Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of New Cyclic Imides Derived From Safrole, Structure- and Ligand-based Approaches to Evaluate Potential New Multitarget Agents Against Species of Leishmania

Author(s): José A. de Sousa Luis*, Normando A. da Silva Costa, Cristiane C.S. Luis, Bruno F. Lira, Petrônio F. Athayde-Filho, Tatjana K. de Souza Lima, Juliana da Câmara Rocha, Luciana Scotti and Marcus T. Scotti*

Volume 16, Issue 1, 2020

Page: [39 - 51] Pages: 13

DOI: 10.2174/1573406415666190430144950

Price: $65

Abstract

Background: Leishmaniasis is a neglected disease that does not have adequate treatment. It affects around 12 million people around the world and is classified as a neglected disease by the World Health Organization. In this context, strategies to obtain new, more active and less toxic drugs should be stimulated. Sources of natural products combined with synthetic and chemoinformatic methodologies are strategies used to obtain molecules that are most likely to be effective against a specific disease. Computer-Aided Drug Design has become an indispensable tool in the pharmaceutical industry and academia in recent years and has been employed during various stages of the drug design process.

Objectives: Perform structure- and ligand-based approaches, synthesize and characterize some compounds with materials available in our laboratories to verify the method’s efficiency.

Methods: We created a database with 33 cyclic imides and evaluated their potential anti- Leishmanial activity (L. amazonensis and L. donovani) through ligand- and structure-based virtual screening. A diverse set selected from ChEMBL databanks of 818 structures (L. donovani) and 722 structures (L. amazonensis), with tested anti-Leishmanial activity against promastigotes forms, were classified according to pIC50 values to generate and validate a Random Forest model that shows higher statistical indices values. The structures of four different L. donovani enzymes were downloaded from the Protein Data Bank and the imides’ structures were submitted to molecular docking. So, with available materials and technical feasibility of our laboratories, we have synthesized and characterized seven compounds through cyclization reactions between isosafrole and maleic anhydride followed by treatment with different amines to obtain new cyclic imides to evaluate their anti-Leishmanial activity.

Results: In silico study allowed us to suggest that the cyclic imides 516, 25, 31, 24, 32, 2, 3, 22 can be tested as potential multitarget molecules for leishmanial treatment, presenting activity probability against four strategic enzymes (Topoisomerase I, N-myristoyltransferase, cyclophilin and Oacetylserine sulfhydrylase). The compounds synthesized and tested presented pIC50 values less than 4.7 for Leishmania amazonensis.

Conclusion: After combined approach evaluation, we have synthesized and characterized seven cyclic imides by IR, 1H NMR, 13C-APT NMR, COSY, HETCOR and HMBC. The compounds tested against promastigote forms of L. amazonensis presented pIC50 values less than 4.7, showing that our method was efficient in predicting true negative molecules.

Keywords: Cyclic imides, safrole, virtual screening, molecular docking, Leishmania amazonensis, Leishmania donovani, antileishmania activity.

Graphical Abstract
[1]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; Team, W.L.C. WHO leishmaniasis control team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5)e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[2]
Rodrigues, K.A.F.; Dias, C.N.S.; Néris, P.L.N.; Rocha, J.C.; Scotti, M.T.; Scotti, L.; Mascarenhas, S.R.; Veras, R.C.; de Medeiros, I.A. Keesen, Tde.S.; de Oliveira, T.B.; de Lima, M.C.; Balliano, T.L.; de Aquino, T.M.; de Moura, R.O.; Mendonça Junior, F.J.; de Oliveira, M.R. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem., 2015, 106, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.011] [PMID: 26513640]
[3]
Bonano, V.I.; Yokoyama-Yasunaka, J.K.; Miguel, D.C.; Jones, S.A.; Dodge, J.A.; Uliana, S.R. Discovery of synthetic Leishmania inhibitors by screening of a 2-arylbenzothiophene library. Chem. Biol. Drug Des., 2014, 83(3), 289-296.
[http://dx.doi.org/10.1111/cbdd.12239] [PMID: 24119198]
[4]
Herrera Acevedo, C.; Scotti, L.; Feitosa Alves, M.; Formiga Melo Diniz, M.F.; Scotti, M.T. Computer-aided drug design using sesquiterpene lactones as sources of new structures with potential activity against infectious neglected diseases. Molecules, 2017, 22(1), 79.
[http://dx.doi.org/10.3390/molecules22010079] [PMID: 28054952]
[5]
Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Yardley, V.; Maes, L.; Gupta, S.; Launay, D.; Braillard, S.; Chatelain, E.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Cooper, C.B.; Denny, W.A. 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxa-zines: Novel antitubercular agents lead to a new preclinical candidate for visceral leishmaniasis. J. Med. Chem., 2017, 60(10), 4212-4233.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00034] [PMID: 28459575]
[6]
Ogungbe, I.V.; Erwin, W.R.; Setzer, W.N. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J. Mol. Graph. Model., 2014, 48, 105-117.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.010] [PMID: 24463105]
[7]
Hermoso, A.; Jiménez, I.A.; Mamani, Z.A.; Bazzocchi, I.L.; Piñero, J.E.; Ravelo, A.G.; Valladares, B. Antileishmanial activities of dihydrochalcones from piper elongatum and synthetic related compounds. Structural requirements for activity. Bioorg. Med. Chem., 2003, 11(18), 3975-3980.
[http://dx.doi.org/10.1016/S0968-0896(03)00406-1] [PMID: 12927858]
[8]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25(1), 13-19.
[http://dx.doi.org/10.1007/s10822-010-9395-8] [PMID: 21053052]
[9]
Lorenzo, V.P.; Lúcio, A.S.; Scotti, L.; Tavares, J.F.; Filho, J.M.; Lima, T.K.; Rocha, J.D.; Scotti, M.T. Structure- and ligand-based approaches to evaluate aporphynic alkaloids from annonaceae as multi-target agent against Leishmania donovani. Curr. Pharm. Des., 2016, 22(34), 5196-5203.
[http://dx.doi.org/10.2174/1381612822666160513144853] [PMID: 27174814]
[10]
Lorenzo, V.P.; Barbosa-Filho, J.M.; Scotti, L.; Scotti, M.T. Combined structure- and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Rev. Bras. Farmacogn., 2015, 25(6), 690-697.
[http://dx.doi.org/10.1016/j.bjp.2015.08.005]
[11]
Hargreaves, M.K.; Pritchard, J.; Dave, H. Cyclic carboxylic monoimides. Chem. Rev., 1970, 70(4), 439-469.
[http://dx.doi.org/10.1021/cr60266a001]
[12]
Cechinel-Filho, V. Principais avanços e perspectivas na área de produtos naturais ativos: estudos desenvolvidos no NIQFAR/UNIVALI. Quim. Nova, 2000, 23(5), 680-685.
[http://dx.doi.org/10.1590/S0100-40422000000500017]
[13]
Cechinel Filho, V.; Pinheiro, T.; Nunes, R.J.; Yunes, R.A.; Cruz, A.B.; Moretto, E. Antibacterial activity of N-phenylmaleimides, N-phenylsuccinimides and related compounds. Structure-activity relationships. Farmaco, 1994, 49(10), 675-677.
[PMID: 7826477]
[14]
Yunes, J.A.; Cardoso, A.A.; Yunes, R.A.; Correa, R.; de Campos-Buzzi, F.; Cechinel-Filho, V.Z. Antiproliferative effects of a series of cyclic imides on primary endothelial cells and a leukemia cell line. Naturforsch. C, 2008, 63(9-10), 675-680.
[http://dx.doi.org/10.1515/znc-2008-9-1011] [PMID: 19040106]
[15]
Zawadowski, T.; Kossakowski, J.; Rump, S.; Jakowicz, I.; Płaźnik, A. Synthesis and anxiolytic activity of N-substituted cyclic imides N-[4-[(4-aryl)-1-piperazinyl]alkyl]-5,7-dioxabicyclo[2.2.2]octane-2, 3-dicarboximide. Acta Pol. Pharm., 1995, 52(1), 43-46.
[PMID: 8960237]
[16]
Alaa, A-M. Novel and versatile methodology for synthesis of cyclic imides and evaluation of their cytotoxic, DNA binding, apoptotic inducing activities and molecular modeling study. Eur. J. Med. Chem., 2007, 42(5), 614-626.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.003] [PMID: 17234303]
[17]
Mesomo, M.C.; Corazza, M.L.; Ndiaye, P.M.; Dalla Santa, O.R.; Cardozo, L.; Scheer, A.R.P. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. J. Supercrit. Fluids, 2013, 80, 44-49.
[http://dx.doi.org/10.1016/j.supflu.2013.03.031]
[18]
Povh, N.P.; Marques, M.O.; Meireles, M.A.A. Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita [L.] Rauschert). J. Supercrit. Fluids, 2001, 21(3), 245-256.
[http://dx.doi.org/10.1016/S0896-8446(01)00096-1]
[19]
Imre, G.; Veress, G.; Volford, A.; Farkas, Ö. Molecules from the Minkowski space: an approach to building 3D molecular structures. J. Mol. Struct. THEOCHEM, 2003, 666, 51-59.
[http://dx.doi.org/10.1016/j.theochem.2003.08.013]
[20]
Cruciani, G.; Crivori, P.; Carrupt, P-A.; Testa, B. Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J. Mol. Struct. THEOCHEM, 2000, 503(1), 17-30.
[http://dx.doi.org/10.1016/S0166-1280(99)00360-7]
[21]
Scotti, L.; Ishiki, H.; Mendonça Júnior, F.J.; Da Silva, M.S.; Scotti, M.T. In-silico analyses of natural products on leishmania enzyme targets. Mini Rev. Med. Chem., 2015, 15(3), 253-269.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[22]
Scotti, L.; Scotti, M.T. Computer aided drug design studies in the discovery of secondary metabolites targeted against age-related neurodegenerative diseases. Curr. Top. Med. Chem., 2015, 15(21), 2239-2252.
[http://dx.doi.org/10.2174/1568026615666150610143510] [PMID: 26059353]
[23]
Berthold, M.R.C.N.; Dill, F. Data analysis, machine learning and applications; Springer: Berlin, 2007, pp. 36-79.
[24]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[25]
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: an update. Explorations newsletter 2009, 11(1), 10-18.
[http://dx.doi.org/10.1145/1656274.1656278]
[26]
Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143(1), 29-36.
[http://dx.doi.org/10.1148/radiology.143.1.7063747] [PMID: 7063747]
[27]
Davies, D.R.; Mushtaq, A.; Interthal, H.; Champoux, J.J.; Hol, W.G. The structure of the transition state of the heterodimeric topoisomerase I of Leishmania donovani as a vanadate complex with nicked DNA. J. Mol. Biol., 2006, 357(4), 1202-1210.
[http://dx.doi.org/10.1016/j.jmb.2006.01.022] [PMID: 16487540]
[28]
Rackham, M.D.; Yu, Z.; Brannigan, J.A.; Heal, W.P.; Paape, D.; Barker, K.V.; Wilkinson, A.J.; Smith, D.F.; Leatherbarrow, R.J.; Tate, E.W. Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase. MedChemComm, 2015, 6(10), 1761-1766.
[http://dx.doi.org/10.1039/C5MD00241A] [PMID: 26962429]
[29]
Venugopal, V.; Datta, A.K.; Bhattacharyya, D.; Dasgupta, D.; Banerjee, R. Structure of cyclophilin from Leishmania donovani bound to cyclosporin at 2.6 A resolution: correlation between structure and thermodynamic data. Acta Crystallogr. D Biol. Crystallogr., 2009, 65(Pt 11), 1187-1195.
[http://dx.doi.org/10.1107/S0907444909034234] [PMID: 19923714]
[30]
Raj, I.; Kumar, S.; Gourinath, S. The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 8), 909-919.
[http://dx.doi.org/10.1107/S0907444912016459] [PMID: 22868756]
[31]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[32]
Hudson, B.; Robinson, R. Addition of maleic anhydride and ethyl maleate to substituted styrenes. J. Chem. Soc., 1941, 715-722.
[http://dx.doi.org/10.1039/jr9410000715]
[33]
García, I.; Fall, Y.; Gómez, G.; González-Díaz, H. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol. Divers., 2011, 15(2), 561-567.
[http://dx.doi.org/10.1007/s11030-010-9280-3] [PMID: 20931280]
[34]
Barreiro, E.J.; Lima, M.E. The synthesis and anti-inflammatory properties of a new sulindac analogue synthesized from natural safrole. J. Pharm. Sci., 1992, 81(12), 1219-1222.
[http://dx.doi.org/10.1002/jps.2600811219] [PMID: 1491344]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy