Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Research Article

Inhibitory and Reversal Effects of Extracts and Fractions of Anogeissus leiocarpa (DC.) Guill. & Perr. on Sodium Metabisulphite– induced Polymerization of Sickle Cell Haemoglobin

Author(s): Taiwo O. Elufioye*, Omolola A. Olaifa and Mojisola C. Cyril-Olutayo

Volume 5, Issue 3, 2019

Page: [257 - 267] Pages: 11

DOI: 10.2174/2215083805666190412162414

Price: $65

Abstract

Background: The leaves and stem bark of Anogeissus leiocarpa (DC.) Guill. & Pirr. (Combretaceae) are commonly included in recipes used for the management of sickle cell disease in western part of Nigeria.

Objective: The present study was carried out to evaluate the potential of methanol extract and various fractions of A. leiocarpa leaves and stem bark to inhibit as well as reverse sodium metabisulphite induced polymerization of sickle cell haemoglobin.

Methods: The modified Emmel test was used to evaluate the inhibitory activity and the reversal effects of the extracts and fractions of both the leaves and the stem bark of A. leiocarpa in vitro.

Results: Both the leaves and the stem bark extracts of A. leiocarpa were effective at inhibiting as well as reversing sodium metabisulphite induced polymerization of sickle cell haemoglobin, though the activity was higher in the leaves (94.52 ± 0.80% and 95.67 ± 0.67% respectively) when compared with the stem bark (51.79 ± 2.46 % and 50.45 ± 3.18 % respectively). The ethyl acetate fraction of both leaves and stem bark also gave good activities in both test methods with percentage reversal of 82.74 ± 1.82% and 67.63 ± 2.18% respectively.

Conclusion: A. leiocarpa extracts and ethyl acetate fractions exhibit good inhibition and reversal of sodium metabisulphite–induced polymerization of sickle cell haemoglobin thus justifying its inclusion in remedies used for the traditional management of sickle cell.

Keywords: Anogeissus leiocarpa, sickle cell anaemia, sodium metabisulphite, polymerization, inhibitory effect, reversal effect.

Graphical Abstract
[1]
Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 2010; 376: 2018-31.
[2]
Steinberg MH. Management of sickle cell disease. N Engl J Med 1999; 340: 1021-30.
[3]
Serjeant GR. The Natural history of sickle cell disease Cold Spring Harb Perspect Med 2013; 1: 3
[http://dx.doi.org/10.1101/cshperspect. a011783]
[4]
Tshilanda DD, Mpiana PT, Onyamboko DNV, et al. Anti-sickling activity of butyl stearate isolated from Ocimum basilicum (Lamiaceae). Asian Pac J Trop Biomed 2014; 4: 393-8.
[5]
Cyril-Olutayo CM, Elujoba AA, Durosinmi MA. Anti sickling properties of the fermented mixture of Carica papaya Linn and Sorghum bicolor (L.) Moench Afr J Pharm Pharmacol 2009; 3: 140-3.
[6]
Afolabi IS, Osikoya IO, Fajimi OD, et al. Solenostemon monostachyus, Ipomoea involucrate and Carica papaya seed oil versus Glutathione, or Vernonia amygdalina: Methanolic extracts of novel plants for the management of sickle cell anemia disease. BMC Comp and Alter Med 2012; 12: 262-72.
[7]
Ngbolua KN, Tshibangu DST, Mpiana PT, Mihigo SO. Anti-sickling and antibacterial activities of some extracts from Gardenia ternifolia subsp. Jovistonantis (Welw.) Verdc. (Rubiaceae) and Uapaca heudelotii Baill(Phyllanthaceae). J Adv Med Pharma Sci 2015; 2: 10-9.
[8]
Cyril-Olutayo CM, Agbedahunsi JM. Effects of the ethanolic extract of cnidoscolus aconitifolius (mill.) im johnst. on HbSS red blood cells in vitro. Nig J Nat Prod Med 2015; 19: 115-21.
[9]
Chikezie CP. Sodium metabisulphite-induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava, and Terminalia catappa). Pharmacog Mag 2011; 7: 126-32.
[10]
Ekeke GL, Shode FO. The reversion of sickle cell by Cajanus cajan. Planta Med 1985; 6: 504-7.
[11]
Gamaniel K, Amos A, Akah PA, et al. Pharmacological profile of NIPRD 94/002/1-0: A novel herbal antisickling agent. J Pharm Res Dev 1998; 3: 89-94.
[12]
Imaga NOA. The use of phyto-medicines as effective therapeutic agents in sickle cell anemia. Scientific Res Essays 2010; 5: 3803-7.
[13]
Victor YA. In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts of six wound healing medicinal plants. J Nat Sci Res 2013; 3: 74-82.
[14]
Arbab AH. Review on Anogeissus leiocarpus, a potent African traditional drug. Inter J Res Pharm Chem 2014; 4: 496-500.
[15]
Okpekon T. Antiparasitic activities of medicinal plants used in Ivory Coast. J Ethnopharm 2004; 90: 91-7.
[16]
Batawila K. Antifungal activities of five combretaceae used in Togolese traditional medicine. Fitoterapia 2005; 76: 264-8.
[17]
Rotimi VO. Activities of Nigerian chewing stick extracts against Bacteroides gingivalis and Bacteroides melaninogenicus. Antimicro Agents Chemother 1988; 32: 598-600.
[18]
Akanbi OM, Omonkhua AA, Cyril-Olutayo CM, Fasimoye RY. The antiplasmodial activity of Anogeissus leiocarpus and its effect on oxidative stress and lipid profile in mice infected with Plasmodium bergheii. Parasitology Res 2012; 110: 219-26.
[19]
Cyril-Olutayo CM, Omonkhua AA, Akanbi OM. Effects of Anogeissus leiocarpus on haematological parameters of mice infected with plasmodium berghei. J Plant Studies 2013; 2: 13-21.
[20]
Mann A, Banso A, Clifford C. An antifungal property of crude plant extracts from Anogeissus leiocarpus and Terminalia avicennioides. Tanzania J Health Res 2008; 10: 34-8.
[21]
Shuaibu MN, Wuyep PA, Yanagi T, Hirayama K, Tanaka T, Kouno I. The use of microfluorometric method for activity guided isolation of antiplasmodial compound from plant extracts. Parasitology Res 2008; 102: 1119-27. a
[22]
Shuaibu MN, Wuyep PA, Yanagi T, et al. Trypanocidal activity of extracts and compounds from the stem bark of Anogeissus leiocarpus and Terminalia avicennoides. Parasitology Res 2008; 102: 697-703. b
[23]
Shuaibu MN, Pandey K, Wuyep PA, et al. Castalagin from Anogeissus leiocarpus mediates the killing of Leishmania in vitro. Parasitology Res 2008; 103: 1333-8. c
[24]
Chaabi M, Benayache S, Benayache F, et al. Triterpenes and polyphenols from Anogeissus leiocarpus (Combretaceae). Biochem Systematic Ecol 2008; 36: 59-62.
[25]
Egunyomi A, Moody JO, Eletu OM. Anti-sickling activities of two ethnomedicinal plant recipes used for the management of sickle cell anaemia in Ibadan, Nigeria. Afr J Biotech 2009; 8: 20-5.
[26]
Ogunyemi CM, Elujoba AA, Durosimi MA. Antisickling properties of Carica papaya Linn. J Nat Prod 2008; 1: 56-8.
[27]
Chan EWC, Lim YY, Chew YL. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. J food. Chem 2007; 102: 1214-22.
[28]
Nurain IO, Bewaji CO, Abubakar AA, et al. Antimalarial and reno-protective potentials of combined stem bark extracts of Khaya grandifoliola and Enantia chlorantha in plasmodium infected mice. Iranian J Toxicol 2018; 12(3): 29-37.
[29]
Kale A, Gaikwad S, Mundhe K, Deshpande N, Salvekar J. Quantification of phenolics and flavonoids by spectrophotometer from Juglans regia. Inter J Pharma Bio Sci 2010; 1: 1-4.
[30]
Amorim ELC, Nascimento JE, Monteiro JM, Sobrinho P, Araujo TAS, Albuquerque UAP. A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Functional Ecosyst Comm 2008; 2: 88-94.
[31]
Makkar HPS, Siddhuraju P, Becker K. Plant Secondary Metabolites. Totowa, New Jersey, USA: Humana Press Inc 2007.
[32]
Singh DK, Srivastva B, Sahu A. Spectrophotometric determination of Rauwolfia alkaloids, estimation of reserpine in pharmaceuticals. Analytical Sci 2004; 20: 571-3.
[33]
El-Olemy MM, Al-Muhtadi FJ, Afifi AFA. Experimental Phytochemistry: A Laboratory Manual. King Saud University Press Saudi Arabia 1994; pp. 21-7.
[34]
Doneva‐Šapceska D, Dimitrovski A, Bojadžiev T, Milanov G, Vojnovski B. Free and potentially volatile monoterpenes in grape varieties from the Republic of Macedonia. Macedonia J Chem Eng 2006; 25: 51-6.
[35]
Sakulpanich A, Gritsanapan W. Determination of anthraquinone glycoside content in Cassia fistula leaf extracts for alternative source of laxative drug. Int J Biomed Pharm Sci 2009; 3: 42-5.
[36]
Neville AK, Panepinto JA. Pharmacotherapy of sickle cell disease World Health Organization 18th Expert Committee on the Selection and Use of Essential Medicines, 2011; pp 1-16.
[37]
Segal JB, Strouse JJ, Beach MC, et al. Hydroxyurea for the treatment of sickle cell disease Evidence Reports/ Technology Assessments 2008; 165: 1-95.
[38]
Hill S. Managing Sickle Cell Disease.In: Low-Income Families. Temple University Press 2003; p. 21.
[http://dx.doi.org/10.1155/2013/269659]
[39]
Conran N. Prospects for early investigational therapies for sickle cell disease. Expert Opin Investig Drugs 2015; 24: 595-602.
[40]
Amujoyegbe OO, Agbedahunsi JM, Akinpelu BA, Oyedapo OO. In vitro evaluation of membrane stabilizing activities of leaf and root extracts of Calliandra portoricensis (JACQ) benth on sickle and normal human erythrocytes. Inter Res J Pharm Pharmacol 2012; 2: 198-203.
[41]
Oyedapo OO, Famurewa AJ. Antiprotease and membrane stabilizing activities of extracts of Fagara zanthoxyloides, Olax subscorpioides and Tetrapleura tetraptera. Pharm Biol 1995; 33: 65-9.
[42]
Sofowora EA, Isaacs-Sodeye WA, Ogunkoya LO. Isolation and characterization of an anti-sickling agent from the root of Fagara zanthoxyloides, an African medicinal plant.Proceedings of a Conference. Ed Sofowora EA 1979; pp 89-97.
[43]
Adesanya SA, Idowu TB, Elujoba AA. Antisickling activity of Adansonia digitata. Planta Med 1988; 54: 374.
[44]
Adejumo OE, Ayoola MD, Kolapo AL, Orimoyegun VO, Olatunji PO. Antisickling activities of extracts of leaf, seed and seed pod of Garcinia kola Heckel. Afri. J Pharm Pharmacol 2011; 5: 48-52.
[45]
Mpiana PT, Misakabu FM, Yuma PM, et al. Anti-sickling activity and physico-chemical stability of anthocyanin extracts from Ipomoea Batatas leaves. J Life Med 2014; 2: 25-31.
[46]
Moody JO. Anti-sickling potential of a Nigerian herbal formula (Ajawaron HF) and the major plant component (Cissus populnea L. CPK). Phytother Res 2003; 17: 1173-6.
[47]
Ibrahim H, Sani FS, Danladi BH, Ahmadu AA. Phytochemical and anti-sickling studies of the leaves of Hymenocardia acida Tul (Euphorbiaceae). Pakistan J Biol Sci 2007; 10: 788-91.
[48]
Gillete PN, Misra R, Wambebe C, Asakura T, Pandey RC. Development of niprisan, an antisickling phytopharmaceutical from traditional medicine: Lessons learned and challenges for the future. Fourth International Healthcare and Herbal Expo and Seminar, Source Book; New Delhi, India 2004: pp 141-149.
[49]
Mpiana PT, Mudogo V, Kabangu YF, et al. Antisickling activity and thermostability of anthocyanins extract from a congolese plant, Hymenocardia acidatul. (Hymenocardiaceae). Inter J Pharmacol 2009; 5: 65-70.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy