Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Expression of Rice Metallothionein Isoforms in Escherichia coli Enhances the Accumulation of Trivalent and Hexavalent Chromium

Author(s): Azar Shahpiri* and Amir Mohammad Rahimi

Volume 26, Issue 10, 2019

Page: [768 - 775] Pages: 8

DOI: 10.2174/0929866526666190503100613

Price: $65

Abstract

Introduction: Metallothioneins (MTs) are members of a family of low molecular weight and cysteine-rich proteins that are involved in heavy metal homeostasis and detoxification in living organisms. Plants have multiple MT types that are generally divided into four subgroups according to the arrangement of Cys residues.

Methods: In the present study the E. coli cells which heterologously express four different rice MT (OsMT) isoforms were analyzed for the accumulation of two forms of chromium, Cr3+ and Cr6+.

Results: The results show that the transgenic bacteria were more tolerant than control cells when they were grown up in the medium comprising Cr(NO3)3.9H2O or Na2CrO4. The cells expressing OsMT1, OsMT2, OsMT3 and OsMT4 give rise to 6.5-, 2.7-, 5.5- and 2.1-fold improvements on the accumulation capacity for Cr3+ and 9-, 3-, 5- and 3- fold Cr6+ respectively compared with comparison to the control strain. Furthermore, the purified recombinant GST-OsMTs were tested for their binding ability to Cr+3 and Cr+6 in vitro.

Discussion: The data show that the recombinant GST-OsMT1 and GST-OsMT2 were able to bind both Cr3+ and Cr6+, in vitro. However, their binding strength was low with respect to previous tested divalent ions like Cd2+.

Keywords: Chromium, engineering, Escherichia coli, Metallothionein, rice, transgenic bacteria.

Graphical Abstract
[1]
Owlad, M.; Aroua, M.; Daud, W.; Baroutian, S. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollut., 2008, 200, 59-77.
[http://dx.doi.org/10.1007/s11270-008-9893-7]
[2]
Pal, S.; Vimala, Y. Bioremediation of chromium from fortified solutions by Phanerochaete chrysosporium (MTCC 787). J. Bioremediat. Biodegrad., 2011, 2, 127.
[http://dx.doi.org/10.4172/2155-6199.1000127]
[3]
Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 2017, 178, 513-533.
[http://dx.doi.org/10.1016/j.chemosphere.2017.03.074] [PMID: 28347915]
[4]
Hosseini, M.S.; Belador, F. Cr(III)/Cr(VI) speciation determination of chromium in water samples by luminescence quenching of quercetin. J. Hazard. Mater., 2009, 165(1-3), 1062-1067.
[http://dx.doi.org/10.1016/j.jhazmat.2008.10.084] [PMID: 19135303]
[5]
Ramakrishnaiah, C.R.; Prathima, B. Hexavalent chromium removal from industrial waste water by chemical precipitation method. Int. J. Eng. Res. Appl., 2012, 2, 599-603.
[6]
Xing, J.; Zhu, C.; Chowdhury, I.; Tian, Y.; Du, D.; Lin, Y. Electrically switched ion exchange based on polypyrrole and carbon nanotube nanocomposite for the removal of chromium (VI) from aqueous solution. Ind. Eng. Chem. Res., 2018, 57, 768-774.
[http://dx.doi.org/10.1021/acs.iecr.7b03520]
[7]
Ya, V.; Martin, N.; Chou, Y.; Chen, Y.; Choo, K.; Chen, S.; Li, C. Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode. J. Taiwan. Inst. Chem. Eng., 2018, 83, 107-114.
[http://dx.doi.org/10.1016/j.jtice.2017.12.004]
[8]
Selvi, K.; Pattabhi, S.; Kadirvelu, K. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour. Technol., 2001, 80(1), 87-89.
[http://dx.doi.org/10.1016/S0960-8524(01)00068-2] [PMID: 11554606]
[9]
Aslani, H.; Ebrahimi Kosari, T.; Naseri, S.; Nabizadeh, R.; Khazaei, M. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ. Sci. Pollut. Res. Int., 2018, 25(20), 20154-20168.
[http://dx.doi.org/10.1007/s11356-018-2023-1] [PMID: 29748803]
[10]
Gunatilake, S.K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud., 2015, 1, 12-18.
[11]
Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health, 2017, 14(12), 1504.
[http://dx.doi.org/10.3390/ijerph14121504] [PMID: 29207531]
[12]
Camargo, F.A.O.; Bento, F.M.; Okeke, B.C.; Frankenberger, W.T. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual., 2003, 32(4), 1228-1233.
[http://dx.doi.org/10.2134/jeq2003.1228] [PMID: 12931876]
[13]
Ackerley, D.F.; Gonzalez, C.F.; Park, C.H.; Blake, R.II.; Keyhan, M.; Matin, A. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl. Environ. Microbiol., 2004, 70(2), 873-882.
[http://dx.doi.org/10.1128/AEM.70.2.873-882.2004] [PMID: 14766567]
[14]
Pazirandeh, M.; Wells, B.M.; Ryan, R.L. Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol., 1998, 64(10), 4068-4072.
[PMID: 9758845]
[15]
Bae, W.; Mehra, R.K.; Mulchandani, A.; Chen, W. Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl. Environ. Microbiol., 2001, 67(11), 5335-5338.
[http://dx.doi.org/10.1128/AEM.67.11.5335-5338.2001] [PMID: 11679366]
[16]
Ruiz, O.N.; Alvarez, D.; Gonzalez-Ruiz, G.; Torres, C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol., 2011, 11, 82.
[http://dx.doi.org/10.1186/1472-6750-11-82] [PMID: 21838857]
[17]
Shukla, D.; Prabodh, K.T.; Nath, P.; Narendra, T. Metallothioneins and phytochelatins: Role and perspectives in heavy metal(loid)s stress tolerance in crop plants. In: Tuteja/Abiotic Stress Response Plants; Shukla, D.; Trivedi, P.K.; Tuteja, P.N.N., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; pp. 237- 264.
[18]
Chaturvedi, A.K.; Mishra, A.; Tiwari, V.; Jha, B. Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene, 2012, 499(2), 280-287.
[http://dx.doi.org/10.1016/j.gene.2012.03.001] [PMID: 22441126]
[19]
Nezhad, R.M.; Shahpiri, A.; Mirlohi, A. Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J., 2013, 32(2), 131-137.
[http://dx.doi.org/10.1007/s10930-013-9469-2] [PMID: 23385446]
[20]
Nezhad, R.M.; Shahpiri, A.; Mirlohi, A. Discrimination between two rice metallothionein isoforms belonging to type 1 and type 4 in metal-binding ability. Biotechnol. Appl. Biochem., 2013, 60(3), 275-282.
[http://dx.doi.org/10.1002/bab.1078] [PMID: 23782215]
[21]
Pirzadeh, S.; Shahpiri, A. Functional characterization of a type 2 metallothionein isoform (OsMTI-2b) from rice. Int. J. Biol. Macromol., 2016, 88, 491-496.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.021] [PMID: 27079330]
[22]
Shahpiri, A.; Soleimanifard, I.; Asadollahi, M.A. Functional characterization of a type 3 metallolthionein isoform (OsMTI-3a) from rice. Int. J. Biol. Macromol., 2015, 73, 154-159.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.067] [PMID: 25449122]
[23]
Toriumi, S.; Saito, T.; Hosokawa, T.; Takahashi, Y.; Numata, T.; Kurasaki, M. Metal binding ability of metallothionein-3 expressed in Escherichia coli. Basic Clin. Pharmacol. Toxicol., 2005, 96(4), 295-301.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto960404.x] [PMID: 15755312]
[24]
Emoto, T.; Kurasaki, M.; Oikawa, S.; Suzuki-Kurasaki, M.; Okabe, M.; Yamasaki, F.; Kojima, Y. Roles of the conserved serines of metallothionein in cadmium binding. Biochem. Genet., 1996, 34(5-6), 239-251.
[http://dx.doi.org/10.1007/BF02407022] [PMID: 8813055]
[25]
Joutey, N.T.; Sayel, H.; Bahafid, W.; El Ghachtouli, N. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. Toxicol., 2015, 233, 45-69.
[http://dx.doi.org/10.1007/978-3-319-10479-9_2] [PMID: 25367133]
[26]
Ahemad, M. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol. (Praha), 2014, 59(4), 321-332.
[http://dx.doi.org/10.1007/s12223-014-0304-8] [PMID: 24470188]
[27]
Ackerley, D.F.; Gonzalez, C.F.; Keyhan, M.; Blake, R.II.; Matin, A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol., 2004, 6(8), 851-860.
[http://dx.doi.org/10.1111/j.1462-2920.2004.00639.x] [PMID: 15250887]
[28]
Vijayalakshmi, R.; Kanthimathi, M.; Subramanian, V.; Nair, B.U. DNA cleavage by a Chromium(III) complex. Biochem. Biophys. Res. Commun., 2000, 271(3), 731-734.
[http://dx.doi.org/10.1006/bbrc.2000.2707] [PMID: 10814531]
[29]
Bridgewater, L.C.; Manning, F.C.; Patierno, S.R. Base-specific arrest of in vitro DNA replication by carcinogenic chromium: relationship to DNA interstrand crosslinking. Carcinogenesis, 1994, 15(11), 2421-2427.
[http://dx.doi.org/10.1093/carcin/15.11.2421] [PMID: 7955085]
[30]
Tsou, T.C.; Chen, C.L.; Liu, T.Y.; Yang, J.L. Induction of 8-hydroxydeoxyguanosine in DNA by chromium(III) plus hydrogen peroxide and its prevention by scavengers. Carcinogenesis, 1996, 17(1), 103-108.
[http://dx.doi.org/10.1093/carcin/17.1.103] [PMID: 8565117]
[31]
Anjum, N.A.; Hasanuzzaman, M.; Hossain, M.A.; Thangavel, P.; Roychoudhury, A.; Gill, S.S.; Rodrigo, M.A.; Adam, V.; Fujita, M.; Kizek, R.; Duarte, A.C.; Pereira, E.; Ahmad, I. Jacks of metal/metalloid chelation trade in plants-an overview. Front. Plant Sci., 2015, 6, 192.
[http://dx.doi.org/10.3389/fpls.2015.00192] [PMID: 25883598]
[32]
Grennan, A.K. Metallothioneins, a diverse protein family. Plant Physiol., 2011, 155(4), 1750-1751.
[http://dx.doi.org/10.1104/pp.111.900407] [PMID: 21459979]
[33]
Shahpiri, A.; Mohammadzadeh, A. Bioaccumulation of arsenic by engineered Escherichia coli cells expressing rice metallothionein isoforms. Curr. Microbiol., 2018, 75(11), 1537-1542.
[http://dx.doi.org/10.1007/s00284-018-1556-3] [PMID: 30151557]
[34]
Kumar, R.; Singh, P.; Dhir, B.K.; Sharma, A.; Mehta, D. Potential of some fungal and bacterial species in bioremediation of heavy metals. J. Nucl. Phy. Mat. Sci. Rad. A, 2014, 1, 213-223.
[http://dx.doi.org/10.15415/jnp.2014.12017]
[35]
Kaszycki, P.; Fedorovych, D.; Ksheminska, H.; Babyak, L.; Wójcik, D.; Koloczek, H. Chromium accumulation by living yeast at various environmental conditions. Microbiol. Res., 2004, 159(1), 11-17.
[http://dx.doi.org/10.1016/j.micres.2003.12.002] [PMID: 15160602]
[36]
Srinath, T.; Verma, T.; Ramteke, P.W.; Garg, S.K. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 2002, 48(4), 427-435.
[http://dx.doi.org/10.1016/S0045-6535(02)00089-9] [PMID: 12152745]
[37]
Ksheminska, H.; Fedorovych, D.; Babyak, L.; Yanovych, D.; Kaszycki, P.; Koloczek, H. Chromium(III) and (VI) tolerance and bioaccumulation in yeast: A survey of cellular chromium content in selected strains of representative genera. Process Biochem., 2005, 40, 1565-1572.
[http://dx.doi.org/10.1016/j.procbio.2004.05.012]
[38]
Zarei, M.; Shahpiri, A.; Esmaeilnejad-Ahranjani, P.; Arpanaeil, A. Metallothionein-immobilized silica-coated magnetic particles as a novel nanobiohybrid adsorbent for highly removal of cadmium from aqueous solutions. RSC Advances, 2016, 6, 46785-46793.
[http://dx.doi.org/10.1039/C6RA05210J]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy