Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Systematic Review Article

Gene Expression in Osteoblasts and Osteoclasts Under Microgravity Conditions: A Systematic Review

Author(s): Vasiliki Chatziravdeli, George N. Katsaras and George I. Lambrou*

Volume 20, Issue 3, 2019

Page: [184 - 198] Pages: 15

DOI: 10.2174/1389202920666190422142053

Price: $65

Abstract

Background: Microgravity (µG) negatively influences bone metabolism by affecting normal osteoblast and osteoclast function. µG effects on bone metabolism has been an extensive field of study in recent years, due to the challenges presented by space flight.

Methods: We systematically reviewed research data from genomic studies performed in real or simulated µG, on osteoblast and osteoclast cells. Our search yielded 50 studies, of which 39 concerned cells of the osteoblast family and 11 osteoclast precursors.

Results: Osteoblastic cells under µG show a decreased differentiation phenotype, proved by diminished expression levels of Alkaline Phosphatase (ALP) and Osteocalcin (OCN) but no apoptosis. Receptor Activator of NF-κB Ligand (RANKL)/ Osteoprotegerine (OPG) ratio is elevated in favor of RANKL in a time-dependent manner, and further RANKL production is caused by upregulation of Interleukin- 6 (IL-6) and the inflammation pathway. Extracellular signals and changes in the gravitational environment are perceived by mechanosensitive proteins of the cytoskeleton and converted to intracellular signals through the Mitogen Activated Protein Kinase pathway (MAPK). This is followed by changes in the expression of nuclear transcription factors of the Activator Protein-1 (AP-1) family and in turn of the NF-κB, thus affecting osteoblast differentiation, cell cycle, proliferation and maturation. Pre-osteoclastic cells show increased expression of the marker proteins such as Tryptophan Regulated Attenuation Protein (TRAP), cathepsin K, Matrix Metalloproteinase-9 (MMP-9) under µG conditions and become sensitized to RANKL.

Conclusion: Suppressing the expression of fusion genes such as syncytine-A which acts independently of RANKL, could be possible future therapeutic targets for microgravity side effects.

Keywords: Osteoblasts, osteoclasts, microgravity, gene expression, microarrays, space.

Graphical Abstract
[1]
Carmeliet, G.; Bouillon, R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. FASEB J., 1999, 13(Suppl. 8), S129-S134.
[2]
Hughes-Fulford, M. Physiological effects of microgravity on osteoblast morphology and cell biology. Adv. Space Biol. Med., 2002, 8, 129-157.
[3]
Vico, L.; Collet, P.; Guignandon, A.; Lafage-Proust, M.H.; Thomas, T.; Rehaillia, M.; Alexandre, C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet, 2000, 355(9215), 1607-1611.
[4]
Rutkovskiy, A.; Stenslokken, K.O.; Vaage, I.J. Osteoblast differentiation at a glance. Med. Sci. Monit. Basic Res., 2016, 22, 95-106.
[5]
Clement, J.Q. Gene expression microarrays in microgravity research: toward the identification of major space genes.In: Innovations in biotechnology; InTech: Croatia, 2012, pp. 321-348.
[6]
Trevino, V.; Falciani, F.; Barrera-Saldana, H.A. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol. Med., 2007, 13(9-10), 527-541.
[7]
Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.; de Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.; Lebert, M.; Medina, F.J.; Vagt, N.; Ullrich, O.; van Loon, J.J.; Hemmersbach, R. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiol, 2013, 13(1), 1-17.
[8]
Globus, R.K.; Morey-Holton, E. Hindlimb unloading: rodent analog for microgravity. J. Appl. Physiol (1985).,, 2016, 120(10), 1196- 1206.
[9]
Pavy-Le Traon, A.; Heer, M.; Narici, M.V.; Rittweger, J.; Vernikos, J. From space to earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur. J. Appl. Physiol., 2007, 101(2), 143-194.
[10]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. J. Clin. Epidemiol., 2009, 62(10), 1006-1012.
[11]
Ethiraj, P.; Link, J.R.; Sinkway, J.M.; Brown, G.D.; Parler, W.A.; Reddy, S.V. Microgravity modulation of syncytin-a expression enhance osteoclast formation. J. Cell. Biochem., 2018, 119(7), 5696-5703.
[12]
Shanmugarajan, S.; Zhang, Y.; Moreno-Villanueva, M.; Clanton, R.; Rohde, L.H.; Ramesh, G.T.; Sibonga, J.D.; Wu, H. Combined effects of simulated microgravity and radiation exposure on osteoclast cell fusion. Int. J. Mol. Sci., 2017, 18(11), 2443.
[13]
Sambandam, Y.; Baird, K.L.; Stroebel, M.; Kowal, E.; Balasubramanian, S.; Reddy, S.V. Microgravity induction of trail expression in preosteoclast cells enhances osteoclast differentiation. Sci. Rep., 2016, 6, 25143.
[14]
Chatani, M.; Morimoto, H.; Takeyama, K.; Mantoku, A.; Tanigawa, N.; Kubota, K.; Suzuki, H.; Uchida, S.; Tanigaki, F.; Shirakawa, M.; Gusev, O.; Sychev, V.; Takano, Y.; Itoh, T.; Kudo, A. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity. Sci. Rep., 2016, 6, 39545.
[15]
Chatani, M.; Mantoku, A.; Takeyama, K.; Abduweli, D.; Sugamori, Y.; Aoki, K.; Ohya, K.; Suzuki, H.; Uchida, S.; Sakimura, T.; Kono, Y.; Tanigaki, F.; Shirakawa, M.; Takano, Y.; Kudo, A. Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci. Rep., 2015, 5, 14172.
[16]
Sun, Y.L.; Chen, Z.H.; Chen, X.H.; Yin, C.; Li, D.J.; Ma, X.L.; Zhao, F.; Zhang, G.; Shang, P.; Qian, A.R. Diamagnetic levitation promotes osteoclast differentiation from raw264.7 cells. IEEE Trans. Biomed. Eng., 2015, 62(3), 900-908.
[17]
Saxena, R.; Pan, G.; Dohm, E.D.; McDonald, J.M. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to rankl-mediated osteoclastogenesis. J. Bone Miner. Metab., 2011, 29(1), 111-122.
[18]
Sambandam, Y.; Blanchard, J.J.; Daughtridge, G.; Kolb, R.J.; Shanmugarajan, S.; Pandruvada, S.N.; Bateman, T.A.; Reddy, S.V. Microarray profile of gene expression during osteoclast differentiation in modelled microgravity. J. Cell. Biochem., 2010, 111(5), 1179-1187.
[19]
Sambandam, Y.; Townsend, M.T.; Pierce, J.J.; Lipman, C.M.; Haque, A.; Bateman, T.A.; Reddy, S.V. Microgravity control of autophagy modulates osteoclastogenesis. Bone, 2014, 61, 125-131.
[20]
Tamma, R.; Colaianni, G.; Camerino, C.; Di Benedetto, A.; Greco, G.; Strippoli, M.; Vergari, R.; Grano, A.; Mancini, L.; Mori, G.; Colucci, S.; Grano, M.; Zallone, A. Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J., 2009, 23(8), 2549-2554.
[21]
Makihira, S.; Kawahara, Y.; Yuge, L.; Mine, Y.; Nikawa, H. Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell Biol. Int., 2008, 32(9), 1176-1181.
[22]
Wang, H.; Sun, Z.; Wang, Y.; Hu, Z.; Zhou, H.; Zhang, L.; Hong, B.; Zhang, S.; Cao, X. MiR-33-5p, a novel mechano-sensitive microRNA promotes osteoblast differentiation by targeting HMGA2. Sci. Rep., 2016, 6, 23170.
[23]
Sun, Z.; Cao, X.; Zhang, Z.; Hu, Z.; Zhang, L.; Wang, H.; Zhou, H.; Li, D.; Zhang, S.; Xie, M. Simulated microgravity inhibits l-type calcium channel currents partially by the up-regulation of mir-103 in MC3T3-E1 osteoblasts. Sci. Rep., 2015, 5, 8077.
[24]
Hu, L.F.; Li, J.B.; Qian, A.R.; Wang, F.; Shang, P. Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol. Int., 2015, 39(4), 364-372.
[25]
Bucaro, M.A.; Zahm, A.M.; Risbud, M.V.; Ayyaswamy, P.S.; Mukundakrishnan, K.; Steinbeck, M.J.; Shapiro, I.M.; Adams, C.S. The effect of simulated microgravity on osteoblasts is independent of the induction of apoptosis. J. Cell. Biochem., 2007, 102(2), 483-495.
[26]
Hughes, F.J.; Turner, W.; Belibasakis, G.; Martuscelli, G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontol., 2006, 41, 48-72.
[27]
Bucaro, M.A.; Fertala, J.; Adams, C.S.; Steinbeck, M.; Ayyaswamy, P.; Mukundakrishnan, K.; Shapiro, I.M.; Risbud, M.V. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann. N. Y. Acad. Sci., 2004, 1027, 64-73.
[28]
Saito, M.; Soshi, S.; Fujii, K. Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J. Bone Miner. Res., 2003, 18(9), 1695-1705.
[29]
Ontiveros, C.; McCabe, L.R. Simulated microgravity suppresses osteoblast phenotype, runx2 levels and AP-1 transactivation. J. Cell. Biochem., 2003, 88(3), 427-437.
[30]
Kumei, Y.; Morita, S.; Nakamura, H.; Shinomiya, K.; Ohya, K.; Shimokawa, H. Does microgravity induce apoptotic signal in rat osteoblasts via cJUN-n-terminal kinase? J. Gravit. Physiol., 2002, 9(1), P263-P264.
[31]
Sato, A.; Hamazaki, T.; Oomura, T.; Osada, H.; Kakeya, M.; Watanabe, M.; Nakamura, T.; Nakamura, Y.; Koshikawa, N.; Yoshizaki, I.; Aizawa, S.; Yoda, S.; Ogiso, A.; Takaoki, M.; Kohno, Y.; Tanaka, H. Effects of microgravity on c-FOS gene expression in osteoblast-like MC3T3-E1 cells. Adv. Space Res., 1999, 24(6), 807-813.
[32]
Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V. Effects of microgravity on osteoblast growth. Gravit. Space Biol. Bull., 1998, 11(2), 51-60.
[33]
Hu, Z.; Wang, H.; Wang, Y.; Zhou, H.; Shi, F.; Zhao, J.; Zhang, S.; Cao, X. Genome wide analysis and prediction of functional long noncoding RNAs in osteoblast differentiation under simulated microgravity. Mol. Med. Rep., 2017, 16(6), 8180-8188.
[34]
Goyden, J.; Tawara, K.; Hedeen, D.; Willey, J.S.; Oxford, J.T.; Jorcyk, C.L. The effect of OSM on MC3T3-E1 osteoblastic cells in simulated microgravity with radiation. PLoS One, 2015, 10(6), e0127230.
[35]
Bikle, D.D.; Harris, J.; Halloran, B.P.; Morey-Holton, E. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation. Am. J. Physiol., 1994, 267(6 Pt 1), E822-E827.
[36]
Qian, A.; Di, S.; Gao, X.; Zhang, W.; Tian, Z.; Li, J.; Hu, L.; Yang, P.; Yin, D.; Shang, P. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(7), 561-577.
[37]
Shuang, F.; Sun, Y.; Yang, H.H.; Shao, Y.C.; Li, H.; Hu, W.; Zhong, J.; Zou, H.X. Destrin deletion enhances the bone loss in hindlimb suspended mice. Eur. J. Appl. Physiol., 2013, 113(2), 403-410.
[38]
Dai, Z.; Wu, F.; Chen, J.; Xu, H.; Wang, H.; Guo, F.; Tan, Y.; Ding, B.; Wang, J.; Wan, Y.; Li, Y. Actin microfilament mediates osteoblast CBFA1 responsiveness to BMP2 under simulated microgravity. PLoS One, 2013, 8(5), e63661.
[39]
Kapitonova, M.Y.; Salim, N.; Othman, S.; Muhd Kamauzaman, T.M.; Ali, A.M.; Nawawi, H.M.; Froemming, G.R. Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight. Malays. J. Pathol., 2013, 35(2), 153-163.
[40]
Guignandon, A.; Faure, C.; Neutelings, T.; Rattner, A.; Mineur, P.; Linossier, M.T.; Laroche, N.; Lambert, C.; Deroanne, C.; Nusgens, B.; Demets, R.; Colige, A.; Vico, L. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J., 2014, 28(9), 4077-4087.
[41]
Kumei, Y.; Shimokawa, H.; Katano, H.; Hara, E.; Akiyama, H.; Hirano, M.; Mukai, C.; Nagaoka, S.; Whitson, P.A.; Sams, C.F. Microgravity induces prostaglandin E2 and interleukin-6 production in normal rat osteoblasts: role in bone demineralization. J. Biotechnol., 1996, 47(2-3), 313-324.
[42]
Carmeliet, G.; Nys, G.; Bouillon, R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res., 1997, 12(5), 786-794.
[43]
Landis, W.J.; Hodgens, K.J.; Block, D.; Toma, C.D.; Gerstenfeld, L.C. Spaceflight effects on cultured embryonic chick bone cells. J. Bone Miner. Res., 2000, 15(6), 1099-1112.
[44]
Rucci, N.; Migliaccio, S.; Zani, B.M.; Taranta, A.; Teti, A. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved rotating wall vessel bioreactor (RWV). J. Cell. Biochem., 2002, 85(1), 167-179.
[45]
Kumei, Y.; Morita, S.; Nakamura, H.; Akiyama, H.; Hirano, M.; Shimokawa, H.; Ohya, K. Coinduction of GTP cyclohydrolase I and inducible no synthase in rat osteoblasts during space flight: apoptotic and self-protective response? Ann. N. Y. Acad. Sci., 2003, 1010, 481-485.
[46]
Kumei, Y.; Morita, S.; Shimokawa, H.; Ohya, K.; Akiyama, H.; Hirano, M.; Sams, C.F.; Whitson, P.A. Inhibition of hsp70 and a collagen-specific molecular chaperone (hsp47) expression in rat osteoblasts by microgravity. Ann. N. Y. Acad. Sci., 2003, 1010, 476-480.
[47]
Nakamura, H.; Kumei, Y.; Morita, S.; Shimokawa, H.; Ohya, K.; Shinomiya, K. Antagonism between apoptotic (bax/bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann. N. Y. Acad. Sci., 2003, 1010, 143-147.
[48]
Kumei, Y.; Morita, S.; Nakamura, H.; Akiyama, H.; Katano, H.; Shimokawa, H.; Ohya, K. Platelet-activating factor receptor signals in rat osteoblasts during spaceflight. Ann. N. Y. Acad. Sci., 2004, 1030, 116-120.
[49]
Kumei, Y.; Morita, S.; Nakamura, H.; Katano, H.; Ohya, K.; Shimokawa, H.; Sams, C.F.; Whitson, P.A. Osteoblast responsiveness to 1alpha,25-dihydroxyvitamin D3 during spaceflight. Ann. N. Y. Acad. Sci., 2004, 1030, 121-124.
[50]
Kumei, Y.; Morita, S.; Katano, H.; Akiyama, H.; Hirano, M.; Oyha, K.; Shimokawa, H. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and alpha-tubulin. Ann. N. Y. Acad. Sci., 2006, 1090, 311-317.
[51]
Pardo, S.J.; Patel, M.J.; Sykes, M.C.; Platt, M.O.; Boyd, N.L.; Sorescu, G.P.; Xu, M.; van Loon, J.J.; Wang, M.D.; Jo, H. Simulated microgravity using the random positioning machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am. J. Physiol. Cell Physiol., 2005, 288(6), C1211-C1221.
[52]
Rucci, N.; Rufo, A.; Alamanou, M.; Teti, A. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J. Cell. Biochem., 2007, 100(2), 464-473.
[53]
Patel, M.J.; Liu, W.; Sykes, M.C.; Ward, N.E.; Risin, S.A.; Risin, D.; Jo, H. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J. Cell. Biochem., 2007, 101(3), 587-599.
[54]
Kumei, Y.; Shimokawa, H.; Ohya, K.; Katano, H.; Akiyama, H.; Hirano, M.; Morita, S. Small GTPase Ras and Rho expression in rat osteoblasts during spaceflight. Ann. N. Y. Acad. Sci., 2007, 1095, 292-299.
[55]
Capulli, M.; Rufo, A.; Teti, A.; Rucci, N. Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a mechanoresponsive osteoblast gene signature. J. Cell. Biochem., 2009, 107(2), 240-252.
[56]
Blaber, E.A.; Dvorochkin, N.; Lee, C.; Alwood, J.S.; Yousuf, R.; Pianetta, P.; Globus, R.K.; Burns, B.P.; Almeida, E.A. Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKn1a/p21. PLoS One, 2013, 8(4), e61372.
[57]
Rucci, N.; Capulli, M.; Piperni, S.G.; Cappariello, A.; Lau, P.; Frings-Meuthen, P.; Heer, M.; Teti, A. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J. Bone Miner. Res., 2015, 30(2), 357-368.
[58]
Hu, Z.; Wang, Y.; Sun, Z.; Wang, H.; Zhou, H.; Zhang, L.; Zhang, S.; Cao, X. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Sci. Rep., 2015, 5, 18655.
[59]
Kumei, Y.; Nakamura, H.; Morita, S.; Akiyama, H.; Hirano, M.; Ohya, K.; Shinomiya, K.; Shimokawa, H. Space flight and insulin-like growth factor-I signaling in rat osteoblasts. Ann. N. Y. Acad. Sci., 2002, 973(1), 75-78.
[60]
Boyce, B.F.; Xing, L. The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep., 2007, 5(3), 98-104.
[61]
Ge, C.; Xiao, G.; Jiang, D.; Franceschi, R.T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol., 2007, 176(5), 709-718.
[62]
Sinha, K.M.; Zhou, X. Genetic and molecular control of osterix in skeletal formation. J. Cell. Biochem., 2013, 114(5), 975-984.
[63]
Wei, J.; Karsenty, G. An overview of the metabolic functions of osteocalcin. Rev. Endocr. Metab. Disord., 2015, 16(2), 93-98.
[64]
Horowitz, M.C. The role of cytokines in bone remodeling. J. Clin. Densitom., 1998, 1(2), 187-198.
[65]
Miki, H.; Suetsugu, S.; Takenawa, T. Wave, a novel wasp-family protein involved in actin reorganization induced by RAC. EMBO J., 1998, 17(23), 6932-6941.
[66]
Katagiri, Y.U.; Sleeman, J.; Fujii, H.; Herrlich, P.; Hotta, H.; Tanaka, K.; Chikuma, S.; Yagita, H.; Okumura, K.; Murakami, M.; Saiki, I.; Chambers, A.F.; Uede, T. CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res., 1999, 59(1), 219.
[67]
Manolagas, S.C. The role of Il-6 type cytokines and their receptors in bone. Ann. N. Y. Acad. Sci., 1998, 840, 194-204.
[68]
Franchimont, N.; Wertz, S.; Malaise, M. Interleukin-6: an osteotropic factor influencing bone formation? Bone, 2005, 37(5), 601-606.
[69]
Steeve, K.T.; Marc, P.; Sandrine, T.; Dominique, H.; Yannick, F. Il-6, RANKL, TNF-alpha/Il-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev., 2004, 15(1), 49-60.
[70]
Wong, P.K.; Campbell, I.K.; Egan, P.J.; Ernst, M.; Wicks, I.P. The role of the interleukin-6 family of cytokines in inflammatory arthritis and bone turnover. Arthritis Rheum., 2003, 48(5), 1177-1189.
[71]
Liu, X.H.; Kirschenbaum, A.; Yao, S.; Levine, A.C. The role of the interleukin-6/GP130 signaling pathway in bone metabolism. Vitam. Horm., 2006, 74, 341-355.
[72]
Heymann, D.; Rousselle, A.V. GP130 cytokine family and bone cells. Cytokine, 2000, 12(10), 1455-1468.
[73]
Kamimura, D.; Ishihara, K.; Hirano, T. Il-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol., 2003, 149, 1-38.
[74]
Ernst, M.; Jenkins, B.J. Acquiring signalling specificity from the cytokine receptor GP130. Trends Genet., 2004, 20(1), 23-32.
[75]
Tamura, T.; Udagawa, N.; Takahashi, N.; Miyaura, C.; Tanaka, S.; Yamada, Y.; Koishihara, Y.; Ohsugi, Y.; Kumaki, K.; Taga, T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11924-11928.
[76]
Jones, S.A.; Horiuchi, S.; Topley, N.; Yamamoto, N.; Fuller, G.M. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J., 2001, 15(1), 43-58.
[77]
Heinrich, P.C.; Behrmann, I.; Haan, S.; Hermanns, H.M.; Muller-Newen, G.; Schaper, F. Principles of interleukin (Il)-6-type cytokine signalling and its regulation. Biochem. J., 2003, 374(Pt 1), 1-20.
[78]
Itoh, S.; Udagawa, N.; Takahashi, N.; Yoshitake, F.; Narita, H.; Ebisu, S.; Ishihara, K. A critical role for interleukin-6 family-mediated stat3 activation in osteoblast differentiation and bone formation. Bone, 2006, 39(3), 505-512.
[79]
Bellido, T.; O’Brien, C.A.; Roberson, P.K.; Manolagas, S.C. Transcriptional activation of the p21WAF1,CIP1,SDI1 gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J. Biol. Chem., 1998, 273(33), 21137-21144.
[80]
Chipoy, C.; Brounais, B.; Trichet, V.; Battaglia, S.; Berreur, M.; Oliver, L.; Juin, P.; Redini, F.; Heymann, D.; Blanchard, F. Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on stat5 and p53. Oncogene, 2007, 26(46), 6653-6664.
[81]
Brounais, B.; Chipoy, C.; Mori, K.; Charrier, C.; Battaglia, S.; Pilet, P.; Richards, C.D.; Heymann, D.; Redini, F.; Blanchard, F. Oncostatin M induces bone loss and sensitizes rat osteosarcoma to the antitumor effect of midostaurin in vivo. Clin. Cancer Res., 2008, 14(17), 5400-5409.
[82]
Malaval, L.; Aubin, J.E. Biphasic effects of leukemia inhibitory factor on osteoblastic differentiation. J. Cell. Biochem. Suppl., 2001(Suppl. 36), 63-70.
[83]
Chipoy, C.; Berreur, M.; Couillaud, S.; Pradal, G.; Vallette, F.; Colombeix, C.; Redini, F.; Heymann, D.; Blanchard, F. Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCdelta and STAT3. J. Bone Miner. Res., 2004, 19(11), 1850-1861.
[84]
Palmqvist, P.; Persson, E.; Conaway, H.H.; Lerner, U.H. Il-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J. Immunol., 2002, 169(6), 3353-3362.
[85]
O’Brien, C.A.; Gubrij, I.; Lin, S.C.; Saylors, R.L.; Manolagas, S.C. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappa B ligand and stimulation of osteoclastogenesis by GP130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem., 1999, 274(27), 19301-19308.
[86]
Duplomb, L. Baud’Huin, M.; Charrier, C.; Trichet, V.; Blanchard, F.; Heymann, D. Il-6 inhibits RANKL-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of serine<sup>727</sup> phosphorylation of STAT3. Bone, 2008, 42, S36.
[87]
Yoshitake, F.; Itoh, S.; Narita, H.; Ishihara, K.; Ebisu, S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J. Biol. Chem., 2008, 283(17), 11535-11540.
[88]
Schuler, M.; Green, D.R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans., 2001, 29(Pt 6), 684-688.
[89]
Schuler, M.; Bossy-Wetzel, E.; Goldstein, J.C.; Fitzgerald, P.; Green, D.R. P53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem., 2000, 275(10), 7337-7342.
[90]
Hughes-Fulford, M. In: The role of signaling pathways in osteoblast gravity perception. Proceedings of Life in space for life on Earth. 8th European Symposium on Life Sciences Research in Space., 23rd Annual International Gravitational Physiology Meeting, Stockholm, Sweden, June 2-7, 2002; Warmbein, B., Ed.; Publications Division: Noordwijk, Netherlands. 2002, pp. 43-46.
[91]
Kanno, T.; Takahashi, T.; Tsujisawa, T.; Ariyoshi, W.; Nishihara, T. Mechanical stress-mediated runx2 activation is dependent on RAS/ERK1/2 MAPK signaling in osteoblasts. J. Cell. Biochem., 2007, 101(5), 1266-1277.
[92]
Higuchi, C.; Myoui, A.; Hashimoto, N.; Kuriyama, K.; Yoshioka, K.; Yoshikawa, H.; Itoh, K. Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J. Bone Miner. Res., 2002, 17(10), 1785-1794.
[93]
Wagner, E.F. Functions of AP1 (FOS/JUN) in bone development. Ann. Rheum. Dis., 2002, 61(Suppl. 2), 40-42.
[94]
Grigoriadis, A.E.; Wang, Z.Q.; Cecchini, M.G.; Hofstetter, W.; Felix, R.; Fleisch, H.A.; Wagner, E.F. C-FOS: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science, 1994, 266(5184), 443-448.
[95]
McCabe, L.R.; Banerjee, C.; Kundu, R.; Harrison, R.J.; Dobner, P.R.; Stein, J.L.; Lian, J.B.; Stein, G.S. Developmental expression and activities of specific FOS and JUN proteins are functionally related to osteoblast maturation: role of FRA-2 and JUN D during differentiation. Endocrinology, 1996, 137(10), 4398-4408.
[96]
Hobolt-Pedersen, A.S.; Delaisse, J.M.; Soe, K. Osteoclast fusion is based on heterogeneity between fusion partners. Calcif. Tissue Int., 2014, 95(1), 73-82.
[97]
Mensah, K.A.; Ritchlin, C.T.; Schwarz, E.M. RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens. J. Cell. Physiol., 2010, 223(1), 76-83.
[98]
Soe, K.; Andersen, T.L.; Hobolt-Pedersen, A.S.; Bjerregaard, B.; Larsson, L.I.; Delaisse, J.M. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone, 2011, 48(4), 837-846.
[99]
Moller, A.M.; Delaisse, J.M.; Soe, K. Osteoclast fusion: time-lapse reveals involvement of CD47 and syncytin-1 at different stages of nuclearity. J. Cell. Physiol., 2017, 232(6), 1396-1403.
[100]
DeSelm, C.J.; Miller, B.C.; Zou, W.; Beatty, W.L.; van Meel, E.; Takahata, Y.; Klumperman, J.; Tooze, S.A.; Teitelbaum, S.L.; Virgin, H.W. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell, 2011, 21(5), 966-974.
[101]
Gelman, A.; Elazar, Z. Autophagic factors cut to the bone. Dev. Cell, 2011, 21(5), 808-810.
[102]
Lin, N.Y.; Stefanica, A.; Distler, J.H. Autophagy: a key pathway of TNF-induced inflammatory bone loss. Autophagy, 2013, 9(8), 1253-1255.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy