Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Anti-Mycobacterial Peroxides: A New Class of Agents for Development Against Tuberculosis

Author(s): Christiaan W. van der Westhuyzen, Richard K. Haynes, Jenny-Lee Panayides, Ian Wiid and Christopher J. Parkinson*

Volume 16, Issue 3, 2020

Page: [392 - 402] Pages: 11

DOI: 10.2174/1573406415666190430143535

Price: $65

Abstract

Background: With few exceptions, existing tuberculosis drugs were developed many years ago and resistance profiles have emerged. This has created a need for new drugs with discrete modes of action. There is evidence that tuberculosis (like other bacteria) is susceptible to oxidative pressure and this has yet to be properly utilised as a therapeutic approach in a manner similar to that which has proven highly successful in malaria therapy.

Objective: To develop an alternative approach to the incorporation of bacterial siderophores that results in the creation of antitubercular peroxidic leads for subsequent development as novel agents against tuberculosis.

Methods: Eight novel peroxides were prepared and the antitubercular activity (H37Rv) was compared to existing artemisinin derivatives in vitro. The potential for toxicity was evaluated against the L6 rat skeletal myoblast and HeLa cervical cancer lines in vitro.

Results: The addition of a pyrimidinyl residue to an artemisinin or, preferably, a tetraoxane peroxidic structure results in antitubercular activity in vitro. The same effect is not observed in the absence of the pyrimidine or with other heteroaromatic substituents.

Conclusion: The incorporation of a pyrimidinyl residue adjacent to the peroxidic function in an organic peroxide results in anti-tubercular activity in an otherwise inactive peroxidic compound. This will be a useful approach for creating oxidative drugs to target tuberculosis.

Keywords: Antitubercular activity, peroxide, artemisinin, tetraoxane, pyrimidine, Mycobacterium tuberculosis.

Graphical Abstract
[2]
Tiberi, S.; Buchanan, R.; Carninero, J.A.; Centis, R.; Arbex, M.A.; Salazar, M.; Potter, J.; Migliori, G.B. The challenge of the new tuberculosis drugs. Presse Med., 2017, 46, e41-e51.
[3]
Gualano, G.; Capone, S.; Matteelli, A.; Palmieri, F. New antituberculosis drugs: From clinical trial to programmatic use. Infect. Dis. Reports., 2016, 8, 6569-6575.
[4]
Diacon, A.H.; Pym, A.; Grobusch, M.P. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N. Engl. J. Med., 2014, 371, 723-732.
[5]
Gler, M.T.; Skripconokova, V.; Sanchez-Garavito, E. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366, 2151-2160.
[6]
Manca, C.; Paul, S.; Barry, C.E., III; Freedman, V.H.; Kaplan, G. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun., 1999, 67, 74-79.
[7]
Zhao, X.; Yu, H.; Wang, F.; Sacchettini, J.C.; Magliozzo, R.S. Hydrogen peroxide mediated isoniazid activation catalysed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry, 2006, 45, 4131-4140.
[8]
Ng, V.H.; Cox, J.S.; Sousa, A.O.; MacMicking, J.D.; McKinney, J.D. Role of KatG catalase-peroxidase in mycobacterial pathogenisis: countering the phagocyte oxidative burst. Mol. Microbiol., 2004, 52, 1291-1302.
[9]
Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992, 358, 591-593.
[10]
Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bacteriocidal antibiotics. Cell, 2007, 130, 797-810.
[11]
Barry, V.C.; Belton, J.G.; Conalty, M.L.; Den-Steny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179, 1013-1015.
[12]
Yano, T.; Kassova-Bratinova, S.; The, J.S.; Winkler, J.; Sullivan, K.; Isaacs, A.; Schechter, N.M.; Rubin, H. Reduction of clofazimine by Mycobacterial type 2 NADH: Quinone Oxidoreductase. A pathway for the generation of bacteriocidal levels of reactive oxygen species. J. Biol. Chem., 2011, 286, 10276-10287.
[13]
Reddy, V.M.; O’Sullivan, J.F. Antimycobacterial activities of riminophenazines. J. Antimicrob. Chemother., 1999, 43, 615-623.
[14]
Barry, V.C.; Conalty, M.L. The antimycobacterial activity of B663. Lepr. Rev., 1965, 36, 3-7.
[15]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother., 2012, 67, 290-298.
[16]
Vilchèze, C.; Hartman, T.; Jacobs, W.R., Jr Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin-C induced Fenton reaction. Nat. Commun., 2013, 4, 1881.
[17]
Burkitt, M.J.; Gilbert, B.C. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbate driven Fenton reaction. Free Radic. Res. Commun., 1990, 10, 265-280.
[18]
Rutledge, C. Iron, Mycobacteria and tuberculosis. Tuberculosis , 2004, 84, 110-130.
[19]
Minato, Y.; Thiede, J.M.; Kordus, S.L.; McKlveen, E.J.; Turman, B.J.; Baughn, A.D. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob. Agents Chemother., 2015, 59, 5097-5106.
[20]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39, 435-454.
[21]
Miller, M.J.; Walz, A.J.; Zhu, H.; Wu, C.; Moraski, G.; Möllmann, U.; Tristani, E.M.; Crumbliss, A.L.; Ferdig, M.T.; Checkley, L.; Edwards, R.L.; Boshoff, H.I. Design, synthesis and study of a mycobactin – artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc., 2011, 133, 2076-2079.
[22]
Choi, W.H. Novel pharmacological activity of artesunate and artemisinin: their potential as anti-tubercular agents. J. Clin. Med., 2017, 6, 30-43.
[23]
Cantrell, C.L.; Rajab, M.S.; Franzblau, S.G.; Fronczek, F.R.; Fischer, N.H. Antimycobacterial ergosterol-5,8-endoperoxide from Ajuga remota. Planta Med., 1999, 65, 732-734.
[24]
Haynes, R.K.; Fugmann, B.; Stetter, J.; Riekmann, K.; Heilmann, H-D.; Chan, H-W.; Cheung, M-K.; Lam, W-L.; Wong, H-N.; Croft, S.L.; Vivas, L.; Rattray, L.; Stewart, L.; Peters, W.; Robinson, B.L.; Edstein, M.D.; Kotecka, B.; Kyle, D.E.; Beckermann, B.; Gerisch, M.; Radtke, M.; Schmuck, G.; Steinke, W.; Wollborn, U.; Schmeer, K.; Römer, A. Artemisone – a highly active antimalarial drug of the artemisinin class. Angew. Chemie., 2006, 118, 2136-2142.
[25]
Opsenica, I.; Opsenica, D.; Smith, K.S.; Šolaja, B.A. Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J. Med. Chem., 2008, 51, 2261-2266.
[26]
Šolaja, B.A.; Terzic, N.; Pocsfalvi, G.; Gerena, L.; Tinant, B.; Opsenica, D.; Milhous, W.K. Mixed steroidal 1,2,4,5-tetraoxanes: antimalarial and antimycobacterial activity. J. Med. Chem., 2002, 45, 3331-3336.
[27]
Woldemichael, G.M.; Franzblau, S.G.; Zhang, F.; Wang, Y.; Timmermann, B.N. Inhibitory effects of sterols from Ruprechtia triflora and diterpenes from Calceolaria pinnifolia on the growth of Mycobacterium tuberculosis. Planta Med., 2003, 69, 628-631.
[28]
Harshan, K.V.; Mittal, A.; Prasad, H.K.; Misra, R.S.; Chopra, N.K.; Nath, I. Uptake of purine and pyrimidine nucleosides by macrophage-resident Mycobacterium leprae: 3H-adenosine as an indicator of viability and antimicrobial activity. Int. J. Lepr. Other Mycobact. Dis., 1990, 58, 526-533.
[29]
Siddiqi, S.H.; Libonati, J.P.; Middlebrook, G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol., 1981, 13, 908-912.
[30]
Martin-Casabona, N.; Xairó Mimó, D.; González, T.; Rossello, J.; Arcalis, L. Rapid method for testing susceptibility of Mycobacterium tuberculosis by using DNA probes. J. Clin. Microbiol., 1997, 35, 2521-2525.
[31]
Saito, I.; Nagata, R.; Yuba, K.; Matsuura, T. Synthesis of α-silyloxyhydroperoxides from the reaction of silyl enol ethers and hydrogen peroxide. Tetrahedron Lett., 1983, 16, 1737-1740.
[32]
Perrin, D.D.; Armarego, W.L.F. Purification of laboratory chemicals (3/e); Pergamon Press: Oxford, 1994.
[33]
Chan, W.C.; Chan, D.H.W.; Lee, K.W.; Tin, W.S.; Wong, H.N.; Haynes, R.K. Evaluation and optimisation ofsynthetic routes from dihydroartemisinin to the alkylamino-artemisinins artemiside and artemisone: A test of N-glycosidation methodologies on a lipophilic peroxide. Tetrahedron, 2018, 74, 5156-5171.
[34]
Pavel, A.B.; Korolev, K.S. Genetic load makes cancer cells more sensitive to common drugs: Evidence from cancer cell line encyclopedia. Sci. Rep., 2017, 7, Article 1938.
[35]
Slezakova, S.; Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res., 2017, 37, 5995-6003.
[36]
Das, A.K. Anticancer effect of anti-malarial artemisinin compounds. Ann. Med. Health Sci. Res., 2015, 5, 93-102.
[37]
Lai, H.; Sasaki, T.; Singh, N.P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert Opin. Ther. Targets, 2005, 9, 995-1007.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy