Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Developments in the de Novo Synthesis of Heterocycles by First-Row Transition-Metal-Catalyzed Acceptorless Dehydrogenation

Author(s): V. Arun* and Suman De Sarkar*

Volume 23, Issue 9, 2019

Page: [1005 - 1018] Pages: 14

DOI: 10.2174/1385272823666190423125226

Price: $65

Abstract

Applications of Acceptorless Dehydrogenation (AD) process for the synthesis of important heterocycles are discussed. The key features of AD process are the generation of more reactive carbonyl/imine compounds from alcohols/amines by the release of dihydrogen as a stoichiometric byproduct. In this review, we document recent advances in this field by using first row transition metal catalysts and easily accessible coupling partners, thus offering cost-effective access to different heterocyclic rings.

Keywords: Hydrogen transfer, alcohols, transition-metal, dehydrogenation, heterocycles, acceptorless dehydrogenation.

Next »
Graphical Abstract
[1]
Katritzky, A.R.; Rachwal, S. Synthesis of heterocycles mediated by benzotriazole. 2. Bicyclic systems. Chem. Rev.,2011, 111, 7063-7120; (a) Katritzky, A.R.; Rachwal, S. Synthesis of heterocycles mediated by benzotriazole. 1. Monocyclic systems. Chem. Rev., 2010, 110, 1564-1610.
[2]
Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev.,2013, 113, 3084-3213; (a)Huang, C.Y.; Doyle, A.G. The chemistry of transition metals with three-membered ring heterocycles. Chem. Rev., 2014, 114, 8153-8198.
[3]
Sucunza, D.; Cuadro, A.M.; Alvarez-Builla, J.; Vaquero, J.J. Recent advances in the synthesis of azonia aromatic heterocycles. J. Org. Chem.,2016, 81, 10126-10135; (a) Cabrele, C.; Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem.,2016, 81, 10109-10125; (b) Jiang, Y.; Xu, K.; Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev.,2018, 118, 4485-4540; (c) Granone, L.; Sieland, F.; Zheng, N.; Dillert, R.; Bahnemann, D. Photocatalytic conversion of biomass into valuable products: a meaningful approach? Green Chem., 2018, 20, 1169-1192.
[4]
Crabtree, R.H. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: Applications in hydrogen storage and to heterocycle synthesis. Chem. Rev.,2017, 117, 9228-9246. (a) Nandakumar, A.; Midya, S.P.; Landge, V.G.; Balaraman, E. Transition-metal-catalyzed hydrogen-transfer annulations: Access to heterocyclic scaffolds. Angew. Chem. Int. Ed.,2015, 54, 11022-11034. (b) Gunanathan, C.; Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science, 2013, 341, 249-260.
[5]
Corma, A.; Navas, J.; Sabater, M.J. Advances in One-Pot synthesis through borrowing hydrogen catalysis. Chem. Rev.,2018, 118, 1410-1459. (a) Guillena, G.; Ramón, D.J.; Yus, M. Hydrogen autotransfer in the N-Alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem. Rev., 2010, 110, 1611-1641.
[6]
Sato, H.; Turnbull, B.W.H.; Fukaya, K.; Krische, M.J. Ruthenium(0)-Catalyzed cycloaddition of 1,2-Diols, ketols, or diones via alcohol-mediated hydrogen transfer. Angew. Chem. Int. Ed.,2018, 57, 3012-3021 (a) Gunanathan, C.; Milstein, D. Bond Activation and catalysis by ruthenium pincer complexes. Chem. Rev., 2014, 114, 12024-12087.
[7]
Hakim Siddiki, S.M.A.; Toyao, T.; Shimizu, K-i. Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem.,2018, 20, 2933-2952 (a) Kallmeier, F.; Kempe, R. Manganese Complexes for (De)Hydrogenation catalysis: a Comparison to cobalt and iron catalysts. Angew. Chem. Int. Ed.,2018, 57, 46-60 (b) Mukherjee, A.; Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal., 2018, 8, 11435-11469.
[8]
Yang, Q.; Wang, Q.; Yu, Z. Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chem. Soc. Rev.,2015, 44, 2305-2329. (a) Filonenko, G.A.; van Putten, R.; Hensen, E.J.M.; Pidko, E.A. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev., 2018, 47, 1459-1483.
[9]
Daw, P.; Ben-David, Y.; Milstein, D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catal., 2017, 7, 7456-7460.
[10]
Zhang, G.; Wu, J.; Zeng, H.; Zhang, S.; Yin, Z.; Zheng, S. Cobalt-Catalyzed alpha-alkylation of ketones with primary alcohols. Org. Lett., 2017, 19, 1080-1083.
[11]
Midya, S.P.; Landge, V.G.; Sahoo, M.K.; Rana, J.; Balaraman, E. Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chem. Commun., 2017, 54, 90-93.
[12]
Daw, P.; Chakraborty, S.; Garg, J.A.; Ben‐David, Y.; Milstein, D. Direct synthesis of pyrroles by dehydrogenative coupling of diols and amines catalyzed by cobalt pincer complexes. Angew. Chem. Int. Ed., 2016, 55, 14373-14377.
[13]
Cho, C.S.; Ren, W.X.; Shim, S.C. A copper(II)-catalyzed protocol for modified Friedländer quinoline synthesis. Tetrahedron Lett., 2006, 47, 6781-6785.
[14]
Cho, C.S.; Ren, W.X.; Yoon, N.S. A recyclable copper catalysis in modified Friedländer quinoline synthesis. J. Mol. Catal. A: Chem., 2009, 299, 117-120.
[15]
Xi, L.Y.; Zhang, R.Y.; Zhang, L.; Chen, S.Y.; Yu, X.Q. An efficient synthesis of quinolines via copper-catalyzed C-N cleavage. Org. Biomol. Chem., 2015, 13, 3924-3930.
[16]
Mastalir, M.; Glatz, M.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Sustainable synthesis of quinolines and pyrimidines catalyzed by manganese pnp pincer complexes. J. Am. Chem. Soc., 2016, 138, 15543-15546.
[17]
Kallmeier, F.; Dudziec, B.; Irrgang, T.; Kempe, R. Manganese-catalyzed sustainable synthesis of pyrroles from alcohols and amino alcohols. Angew. Chem. Int. Ed. Engl., 2017, 56, 7261-7265.
[18]
Deibl, N.; Kempe, R. Manganese-catalyzed multicomponent synthesis of pyrimidines from alcohols and amidines. Angew. Chem. Int. Ed. Engl., 2017, 56, 1663-1666.
[19]
Daw, P.; Kumar, A.; Espinosa-Jalapa, N.A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Synthesis of pyrazines and Quinoxalines via acceptorless dehydrogenative coupling routes catalyzed by manganese pincer complexes. ACS Catal., 2018, 8, 7734-7741.
[20]
Espinosa-Jalapa, N.A.; Kumar, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. Synthesis of cyclic imides by acceptorless dehydrogenative coupling of diols and amines catalyzed by a manganese pincer complex. J. Am. Chem. Soc., 2017, 139, 11722-11725.
[21]
Das, K.; Mondal, A.; Srimani, D. Selective synthesis of 2-Substituted and 1,2-Disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese(I) Complex. J. Org. Chem., 2018, 83, 9553-9560.
[22]
Parua, S.; Das, S.; Sikari, R.; Sinha, S.; Paul, N.D. One-pot cascade synthesis of Quinazolin-4(3H)-ones via Nickel-catalyzed dehydrogenative coupling of o-aminobenzamides with alcohols. J. Org. Chem., 2017, 82, 7165-7175.
[23]
Das, S.; Maiti, D.; De Sarkar, S. Synthesis of polysubstituted quinolines from alpha-2-Aminoaryl alcohols via Nickel-Catalyzed dehydrogenative coupling. J. Org. Chem., 2018, 83, 2309-2316.
[24]
Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N.D. Accessing polysubstituted quinazolines via Nickel catalyzed acceptorless dehydrogenative coupling. J. Org. Chem., 2018, 83, 11154-11166.
[25]
Parua, S.; Sikari, R.; Sinha, S.; Das, S.; Chakraborty, G.; Paul, N.D. A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Org. Biomol. Chem., 2018, 16, 274-284.
[26]
Das, J.; Singh, K.; Vellakkaran, M.; Banerjee, D. Nickel-catalyzed hydrogen-borrowing strategy for alpha-alkylation of ketones with alcohols: A new route to branched gem-Bis(alkyl) Ketones. Org. Lett., 2018, 20, 5587-5591.
[27]
Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G-J. Iron-catalyzed 2-Arylbenzoxazole formation from o-Nitrophenols and benzylic alcohols. Org. Lett., 2012, 14, 2722-2725.
[28]
Yan, T.; Feringa, B.L.; Barta, K. Iron catalysed direct alkylation of amines with alcohols. Nature commun, 2014, 5, 5602.
[29]
Emayavaramban, B.; Sen, M.; Sundararaju, B. Iron-Catalyzed sustainable synthesis of pyrrole. Org. Lett., 2017, 19, 6-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy