 13(6), 1541-1548.
[37]
(a) Wiebe, C.; Gibson, I.W.; Blydt-Hansen, T.D.; Karpinski, M.; Ho, J.; Storsley, L.J.; Goldberg, A.; Birk, P.E.; Rush, D.N.; Nickerson, P.W. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am. J. Transplant., 2012, 12(5), 1157-1167.
(b) Wu, P.; Everly, M.J.; Rebellato, L.M.; Haisch, C.E.; Briley, K.P.; Bolin, P.; Kendrick, W.T.; Kendrick, S.A.; Morgan, C.; Harland, R.C.; Terasaki, P.I. Trends and characteristics in early glomerular filtration rate decline after posttransplantation alloantibody appearance. Transplantation, 2013, 96(10), 919-925.
[38]
Ng, Y.H.; Oberbarnscheidt, M.H.; Chandramoorthy, H.C.; Hoffman, R.; Chalasani, G. B cells help alloreactive T cells differentiate into memory T cells. Am. J. Transplant., 2010, 10(9), 1970-1980.
[39]
(a) Yoshizaki, A.; Miyagaki, T.; DiLillo, D.J.; Matsushita, T.; Horikawa, M.; Kountikov, E.I.; Spolski, R.; Poe, J.C.; Leonard, W.J.; Tedder, T.F. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature, 2012, 491(7423), 264-268.
(b) Fillatreau, S.; Sweenie, C.H.; McGeachy, M.J.; Gray, D.; Anderton, S.M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol., 2002, 3(10), 944-950.
[40]
Shen, P.; Roch, T.; Lampropoulou, V.; O’Connor, R.A.; Stervbo, U.; Hilgenberg, E.; Ries, S.; Dang, V.D.; Jaimes, Y.; Daridon, C.; Li, R.; Jouneau, L.; Boudinot, P.; Wilantri, S.; Sakwa, I.; Miyazaki, Y.; Leech, M.D.; McPherson, R.C.; Wirtz, S.; Neurath, M.; Hoehlig, K.; Meinl, E.; Grutzkau, A.; Grun, J.R.; Horn, K.; Kuhl, A.A.; Dorner, T.; Bar-Or, A.; Kaufmann, S.H.E.; Anderton, S.M.; Fillatreau, S. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature, 2014, 507(7492), 366-370.
[41]
Lee, K.M.; Stott, R.T.; Zhao, G. SooHoo, J.; Xiong, W.; Lian, M.M.; Fitzgerald, L.; Shi, S.; Akrawi, E.; Lei, J.; Deng, S.; Yeh, H.; Markmann, J.F.; Kim, J.I. TGF-beta-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur. J. Immunol., 2014, 44(6), 1728-1736.
[42]
Newell, K.A.; Asare, A.; Kirk, A.D.; Gisler, T.D.; Bourcier, K.; Suthanthiran, M.; Burlingham, W.J.; Marks, W.H.; Sanz, I.; Lechler, R.I.; Hernandez-Fuentes, M.P.; Turka, L.A.; Seyfert-Margolis, V.L. Immune Tolerance Network, S.T.S.G. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest., 2010, 120(6), 1836-1847.
[43]
Muller, J.; Nitschke, L. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat. Rev. Rheumatol., 2014, 10(7), 422-428.
[44]
Winslow, M.M.; Neilson, J.R.; Crabtree, G.R. Calcium signalling in lymphocytes. Curr. Opin. Immunol., 2003, 15(3), 299-307.
[45]
Jellusova, J.; Nitschke, L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front. Immunol., 2011, 2, 96.
[46]
Otipoby, K.L.; Draves, K.E.; Clark, E.A. CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J. Biol. Chem., 2001, 276(47), 44315-44322.
[47]
Blasioli, J.; Paust, S.; Thomas, M.L. Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J. Biol. Chem., 1999, 274(4), 2303-2307.
[48]
(a) Chen, J.; McLean, P.A.; Neel, B.G.; Okunade, G.; Shull, G.E.; Wortis, H.H. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol., 2004, 5(6), 651-657.
(b) Fujimoto, M.; Bradney, A.P.; Poe, J.C.; Steeber, D.A.; Tedder, T.F. Modulation of B lymphocyte antigen receptor signal transduction by a CD19/CD22 regulatory loop. Immunity, 1999, 11(2), 191-200.
(c) Gerlach, J.; Ghosh, S.; Jumaa, H.; Reth, M.; Wienands, J.; Chan, A.C.; Nitschke, L. B cell defects in SLP65/BLNK-deficient mice can be partially corrected by the absence of CD22, an inhibitory coreceptor for BCR signaling. Eur. J. Immunol., 2003, 33(12), 3418-3426.
[49]
Muller, J.; Obermeier, I.; Wohner, M.; Brandl, C.; Mrotzek, S.; Angermuller, S.; Maity, P.C.; Reth, M.; Nitschke, L. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12402-12407.
[50]
O’Keefe, T.L.; Williams, G.T.; Batista, F.D.; Neuberger, M.S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med., 1999, 189(8), 1307-1313.
[51]
Nitschke, L.; Floyd, H.; Ferguson, D.J.; Crocker, P.R. Identification of CD22 ligands on bone marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculating B cells. J. Exp. Med., 1999, 189(9), 1513-1518.
[52]
Hoffmann, A.; Kerr, S.; Jellusova, J.; Zhang, J.; Weisel, F.; Wellmann, U.; Winkler, T.H.; Kneitz, B.; Crocker, P.R.; Nitschke, L. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat. Immunol., 2007, 8(7), 695-704.
[53]
Sato, S.; Miller, A.S.; Inaoki, M.; Bock, C.B.; Jansen, P.J.; Tang, M.L.; Tedder, T.F. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: Altered signaling in CD22-deficient mice. Immunity, 1996, 5(6), 551-562.
[54]
Jellusova, J.; Wellmann, U.; Amann, K.; Winkler, T.H.; Nitschke, L. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J. Immunol., 2010, 184(7), 3618-3627.
[55]
Courtney, A.H.; Puffer, E.B.; Pontrello, J.K.; Yang, Z.Q.; Kiessling, L.L. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2500-2505.
[56]
Duong, B.H.; Tian, H.; Ota, T.; Completo, G.; Han, S.; Vela, J.L.; Ota, M.; Kubitz, M.; Bovin, N.; Paulson, J.C.; Nemazee, D. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med., 2010, 207(1), 173-187.
[57]
Macauley, M.S.; Pfrengle, F.; Rademacher, C.; Nycholat, C.M.; Gale, A.J.; von Drygalski, A.; Paulson, J.C. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest., 2013, 123(7), 3074-3083.
[58]
Pfrengle, F.; Macauley, M.S.; Kawasaki, N.; Paulson, J.C. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J. Immunol., 2013, 191(4), 1724-1731.
[59]
Pang, L.; Macauley, M.S.; Arlian, B.M.; Nycholat, C.M.; Paulson, J.C. Encapsulating an Immunosuppressant enhances tolerance induction by siglec-engaging tolerogenic liposomes. ChemBioChem, 2017, 18(13), 1226-1233.
[60]
(a) Lanier, L.L. Activating and inhibitory NK cell receptors. Adv. Exp. Med. Biol., 1998, 452, 13-18.
(b) Lanier, L.L. NK cell receptors. Annu. Rev. Immunol., 1998, 16, 359-393.
(c) Long, E.O.; Wagtmann, N. Natural killer cell receptors. Curr. Opin. Immunol., 1997, 9(3), 344-350.
[61]
(a) van der Touw, W.; Bromberg, J.S. Natural killer cells and the immune response in solid organ transplantation. Am. J. Transplant., 2010, 10(6), 1354-1358.
(b) Kitchens, W.H.; Uehara, S.; Chase, C.M.; Colvin, R.B.; Russell, P.S.; Madsen, J.C. The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation, 2006, 81(6), 811-817.
[62]
(a) Laffont, S.; Seillet, C.; Ortaldo, J.; Coudert, J.D.; Guery, J.C. Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood, 2008, 112(3), 661-671.
(b) Yu, G.; Xu, X.; Vu, M.D.; Kilpatrick, E.D.; Li, X.C. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J. Exp. Med., 2006, 203(8), 1851-1858.
[63]
Maroof, A.; Beattie, L.; Zubairi, S.; Svensson, M.; Stager, S.; Kaye, P.M. Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity, 2008, 29(2), 295-305.
[64]
Falco, M.; Biassoni, R.; Bottino, C.; Vitale, M.; Sivori, S.; Augugliaro, R.; Moretta, L.; Moretta, A. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med., 1999, 190(6), 793-802.
[65]
Nicoll, G.; Ni, J.; Liu, D.; Klenerman, P.; Munday, J.; Dubock, S.; Mattei, M.G.; Crocker, P.R. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J. Biol. Chem., 1999, 274(48), 34089-34095.
[66]
Belisle, J.A.; Horibata, S.; Jennifer, G.A.; Petrie, S.; Kapur, A.; Andre, S.; Gabius, H.J.; Rancourt, C.; Connor, J.; Paulson, J.C.; Patankar, M.S. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol. Cancer, 2010, 9, 118.
[67]
Jandus, C.; Boligan, K.F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Demoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R.E.; Baerlocher, G.M.; Simon, H.U.; Romero, P.; Munz, C.; von Gunten, S. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Invest., 2014, 124(4), 1810-1820.
[68]
Kawasaki, Y.; Ito, A.; Withers, D.A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology, 2010, 20(11), 1373-1379.
[69]
Nicoll, G.; Avril, T.; Lock, K.; Furukawa, K.; Bovin, N.; Crocker, P.R. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol., 2003, 33(6), 1642-1648.
[70]
Smith-Garvin, J.E.; Koretzky, G.A.; Jordan, M.S. T cell activation. Annu. Rev. Immunol., 2009, 27, 591-619.
[71]
Rocha, P.N.; Plumb, T.J.; Crowley, S.D.; Coffman, T.M. Effector mechanisms in transplant rejection. Immunol. Rev., 2003, 196, 51-64.
[72]
Harper, S.J.; Ali, J.M.; Wlodek, E.; Negus, M.C.; Harper, I.G.; Chhabra, M.; Qureshi, M.S.; Mallik, M.; Bolton, E.; Bradley, J.A.; Pettigrew, G.J. CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc. Natl. Acad. Sci. USA, 2015, 112(41), 12788-12793.
[73]
Page, A.J.; Ford, M.L.; Kirk, A.D. Memory T-cell-specific therapeutics in organ transplantation. Curr. Opin. Organ Transplant., 2009, 14(6), 643-649.
[74]
(a) Preville, X.; Flacher, M.; LeMauff, B.; Beauchard, S.; Davelu, P.; Tiollier, J.; Revillard, J.P. Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation, 2001, 71(3), 460-468.
(b) Genestier, L.; Fournel, S.; Flacher, M.; Assossou, O.; Revillard, J.P.; Bonnefoy-Berard, N. Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins. Blood, 1998, 91(7), 2360-2368.
[75]
Abramowicz, D.; Schandene, L.; Goldman, M.; Crusiaux, A.; Vereerstraeten, P.; De Pauw, L.; Wybran, J.; Kinnaert, P.; Dupont, E.; Toussaint, C. Release of tumor necrosis factor, interleukin-2, and gamma-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation, 1989, 47(4), 606-608.
[76]
Friend, P.J. Alemtuzumab induction therapy in solid organ transplantation. Transplant. Res., 2013, 2(Suppl. 1), S5.
[77]
Bluestone, J.A.; St Clair, E.W.; Turka, L.A. CTLA4Ig: Bridging the basic immunology with clinical application. Immunity, 2006, 24(3), 233-238.
[78]
Pinelli, D.F.; Ford, M.L. Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance. Immunotherapy, 2015, 7(4), 399-410.
[79]
da Silva, A.J.; Brickelmaier, M.; Majeau, G.R.; Li, Z.; Su, L.; Hsu, Y.M.; Hochman, P.S. Alefacept, an immunomodulatory recombinant LFA-3/IgG1 fusion protein, induces CD16 signaling and CD2/CD16-dependent apoptosis of CD2(+) cells. J. Immunol., 2002, 168(9), 4462-4471.
[80]
Ikehara, Y.; Ikehara, S.K.; Paulson, J.C. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J. Biol. Chem., 2004, 279(41), 43117-43125.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy